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Deep learning predicts the 1‑year 
prognosis of pancreatic cancer 
patients using positive peritoneal 
washing cytology
Aya Noguchi 1,2, Yasushi Numata 3, Takanori Sugawara 4, Hiroshu Miura 4, Kaori Konno 4, 
Yuzu Adachi 4, Ruri Yamaguchi 2, Masaharu Ishida 1, Takashi Kokumai 1, Daisuke Douchi 1, 
Takayuki Miura 1, Kyohei Ariake 1, Shun Nakayama 1, Shimpei Maeda 1, Hideo Ohtsuka 1, 
Masamichi Mizuma 1, Kei Nakagawa 1, Hiromu Morikawa 3, Jun Akatsuka 3,5, Ichiro Maeda 3,6,7, 
Michiaki Unno 1, Yoichiro Yamamoto 3,8* & Toru Furukawa 2*

Peritoneal washing cytology (CY) in patients with pancreatic cancer is mainly used for staging; 
however, it may also be used to evaluate the intraperitoneal status to predict a more accurate 
prognosis. Here, we investigated the potential of deep learning of CY specimen images for predicting 
the 1-year prognosis of pancreatic cancer in CY-positive patients. CY specimens from 88 patients 
with prognostic information were retrospectively analyzed. CY specimens scanned by the whole slide 
imaging device were segmented and subjected to deep learning with a Vision Transformer (ViT) and 
a Convolutional Neural Network (CNN). The results indicated that ViT and CNN predicted the 1-year 
prognosis from scanned images with accuracies of 0.8056 and 0.8009 in the area under the curve of 
the receiver operating characteristic curves, respectively. Patients predicted to survive 1 year or more 
by ViT showed significantly longer survivals by Kaplan–Meier analyses. The cell nuclei found to have a 
negative prognostic impact by ViT appeared to be neutrophils. Our results indicate that AI-mediated 
analysis of CY specimens can successfully predict the 1-year prognosis of patients with pancreatic 
cancer positive for CY. Intraperitoneal neutrophils may be a novel prognostic marker and therapeutic 
target for CY-positive patients with pancreatic cancer.

Pancreatic cancer is now the third leading cause of cancer-related death in the United States and fourth in Japan1,2, 
and its incidence is increasing; therefore, it is predicted to be the second leading cause of cancer-related death in 
the United States by 20303. Pancreatic cancer has a poor prognosis, with a 5-year survival rate of < 10% despite 
multidisciplinary treatment combining surgery, chemotherapy, and radiotherapy4. As patients with pancreatic 
cancer have a variety of conditions, predicting their prognosis will be helpful in suggesting an appropriate treat-
ment plan.

Peritoneal washing cytology (CY) is useful for assessing pancreatic cancer progression. Positive peritoneal 
washing cytology (CY+) is classified as distant metastasis by the American Joint Committee on Cancer and the 
National Comprehensive Cancer Network5,6. CY+ patients have a poorer prognosis than CY− patients7. Even in 
patients diagnosed with resectable pancreatic cancer, based on imaging studies, 30% of them were CY+ 8. Thus, 
CY is becoming increasingly important for pancreatic cancer, and the number of CY performed is expected to 
increase further in the future. Moreover, peritoneal lavage fluid contains a variety of cells, including peritoneal 
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mesothelial cells, lymphocytes, neutrophils, and macrophages9. CY allows the observation of cells in the perito-
neal cavity and may provide useful clinical information in addition to evaluating cancer progression.

Recently, remarkable advances have been made in artificial intelligence (AI), particularly in medical imaging 
studies using machine learning. In cytopathology, deep learning techniques can help assess malignant cells in 
fine-needle aspiration specimens of the mammary glands and pancreas with high accuracy10,11. Furthermore, AI 
discriminates whether the primary tumor of urothelial carcinoma is invasive or non-invasive from a urine cytol-
ogy specimen12, suggesting that AI-mediated analysis of cytology specimens may provide additional information 
beyond the conventional diagnosis of malignancy made by pathologists. This study aimed to examine whether 
AI can predict a more accurate prognosis from positive CY specimens in patients with pancreatic cancer. Hence, 
we investigated the potential of deep learning of images of CY specimens for predicting the 1-year prognosis of 
CY+ patients with pancreatic cancer.

Results
Patient characteristics
The study profile is shown in Fig. 1. This study included 126 patients with pancreatic cancer who were diagnosed 
as CY+ for the first time during their disease course at Tohoku University Hospital between January 2011 and 
December 2022. Of these, 38 patients were excluded, including 2 who died from other diseases, 26 for whom 
the prognosis within 1 year after CY collection was unknown, and 10 for whom the cytology specimens were 
lost. Ultimately, 88 CY+ patients were included in the analysis and classified into poor (survival < 1 year; n = 28) 
and good (survival ≥ 1 year; n = 60). Table 1 shows the patient characteristics. There were no significant differ-
ences in age, sex, liver metastases, carbohydrate antigen 19-9 (CA19-9) levels, or white blood cell (WBC) counts 
between the poor and good prognostic groups; only C-reactive protein (CRP) levels were significantly different 
between the groups (p < 0.05).

Figure 1.   Study profile. CY, peritoneal washing cytology.

Table 1.   Patient characteristics. Significant values are in [bold]. CA19-9, carbohydrate antigen 19–9; CRP, 
C-reactive protein; SD, standard deviation; and WBC, white blood cell count.

Total cases: N = 88 Poor prognosis Good prognosis P-value

Number of cases, n 28 60

Age, year, mean ± SD 67.1 ± 9.6 69.4 ± 8.4 0.2880

Sex, male, n 14 (50.0%) 35 (58.3%) 0.4969

Liver metastasis, n 4 (14.3%) 5 (8.3%) 0.4574

CA19-9 (U/mL), mean ± SD 960.5 ± 2554.1 475.3 ± 904.6 0.0846

WBC (/μL), mean ± SD 5989.3 ± 2611.0 5766.7 ± 2757.2 0.5662

CRP (mg/dL), mean ± SD 1.03 ± 1.98 0.90 ± 3.50 0.0238
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Classification using deep neural network
The patients were divided into a training dataset cohort (n = 56) with CY sampling conducted between 2011 
and 2018, a test dataset cohort (n = 24) with CY sampling conducted between 2019 and 2021, and a validation 
dataset cohort (n = 8) with CY sampling conducted during 2022. Papanicolaou-stained CY specimens scanned 
at 40× magnification by the whole slide imaging device were segmented and subjected to deep learning with a 
Vision Transformer (ViT) and a Convolutional Neural Network (CNN). After deep learning using the training 
data, the test cohort of 24 patients was analyzed to evaluate whether they belonged to the poor or good progno-
sis groups. The total numbers of cell nuclei used for the analysis were 59,182 in the training data and 17,084 in 
the test data. Receiver operating characteristic (ROC) curves were created to determine the predictive ability of 
the binary classification of the systems. The areas under the curve (AUCs) for ViT and CNN using the test data 
were 0.8056 and 0.8009, respectively (Fig. 2 and Supplementary Fig. S1). Furthermore, the AUC for ViT using 
the validation data was 0.8333. A Kaplan–Meier survival analysis of patients with these binary predictions by 
ViT showed that the good prognosis group had significantly longer survival than did the poor prognosis group 
(p < 0.0001; Fig. 3). There was no significant difference in the Kaplan–Meier survival curves between patients 
prognostically classified using CNN (Supplementary Fig. S2).

Figure 2.   ROC analysis. The AUC of the ViT was 0.8056. AUC, area under the curve; ROC, receiver operating 
characteristics; and ViT, vision transformer.

Figure 3.   Kaplan–Meier survival analysis of ViT. Cases classified as good prognosis by ViT had significantly 
longer survival. ViT, vision transformer.
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Extraction of the top 5 cell nucleus images with high impact on poor or good prognosis
We extracted the top 5 cell nuclear images with high or low predicted probabilities for ViT (Fig. 4). Cell nuclei 
with high predicted probabilities, indicating a high likelihood of poor prognosis, showed segmented nuclei 
that were likely to be those of neutrophils. In contrast, cell nuclei with low predicted probabilities, indicating 
a high likelihood of a good prognosis, showed round nuclei and were morphologically considered peritoneal 
mesothelial cells or macrophages.

Immunocytochemistry of cells associated with good prognostic evaluation in ViT
We performed immunohistochemistry to evaluate cells with good prognosis by examining the expression of 
calretinin, a specific marker for peritoneal mesothelial cells. The results showed that the cells were negative 
compared to peritoneal mesothelial cells used as internal controls, indicating that the good prognostic cells were 
macrophages (Fig. 5A–C).

Figure 4.   Top 5 cell nuclear images with high impact on poor or good prognosis. The cell nuclear images are 
listed from left to right, starting with the image with the highest predicted probabilities or the one with the 
lowest predicted probabilities. (A) Cell nuclei images associated with the poor prognosis. (B) Cell nuclei images 
associated with the good prognosis.

Figure 5.   Results of immunocytochemistry. (A) Papanicolaou staining image of an analyzed sample. 
The red frame indicates a cell with low predicted probabilities of ViT (Original magnification, ×400). (B) 
Immunocytochemistry for calretinin. The cell was negative for calretinin expression (Red frame. Original 
magnification, ×400). (C) Internal control for the calretinin immunocytochemistry. Mesothelial cells were 
positive for calretinin staining (Original magnification, ×400). ViT, vision transformer.
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Discussion
This is the first study to examine whether prognosis can be predicted using AI-mediated analysis of CY speci-
mens from patients with pancreatic cancer. In this study, deep learning using ViT and CNN was able to predict 
the 1-year prognosis from CY+ specimens of patients with pancreatic cancer, with an accuracy of more than 
AUC 0.8. In addition, the prediction accuracy was higher for the ViT than for the CNN. Segmented nuclei were 
found among the cell nuclei with high predicted probabilities of ViT, suggesting a poor prognosis. These cells 
were most likely neutrophils. The round cell nuclei had low predicted probabilities, suggesting a good prognosis, 
which were macrophages based on negative immunocytochemical staining for calretinin.

AI techniques are being used in a variety of fields, and in pathology they are being applied to diagnose 
benign and malignant conditions and tumor subtypes, evaluate pathological features and biomarkers, and predict 
prognosis13. In the cytological field, a deep learning system was able to classify malignant cells and predict tumor 
origins from cytology images of pleural and ascitic fluids, achieving an AUC of 0.95 and better14. Previous studies 
on prognosis prediction by deep learning using histopathology specimens have reported that survival prediction 
was successful for gastric cancer, liver cancer, and glioma with C-indexes of 0.657, 0.78, and 0.754, respectively, 
and for soft-tissue sarcoma with AUC accuracy of 0.9115–18. For pancreatic cancer, which was the subject of this 
study, CT images were used to predict prognosis with an accuracy of AUC 0.72319. All of these previous studies 
used CNN-based machine learning. The accuracy of survival prediction in this study was demonstrated in 0.8 of 
AUC, which seems to be sufficiently high. Furthermore, our team has also shown that combining clinical infor-
mation with machine learning of histopathology specimen images improves prediction accuracy of patients with 
pancreatic cancer undergoing surgery and adjuvant therapy20. Training AI by integrating clinical and molecular 
data, such as genomic and RNA sequencing information, with imaging information, such as that obtained in this 
study, could provide a more accurate assessment of therapeutic options. Recently, attention mechanisms have 
gained prominence in deep learning. A model consisting solely of an attention mechanism was first developed 
in the field of machine translation21. Subsequently, ViT classified images with higher accuracy than CNN which 
has been widely used for prognosis prediction based on image data22. In this study, the AUC for predicting 1-year 
prognosis was only slightly higher for ViT than for CNN. A Kaplan–Meier survival analysis of patients using ViT 
predictions in this study showed that the good prognosis group had significantly longer survival than the poor 
prognosis group. However, there was no significant difference in survival curves between the groups classified by 
CNN. We used data for cell nuclei, which allowed us to over 50,000 image data for training. The large amount of 
data may enable ViT to efficiently learn the cell nuclei that are more likely to influence on prognosis, and thereby 
improving classification accuracy23. In addition, although segmentation was performed for each cell, morphologi-
cal annotation of each cell was not performed during the training phase. We previously reported a deep learning 
system without morphological annotation for histopathological specimens24. These approaches not only save the 
physician time regarding the need for annotation but also have the potential to uncover new findings.

The cell nuclei in the poor prognosis group were most likely those of neutrophils. An elevated neutrophil-
to-lymphocyte ratio in the peripheral blood and an increased number of intratumoral neutrophils have been 
reported as poor prognostic factors in patients with pancreatic cancer25,26, and meta-analyses of multiple cancer 
types have shown similar findings27,28. The present results suggest that intraperitoneal neutrophils are a poor 
prognostic factor in patients with pancreatic cancer. To the best of our knowledge, there have been no reports 
examining the relationship between intraperitoneal neutrophils and prognosis in patients with cancer. Find-
ings of intraperitoneal neutrophils have been reported in mouse models. Intraperitoneal neutrophils increased 
in a mouse model of peritoneal dissemination of ovarian cancer29 and intraperitoneal neutrophil extracellular 
traps (NETs) promoted intraperitoneal dissemination in mice transplanted with human gastric cancer cells30. In 
recent years, the relationship between tumor cells and immune cells has attracted much attention, and various 
findings have been reported for neutrophils. Neutrophils have been shown to promote tumor cell proliferation. 
Elastase produced by neutrophils degrades insulin receptor substrate-1 when taken up by tumor cells, result-
ing in enhanced interaction between phosphatidylinositol 3-kinase (PI3K) and platelet-derived growth factor 
receptor. The subsequent activation of the PI3K pathway promotes tumor growth31. In addition, neutrophils also 
promote tumor metastasis. Previous studies have shown that NETs formed by neutrophils capture circulating 
tumor cells and provide a foothold for metastasis32, and that the interaction of β2 integrin on neutrophils with 
intercellular adhesion molecule 1 on tumor cells promotes tumor cell anchorage to the vascular endothelium and 
invasion into the tissue33. Moreover, neutrophils are an important source of matrix metallopeptidase 9, which 
releases vascular endothelial growth factor from the extracellular matrix and is thought to promote angiogen-
esis by malignant tumors34,35. Further to the above, neutrophils have been shown to induce apoptosis of CD8 
T cells in the presence of tumor necrosis factor α and nitric oxide, which may favor tumor cells by suppressing 
cellular immunity36. In contrast, neutrophils exert antitumor effects by causing tumor cell death37, inhibiting 
neovascularization38, and promoting T cell proliferation39. Thus, neutrophils have a dual function with respect 
to tumor cells, and factors affecting their functional polarization have been investigated40. In our study results, 
intraperitoneal neutrophils were associated with poor prognosis. Intraperitoneal neutrophils in pancreatic cancer 
patients with CY+ may exert a variety of functions that promote the tumorigenic effects described above, thereby 
worsening their prognosis. Regarding patient characteristics, the only significant difference between the good 
and poor prognostic groups was CRP level, indicating that a high CRP level was associated with poor prognosis. 
CRP is a systemic inflammatory marker; therefore, this result may indicate an association between systemic 
inflammation and patient prognosis. However, the difference in mean CRP levels between the 2 groups was small, 
and a prospective study is needed to clarify whether this difference is clinically significant. Furthermore, the 
relationship between intraperitoneal neutrophils and systemic inflammation was obscure in this study, although 
some cases revealed the presence of intraperitoneal neutrophils even in the absence of significant inflammation 
proved by hematological examination.
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These intraperitoneal neutrophils could be therapeutic targets and are currently under investigation. The 
removal of intraperitoneal neutrophils in a mouse model of peritoneal dissemination of ovarian cancer caused an 
increase in regulatory T cells and a decrease in CD8+ T cells, suggesting that they may promote tumor growth41. 
In contrast, it has been reported that type 1 interferon induces the antitumor function of neutrophils and that 
neutrophil elastase selectively kills cancer cells42,43. These reports suggest that enhancing the antitumor effects 
of neutrophils by modulating their functions with inflammatory cytokines, rather than eliminating them, could 
be a therapeutic strategy.

Cells with low predicted probabilities of ViT were determined to be macrophages, which are broadly classified 
as M1 macrophages with inflammatory effects or M2 macrophages with anti-inflammatory effects; however, the 
polarization state of macrophages is plastic, and their activation state is composed of a spectrum44. The mac-
rophages identified in this study may have M1-like polarity, which may contribute to an improved prognosis. 
The interaction between tumor and immune cells has been studied mainly in tumor tissues, but much remains 
unknown regarding the immune environment in the peritoneal cavity. Further clarification of these issues may 
lead to a better understanding of the mechanisms underlying the intraperitoneal invasion and peritoneal dis-
semination of cancer cells, which would help control these processes.

The limitations of this study include its retrospective design, small number of cases, heterogeneous patient 
background, single-center design and chronological differences in analyzed cohorts. The results should be vali-
dated in future studies involving a large number of patients. Chronological differences in obtaining the CY 
specimens in training dataset cohort (2011–2018), test dataset cohort (2019–2021), and validation dataset cohort 
(2022) may cause unexpected biases in qualities of materials and trivial differences in clinical treatment and 
medications. Revalidation of the results of our study using contemporaneous CY specimens may be desirable. 
Furthermore, future stratification of patients according to treatment methods and other factors may enable the 
use of CY specimens to predict treatment efficacy.

Using deep learning, we were able to predict the 1-year prognosis of patients with pancreatic cancer from 
CY+ specimens. Our results may help to optimize the treatment of pancreatic cancer patients with CY+ by strati-
fying their prognosis. Neutrophil exudation into the peritoneal cavity may promote tumor progression and influ-
ence prognosis. Thus, intraperitoneal neutrophils may be a new therapeutic target in patients with CY+ pancreatic 
cancer. Peritoneal washing fluid is a clinical specimen of interest not only for determining the stage of cancer 
but also for obtaining new clinical information, which may lead to the development of new treatment methods.

Materials and methods
Study population
This study included 126 patients with pancreatic cancer and who were found to be CY+ for the first time in 
their disease course at Tohoku University Hospital between January 2011 and December 2022. As depicted in 
Fig. 1, excluded patients comprised 2 who died from other diseases, 26 who had an unknown prognosis within 
1 year after CY collection, and 10 for whom the cytology specimens were lost. Finally, 88 patients were enrolled 
in this study. These cases were binarily classified into a good prognostic group consisting of patients with sur-
vival ≥ 1 year and a poor prognostic group consisting of patients with survival < 1 year based on the CY collec-
tion. Alternatively, these cases were divided into a training dataset cohort consisting of 56 cases, including 20 
cases from the poor prognostic group subjected to CY collection before January 2019, and a test dataset cohort 
consisting of 24 cases, including 6 cases from the poor prognostic group subjected to CY collection between 
December 2018 and April 2021, and a validation dataset cohort consisting of 8 cases, including 2 cases from the 
poor prognostic group subjected to CY collection between January 2022 and December 2022. This study was 
approved by the Ethics Committee of Tohoku University Graduate School of Medicine (reference 2021-1-499, 
2024-1-124) and RIKEN (Wako 2022-07 (2)). Informed consent to use clinically obtained specimens for non-
specified research purposes was obtained from all patients when the peritoneal washing fluid was collected. 
The Ethics Committee of Tohoku University Graduate School of Medicine gave exemption for the requirement 
of informed consent from the participants for this specific study; participants were granted the opportunity to 
decline study participation in an opt-out manner. All methods were performed in accordance with the relevant 
guidelines and regulations.

Preparation of pathology images
Peritoneal washing fluid was initially collected during surgery. Saline solution (100 mL) was injected into the 
peritoneal cavity via laparotomy or laparoscopy. The peritoneal washing fluid (50 mL) was collected using a 
Nelaton catheter and centrifuged. Cytosmears were prepared by the auto-smear method using a Cyto-Tek® 
2500 Cytocentrifuge (Sakura Finetek Japan Co. Ltd., Tokyo, Japan). Cytosomes were fixed with 95% ethanol and 
stained using the Papanicolaou staining method. One of the stained slides from each case was scanned using a 
whole-slide imaging scanner (NanoZoomer S60 Digital Slide Scanner, Hamamatsu Photonics K. K., Hamamatsu, 
Japan) at 40× magnification.

Segmentation of cell nuclei
Cells observed in the cytology specimens formed overlapping clusters. Therefore, to improve the recognition 
accuracy of individual cells, segmentation of cell nuclei and other regions was performed using Ilastik (Version 
1.3.3)45 on 10 randomly selected images (230 × 230 µm per image) from a single image at 40× magnification, 
except for the picture frame-shaped areas of each 1/4 width of the scanning area.
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Classification using a deep neural network
ViT22 and CNN were used to predict the prognosis from the imaging data. ViT is a model composed of an attention 
mechanism without the use of CNN. In this study, we used as input data the cell nucleus images created through 
segmentation, divided into patches of 16 × 16 pixels each, and used ViT-L_16_imagenet21k+imagenet2012.npz as 
the transition learning model. We used a simple CNN model for which the structure is shown in Supplementary 
Fig. S3. A learning model was constructed using the cell nuclear data extracted by segmentation and the prog-
nostic information of the training data. Predictions of poor prognosis were made from individual cell nuclear 
data from the test dataset cohort. A cell nucleus with the predicted probability of 0.5 or higher was defined as 
a poor prognostic nucleus. If the percentage of nuclei evaluated as poor prognostic to the total number of cell 
nuclei extracted from 10 magnified images exceeded a threshold value, the specimen was judged to have a poor 
prognosis. ROC and Kaplan–Meier curves were generated to evaluate prediction accuracy. To construct the 
Kaplan–Meier curves, we used the prognostic results with the threshold set to maximize the sum of sensitivity 
and specificity (0.155). Moreover, we identified 5 cell nuclei, each with a high probability of predicting poor and 
good prognosis based on the predicted probability of ViT. Cells were examined morphologically by pathologists 
and cytologists. Poor prognostic cells were determined to be neutrophils with characteristic segmental nuclei, 
whereas good prognostic cells could not be identified morphologically. Therefore, immunocytochemical staining 
was performed to identify the characteristics of good prognostic cells.

Immunocytochemistry of peritoneal washing lavage
We performed immunocytochemical staining to identify the cell types of the 5 cell nuclei that were determined to 
be good prognostic factors based on the ViT results. Regions containing the 5 cell nuclei were transferred using 
the cell transfer method46 to new glass slides and stained automatically using BenchMark ULTRA PLUS (Roche, 
Basel, Switzerland). Antigen activation with CC1 buffer (#951-124) was performed for 8 min, and mesothel-
specific calretinin expression was detected using an anti-calretinin antibody (#790-4467) and a VENTANA 
OptiView DAB Universal Kit (# 760-700).

Statistical analysis
Patient characteristics of the good and poor prognostic groups were compared using the Wilcoxon rank-sum 
test for continuous values and Fisher’s exact test for discontinuous values. ROC curves were plotted using the 
R package (pROC, version 4.0.1). Kaplan–Meier curves were compared using the log-rank test. Significant P 
values were established as < 0.05. We used JMP Pro software version 16.0.0 (SAS Institute Inc., Cary, NC, USA) 
for statistical analyses.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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