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Abstract

Multiplexed imaging technologies provide crucial insights into interactions
between tumors and their surrounding tumor microenvironment (TME), but their
widespread adoption is limited by cost, time, and tissue availability. We introduce
HistoPlexer, a deep learning (DL) framework that generates spatially-resolved

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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31 protein multiplexes directly from histopathology images. HistoPlexer employs
2 the conditional generative adversarial networks with custom loss functions that
33 mitigate slice-to-slice variations and preserve spatial protein correlations. In a
34 comprehensive evaluation on metastatic melanoma samples, HistoPlexer consis-
35 tently outperforms existing approaches, achieving superior Multiscale Structural
36 Similarity Index and Peak Signal-to-Noise Ratio. Qualitative evaluation by
37 domain experts demonstrates that the generated protein multiplexes closely
38 resemble the real ones, evidenced by Human Eye Perceptual Evaluation error
39 rates exceeding the 50% threshold for perceived realism. Importantly, Histo-
40 Plexer preserves crucial biological relationships, accurately capturing spatial
a1 co-localization patterns among proteins. In addition, the spatial distribution of
2 cell types derived from HistoPlexer-generated protein multiplex enables effective
43 stratification of tumors into immune hot versus cold subtypes. When applied
4 to an independent cohort, incorporating additional features from HistoPlexer-
45 generated multiplexes enhances the performance of the DL model for survival
46 prediction and immune subtyping, outperforming the model reliant solely on
47 Hematoxylin & Eosin (H&E) image features. By enabling the generation of
48 whole-slide protein multiplex from the H&E image, HistoPlexer offers a cost-
49 and time-effective approach to understanding the TME, and holds promise for
50 advancing precision oncology.

s« 1 Introduction

52 Tumors are complex systems that obtain hallmark traits by creating a supportive
53 tumor microenvironment (TME) which facilitates tumorigenesis and metastasis [1, 2].
s« Understanding cancer cell interactions with this surrounding tissue provides insights
s into disease progression and therapeutic response [3-5]. Multiplexed immunohisto-
ss  chemistry and immunofluorescence (mIHC/IF) technologies, such as Imaging Mass
57 Cytometry (IMC), allow for spatially-resolved quantification of up to 40 protein mark-
s ers, offering comprehensive insights into tumor-TME interactions [4, 6, 7]. These
s technologies facilitate analysis of spatial cell distribution, phenotype co-localization,
60 and interactions in cellular communities—promising factors for clinical decision-
s making [4, 5, 8, 9]. However, IMC is limited by low throughput, high cost, and coverage
e restricted to small Region-of-Interests (Rols), hindering its broader clinical adoption.
6 In contrast, Hematoxylin & Eosin (H&E) staining remains the gold standard for
6 cancer diagnosis in clinical practice due to its low-cost, high throughput, and coverage
e of entire tissue sections. H&E images reveal crucial morphological features of tissue
s organization that aid in cancer grading, proliferation assessment, and staging [10].
& Recent advances in Deep Learning (DL) have shown that these features can inform
6 the prediction of protein markers. For instance, several studies have successfully pre-
oo dicted single markers such as pan-cytokeratin for pancreatic cancer [11], HER2 for
70 breast cancer [12], and Ki-67 for neuroendocrine and breast cancers [13] directly from
n  H&E images. Only a few studies have attempted a multiplexed prediction, with a
2 focus, however, solely on either tumor [14, 15] or immune markers [16], limiting their
7 utility for investigation of tumor-TME interactions. In addition, these studies either
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= employ separate models for each marker [14, 16] or lack quantitative validation on the
 advantages of multiplexed prediction with a single model [15, 16].

76 To address these limitations, we introduce HistoPlexer, a DL model that gener-
77 ates protein multiplexes from H&E images. HistoPlexer simultaneously predicts 11
7 markers, consisting of both tumor and immune markers, which enables an integrative
7 visualization of tumor-host interactions. We train HistoPlexer on metastatic sam-
s ples from the Tumor Profiler Study (TuPro) [17] using paired H&E and IMC images
a1 from serial sections. Through quantitative evaluation, we demonstrate the impor-
&2 tance of simultaneous marker prediction through improved model performance and
ss enhanced spatial co-localization of markers. We validate the biological relevance of
s generated IMC images through cell-typing and immune phenotyping analyses, par-
s ticularly in characterizing immune-hot (inflamed) and immune-cold (excluded/desert)
s tumors based on CD8+ T-cell distributions. We also demonstrate out-of-distribution
e generalizability of HistoPlexer on samples from the human skin cutaneous melanoma
s (SKCM) study of The Cancer Genome Atlas (TCGA) project [18].

89 Our results show that HistoPlexer generates high-quality IMC images that closely
o align with real data distributions. These generated multiplexes enable precise immune
o1 phenotyping through spatial analysis of tumor-immune cell interactions, particu-
o2 larly in distinguishing immune-hot and cold subtypes. We also demonstrate that
o3 simultaneously predicting multiple protein markers preserves biologically meaning-
o ful relationships among them. Furthermore, by augmenting H&E Whole-Slide Images
s (WSIs) with generated IMC multiplex, HistoPlexer improves both survival and
o6 immune subtype prediction on the TCGA-SKCM dataset, indicating its potential to
o7 aid clinical decisions.

« 2 Results

o 2.1 HistoPlexer: a toolkit for histopathology-based protein
100 multiplex generation

w1 The HistoPlexer is a generative model based on conditional GAN (cGAN) which
102 predicts spatially-resolved profiles of multiple proteins simultaneously from a single
103 input H&E image. The model is trained on paired H&E and multiplexed IMC image
e patches (Figure 1A) extracted from aligned H&E and IMC Rols. During training, the
s H&E patches are fed into the translator G, which learns to generate protein multiplexes
s (i.e., IMC images) based on the tissue morphology from high-resolution H&E images.
w7 The generated IMC image patches, along with the input H&E image patches, are fed
ws  to the discriminator D to produce a realness score, which produces a realness score
0o indicating how closely the generated IMC patches resemble ground truth (GT) IMC
uo  patches (Fig. 1B(i)). The translator and discriminator is trained adversarially using
w  a least squares Generative Adversarial Network (GAN) loss, such that the generated
12 IMC image patches are able to fool the discriminator to classify it as real. Besides the
u3 GAN loss, we incorporate two additional losses to ensure pixel-level and patch-level
s consistency between the generated and GT IMC images. The pixel-level consistency
us loss calculates the L distance between the generated and GT IMC images. However,
us  since the H&E and GT IMC images are obtained from serial sections of the tissue block,
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u7  there is a degree of spatial displacement of tissue organization between consecutive
us  slices (termed slice-to-slice variations). While registered at the structural level after
ne  template-matching, consecutive slides obtained from real-world diagnostic material
10 are not pixel-level aligned. To account for these differences, we adopt the Gaussian
21 Pyramid loss [12], which relaxes the alignment constraint by evaluating the similarity
122 between the generated and GT IMC images at multiple scales (Fig. 1B(ii)). For patch-
123 level consistency, we utilize a patch-wise contrastive loss to ensure that corresponding
124 patches in the generated and GT IMC images are closer in the embedding space
s than distant ones (Fig. 1B(iii)). We further incorporate adaptive weights for different
s patches based on their proximity to GT following [19].

127 We build our HistoPlexer framework using a multimodal metastatic melanoma
s dataset generated by the Tumor Profiler Study [17]. Each patient was characterized
1o by multiple modalities, including H&E and IMC images. Rols of 1 mm? were selected
1o on each H&E WSI based on visual inspection by a pathology expert and IMC data
1 was generated for those Rols on a consecutive section of the same tumor block. Using
13 template matching [20], we created a paired dataset of 336 H&E and IMC Rols
133 from 78 patients. We focus on predicting 11 protein markers that are essential for
13 characterizing the tumor and its surrounding TME. These include tumor markers
s (MelanA, S100, gp100, SOX10), immune markers (CD3, CD8a, CD20, CD16, CD31),
s and antigen-presentation markers (HLA-ABC, HLA-DR).

w 2.2 HistoPlexer generates accurate and realistic protein
138 multiplex.

139 We benchmark the HistoPlexer against Pix2pix [21] and PyramidP2P [12], evaluating
o each method in two settings: multiplex (MP) and singleplex (SP). In the MP setting,
w  a single model is trained to predict all markers simultaneously, whereas in the SP
2 setting, separate models are trained to predict each marker individually, after which
1z the predictions are stacked for a (pseudo-)multiplexed output. All models are trained
us on 231 and tested on 105 Rols.

145 We evaluate the quality of generated IMC images using Multiscale Structural Sim-
us ilarity Index (MS-SSIM) [22] for perceptual similarity at multiple scales and Peak
w7 Signal-to-Noise Ratio (PSNR) [23] for pixel-level distortion. Our results show that the
us  HistoPlexer model trained in the MP setting achieves the highest MS-SSIM and PSNR
1o values (refer Table 1), suggesting greater similarity to GT IMC images generated from
10 consecutive tissue sections. Additionally, models in the MP setting consistently out-
151 performs those in the SP setting across all methods, demonstrating that simultaneous
12 prediction of all markers enhances performance by effectively capturing inter-marker
153 correlations. The performance of individual markers for the HistoPlexer-MP model is
15« presented in Table S1.
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Fig. 1 Overview of HistoPlexer architecture. (A) The HistoPlexer consists of a translator
G that takes H&E and IMC images as input and predicts protein multiplexes from morphology
information encoded in the H&E images, ultimately generating protein multiplex on the WSI level
from H&E input. (B) The objective functions of HistoPlexer contain the GAN adversarial loss,
gaussian pyramid loss with average L1 score across scales and patch-wise contrastive loss with anchor
from generated IMC and positive and negative from GT IMC.

155 We further qualitatively evaluate the generated IMC images by comparing them
156 with the GT (Fig. 2A and Supplementary Fig. S1) and observe good alignment in
157 global patterns. However, pixel-level correspondence is not expected due to the inher-
158 ent slice-to-slice variations. In a few cases, we observe slight confusion between CD20
159 and CD3/CD8a markers. For instance, in the bottom-right region of Fig. 2A (ii), there
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10 exists an overexpression of CD20 and an underexpression of CD3 and CD8a markers.
11 This may stem from the highly similar and visually indistinguishable morphology of
12 B- and T- cells in H&E images, leading to confusion between their markers (CD20 for
163 B-cells and CD3/CD8a for T-cells) [24].

164 To quantify the perceived realism of generated IMC images, we employ the Human
s Eye Perceptual Evaluation (HYPE) framework [25] where experts evaluate pairs of
s IMC images (real or generated) for specific markers alongside their corresponding
1w H&E images. Given that H&E staining reveals distinct nuclear and tissue morphology
s patterns crucial for identifying tumor regions and lymphocytes [24], we created two
10 evaluation sets: tumor-associated markers (MelanA, S100, gp100, SOX10) and lym-
wo phocyte markers (CD20, CD3, CD8a). For each set, two pathology experts assessed
w250 image pairs, with an equal distribution of real and generated images. The image
2 pairs were created using Rols from test set, with data augmentation through small
w3 translations and rotations. The evaluation yields mean HYPE scores of 41.8%(+0.3%)
w  for lymphocyte markers and 42.8%(40.6%) for tumor markers. The generated images
ws achieved HYPE scores of 61.6% (£1.3%) and 72.8% (£1.1%), indicating that the
ws  majority (>50%) were perceived as real by domain experts, demonstrating their high
w7 perceived realism.

178 Next, we go beyond pixel-level evaluation by identifying relevant cell types. We
w  use GT cell-type annotations from the GT IMC training set, following [8], and train
1 a Random Forest classifier [26] based on average marker expression per cell to classify
11 them into five classes: tumor cells, B-cells, CD8+ T-cells, CD4+ T-cells, and others.
122 This classifier is then applied to both GT and generated IMC images from the test
183 set to obtain cell-type maps (Fig. 2B). We visualize Rols from the tumor center and
18s  the tumor front at the tumor—-TME interface and examine spatial patterns based
15 on immune subtype labels. We observe that immune “hot” tumors, characterized by
186 high immune cell infiltration, show strong interactions between tumor and CD8+ T-
w7 cells (Fig.2B(i)), whereas immune “cold” tumors, with low immune presence, display
15 minimal immune cell interaction, especially in the tumor center (Fig.2B(ii)). Immune
19 “cold” Rols at the tumor front similarly exhibit sparse or clustered immune cells with
wo little interaction with tumor cells (Fig.2B(iii), (iv), (v)). The strong alignment between
w1 predicted and GT cell-type maps, as well as their spatial organization, suggests that

| Method | MS-SSIM 1 PSNR 1
Pix2pix [21] 0.278+0.004 13.747+0.122
MP | PYRAMIDP2P [12] | 0.284+0.004 13.894+0.172
HISTOPLEXER 0.299+0.008 14.162+0.076
PIx2PIX [21] 0.260-+0.002 13.015+0.009
SP | PYRAMIDP2P [12] | 0.263+0.015 13.216+0.482

0.279+0.002 13.353+0.038

Table 1 Comparison of Model Performance against
benchmarks using MS-SSIM and PSNR for multiplex (MP)
and singleplex (SP) settings. 1 arrow indicates higher values
are better.

HISTOPLEXER
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12 HistoPlexer effectively captures morphological features in H&E images relevant for
103 predicting cell types using IMC data.
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Fig. 2 Qualitative Rol-level assesment of HistoPlexer. A H&E (first column) and expression
profiles of individual markers: MelanA, CD3, CD8a, CD20, SOX10 and CD16 (from second to last
column). Top row: ground-truth (GT) expression profiles; bottom row: predicted (Pred) expression
profiles. B Cell-typing results: H&E (first row), GT and predicted cell types (middle and bottom
row) in Rols grouped by their location within the tissue: “Tumor Center” and “Tumor Front”.
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w 2.3 HistoPlexer preserves spatial co-localization patterns

s As importance of spatial patterns has been previously shown by [27, 28], we assess the
10s  spatial co-localization patterns by quantifying the correlation between two or more
17 proteins markers simultaneously expressed within a given region. For each protein pair,
s we compute the Spearman’s Correlation Coefficient (SCC) between the two proteins
1o and average the correlation across Rols, considering only pairs with strong positive
200 (> 0.15) or strong negative (< —0.15) correlation in GT IMC images. We then compare
20 the SCC obtained from GT and generated IMC multiplex.

202 As shown in Fig. 3A(i), the Multiplex (MP) model’s predictions align more closely
203 with the GT than those of the Singleplex (SP) model in terms of pairwise SCC, espe-
24 cially for protein pairs involving CD-based immune markers such as CD16:HLA-DR,
20s CD3:HLA-ABC and CD16:CD8a, which are sparsely represented in the training data.
26 We hypothesize these sparse markers lack sufficient tissue context for the SP model
27 to generate accurate predictions. In contrast, the MP model benefits from learning
28 inter-marker correlations by predicting all markers simultaneously. Leveraging auxil-
200 iary tissue morphology information from abundant markers, it enhances the prediction
a0 of both sparse markers and co-localization patterns. However, for a few protein pairs
au (CD3:CD8a and CD20:CD3), the SCC in MP exceeds that of the GT. This is likely due
22 to the similar morphological features of CD8+ T-cells (a subset of CD3 T-cells) and
23 CD3 T-cells, as well as of B-cells (CD20) and CD3 T-cells in H&E images [24], which
2 can lead to the overprediction of sparse markers and, consequently, co-localization
a5 patterns. We further quantify spatial co-localization by measuring the Mean Square
25 Error (MSE) between the SCC values from GT and generated IMC data across all test
27 Rols (Fig.3A(ii)). Compared to the SP model, the MP model achieves an MSE that is
218 approximately an order of magnitude lower, which reinforces our hypothesis. A com-
20 parison of HistoPlexer with Pix2Pix[21] and PyramidP2P [12] baselines is provided in
20 Supplementary Fig. S2A.

21 To explore spatial patterns beyond protein pairs, we visualize the expression pro-
22 files using t-SNE embeddings of cells from both GT and generated IMC multiplex,
»3  following [29]. We observe a good correspondence between t-SNE from both GT and
24 generated IMC multiplex (Fig.2.3B). For instance, cells that are positive for CD3 and
25 CDB8a are at the same time negative for CD31, gpl00 and MelanA. This is in line
26 with their biological function, as CD3 and CD8a are expressed on T-cells but not
27 on endothelium (CD31) or tumor cells (gp100 and MelanA). Full t-SNE plots for all
28 markers are shown in Supplementary Fig. S2.

229 In conclusion, our quantitative and qualitative results suggest that the spatial co-
20 localization patterns in GT can be effectively replicated using the generated IMC
2 images. These spatial patterns are preserved across tissue sections, thus offering a
22 robust evaluation metric that mitigates the impact of slice-to-slice variations.

» 2.4 HistoPlexer enables multiplexed proteomics profiling on
234 the WSI—level.

25 HistoPlexer enables the generation of IMC images from H&E WSIs of up to
26 100,000% 100,000 pixels, allowing for the simultaneous visualization of multiple protein
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Fig. 3 A(i) Spearman’s correlation coefficients between protein pairs, comparing the ground truth
(GT) with both singleplexed (SP) and multiplexed (MP) predictions of the HistoPlexer. The pairs
on the X-axis are ordered by increasing Spearman’s correlation in the GT. A(ii) Mean squared
error between the GT and predicted Spearman’s correlation coefficients, comparing the SP and MP
predictions of the HistoPlexer. B Joint t-SNE visualization of protein co-localization patterns for
selected markers: CD3, CD8a, CD31, gpl00 and MelanA. The color represents protein expression.

27 markers across entire tissue sections. This capability provides a comprehensive view
2 of tumor and TME interactions at the WSI level. Since GT IMC data is available only
2 for Rols, we use Ultivue’s InSituPlex® technology to obtain multiplexed WSIs using
20 the Immuno8 and MDSC FixVue" panels. These panels include key markers, such
21 as SOX10 for tumors, HLA-DR for antigen presentation, and CD3/CD8a for T-cell
22 profiling, which are shared with the generated protein multiplex. Figure 4 provides a
23 qualitative comparison between the generated IMC and Ultivue multiplex at the WSI
24 level. In both cases, a strong correspondence in global structures and hotspot regions
25 18 observed across all markers. In Fig. 4(ii), while there is good alignment for CD3
s and SOX10 markers, discrepancies appear for CD8A and HLA-DR, particularly along
27 the tissue periphery (e.g., the bottom-left border). These differences are likely due to
us  slice-to-slice variations between H&FE and Ultivue images, which lead to slight shifts
29 in tissue boundaries.

= 2.5 HistoPlexer facilitates immune phenotyping

1 We showcase the utility of HistoPlexer by stratifying immune subtypes according
2 to the spatial distribution of CD8+ T-cells obtained using only H&E images from
3 TuPro metastatic melanoma samples. Fig.5A illustrates the integrative visualization
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Fig. 4 Qualitative WSI-level assessment of HistoPlexer. H&E (first column) and expression
profiles of individual markers: CD3, SOX10, CD8a and HLA-DR (from second to last column). Top
row: GT expression profiles from Ultivue images; bottom row: predicted (pred) expression profiles on
WSI level both samples in (i) and (ii).

4 of predicted tumor and CD8+ T-cells on H&E WSIs. In immune-hot cases, charac-
255 terized by substantial CD8+ T-cell infiltration and typically better immunotherapy
26 responses [30, 31], we observe the presence of both attacker tumor cells and infiltrating
7 CD8+ defender T-cells within the tumor region, indicating active immune response.
s Conversely, immune-cold cases show minimal or no CD8+ T-cell infiltration in the
0 tumor area, which generally correlates with poor immunotherapy outcomes. Building
20 upon the immune subtype classification approach developed in [5], we further obtain
261 intratumoral (iCD8) and stromal (sCD8) CD8+ T-cell densities in tumor center com-
%2 partment after localizing CD8+ T-cells using HistoPlexer. For this, we annotated the
23 tumor center compartment and segmented it into an intratumoral and stromal regions
2 using HALOA! platform across 34 TuPro metastatic melanoma samples.

265 Fig. 5B(i) shows stratification of immune subtypes using iCD8 and sCD8 densities
% measured per um?. We observe that immune desert cases exhibit very low iCDS8 and
7 sCD8 density, indicating the presence of only rare or isolated CD8+ T-cells. Immune
s excluded cases also show very low iCD8 density but slightly higher sCD8 density com-
%0  pared to immune desert cases, suggesting some CD8+ T-cells have reached the stroma
20 but not the intratumoral regions. Inflamed cases display high densities of both iCD8
on and sCD8, indicating the presence of CD8+ T-cells in the stromal compartment and,
a2 most importantly, their infiltration into intratumoral regions. These observations align
zs with the findings in [5], demonstrating the utility of our model. When assessing the

10
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27s  clinical relevance in distinguishing immune-hot (inflamed) and immune-cold (excluded
a5 and desert) cases, we find that both iCD8 and sCD8 densities are lower in immune-
a6 cold and higher in immune-hot cases (Fig. 5B(ii)). Additionally, we trained a random
o forest classifier to differentiate immune-hot and -cold cases and achieved F1 score of
s 0.873 (SD 0.006) and macro-average AUROC of 0.845 (SD 0.047) over 5-fold cross-
a9 validation. In conclusion, we demonstrate the capability of the HistoPlexer for immune
20 phenotyping, which has potential implications for treatment recommendations.

H&E Predicted Cell-types H&E Predicted Cell-types

Immune Hot

= Tumor

= Tumor.
CD8+T HTA: 0.80 CD8+T HTA: 0.92

Immune Cold

= Tumor = Tumor

CDS§+T HTA: 0.14 CD8+ T HTA: 0.08

iCDS8 Density
SCD8 Density
SCD8 Density

Desert Excluded Inflamed Desert Excluded Inflamed Cold Hot Cold Hot
(i) (i)
Fig. 5 Immune phenotyping using HistoPlexer. A H&E image along with overlay of predicted
tumor and CD8+ T-cells within tumor center region using HistoPlexer model for two immune hot
and two immune cold cases from TuPro metastatic melanoma cohort. B(i) Box plot of intratumoral
(iCD8) and stromal (sCD8) CD8+ T-cell densities in tumor center compartment, stratified by immune
desert, excluded and inflamed classes. B(ii)Box plot of intratumoral (iCD8) and stromal (sCDS8)
CD8+ T-cell densities in tumor center compartment, stratified by immune hot and cold classes.

w 2.6 HistoPlexer generalizes to independent patient cohort data

2  We evaluate the generalizability of the HistoPlexer model on Out-of-Distribution
23 (OOD) data from an independent TCGA-SKCM cohort [18]. Fig. 6A displays the
s generated protein multiplex at the WSI level, along with expression profiles for three
s markers: tumor-associated MelanA, T-cell marker CD3, and B-cell marker CD20.
25 In the immune-high sample, we observe higher expression and tumor infiltration of
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27 CD3 and CD20 markers, contrasting with the minimal or absent expression in the
25 immune-low case, where immune labels are based on RNAseq expression [32].

289 Next, we assess the utility of generated IMC in augmenting clinical outcome pre-
200 diction using expression profiles from MelanA, CD3 and CD20 markers due to their
21 known prognostic significance [33, 34]. We encode the H&E and generated IMC WSIs
22 using pretrained feature extractors. The features are input to an attention-based Mul-
23 tiple Instance Learning (MIL) predictor [35]. We train the MIL predictor under two
200 settings: (1) the unimodal setting, where only H&E features are input to the predic-
25 tor and (2) the multimodal setting, where features extracted from the corresponding
25 H&E and predicted IMC patches are first aggregated via a co-attention layer [36], and
207 the bag-level representations of H&E and predicted IMC WSIs after the MIL pooling
28 layer are concatenated before fed into the classification head (Fig. 6).

299 We perform two clinically relevant tasks: immune subtype and survival prediction.
s0  For the survival prediction, we use the disease-specific survival from patients’ metadata
sn - as it provides a more accurate representation of the patient’s disease status [37]. For
;2 the immune subtype prediction, we classify the patients into three immune subgroups:
3 low, intermediate and high with ground-truth labels obtained using Bulk RNA-seq
s expression data [32]. Overall, we observe the predictive performance of the multimodal
s setting to be superior to that of the unimodal setting for both tasks. Specifically, for
s the survival prediction task, incorporating features from predicted IMC images leads
s to an improvement of 3.18% in average time-dependent C-index [38] over 5-fold cross-
s validation. We further visualize the Kaplan-Meier survival curves for the multimodal
30 setting, in which patients are separated into two groups of low-risk and high-risk
s based on predicted risk scores (Definition in 4.6). The logrank statistical significance
su test to determine if the separation between low and high-risk groups is statistically
s significant (p-value = 5.05 x 10~7). For the immune subtyping task, using features
;3 from both modalities demonstrates an improvement of 17.02% in terms of average
s weighted F1 score over 5-fold cross-validation. These results demonstrate not only the
a5 generalizability of the HistoPlexer to OOD samples, but also the clinical utility of the
36 generated protein expression profiles by HistoPlexer in augmenting clinical decisions.
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(i) Survival prediction TCGA-SKCM (ii) Immune subtype prediction TCGA-SKCM

Fig. 6 OOD generalization. (A) Two examples (immune-high and -low) from the TCGA-SKCM
cohort, showing H&E images (first column), predicted protein multiplexes (second row) as well as
expression profiles of MelanA, CD3 and CD20 markers (last three colums). (B) Model architecture
for multimodal survival and immune subtype prediction. (C)(i) Survival prediction results, display-
ing time-dependent c-index scores (left) and Kaplan-Meier survival curves for the multimodal setting,
with separation of low- and high-risk groups (right).; (C)(ii) Immune subtype prediction results,
showing the weighted F1 score (left) and confusion matrix (right) for classification into low, interme-
diate, and high immune subtypes.

+ 3 Discussion

ais  In this study, we introduce HistoPlexer, a generative model that enables prediction of
a0 a high order (11) of multiplexed protein expression profiles, including both tumor and
0 immune markers, directly from H&E images. Our approach addresses the challenge of
a1 predicting multiplexed IMC data, where individual protein markers lack the structural
2 details available in conventional Immunohistochemistry (IHC) images. By simulta-
23 neously predicting multiple proteins, our model successfully captures sparse markers
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324 and preserves biologically meaningful relationships, as validated through spatial cor-
s relation analysis of protein co-localization patterns. Our comprehensive evaluation
3 demonstrates that the multiplexed prediction approach consistently outperforms sin-
27 gleplex alternatives, evidenced by higher MS-SSIM and PSNR values, and lower MSE
s of protein co-localization SCC compared to GT. Notably, the domain experts found the
20 generated IMC images highly realistic, with HYPE error rates of 61.6% and 72.8% for
30 lymphocyte and tumor markers, respectively, supporting the quality of our predictions.
331 The clinical utility of HistoPlexer is demonstrated through two key applications.
s First, HistoPlexer enables immune phenotyping at WSI level by quantifying spatial
33 patterns using intratumoral (iCD8) and stromal (sCD8) CD8+ T-cell densities in
s the tumor center compartment. We found the spatial patterns in concordance with
s state-of-the-art approach [5], showcasing the utility of our model. We also successfully
3 stratify patients into clinically actionable immune hot and cold subtypes. This capa-
37 bility is particularly valuable for immunotherapy decisions, where understanding the
ss  spatial distribution of CD8+ T-cells is crucial. Second, HistoPlexer shows generaliz-
39 ability to OOD data through evaluation on the independent TCGA-SKCM cohort.
uo  The integration of HistoPlexer-generated protein expression profile features with H&E
s features consistently improves the performance of DL-based predictive models in both
s survival (3.18% increase in time-dependent C-index) and immune subtype prediction
sz (17.02% increase in weighted F1 score), demonstrating the potential of HistoPlexer in
ue  augmenting clinical decision-making.

35 The study has some limitations. First, in some cases the model confuses between T-
us  cells CD3/CD8a and B-cell CD20 markers which have similar morphological features.
w7 While this is not an issue for many downstream tasks such as survival and immune
us subtype prediction, for more fine-grained analyses, such as distinguishing between
uo  closely related cellular subsets, our model may face limitations. Thus, it is a priority
0 for future work to refine the model’s ability to accurately distinguish between these
s finer subsets of cells. Second, we showed possibility to obtain major cell-types such as
2 Tumor, B-cells, CD8+ T-cells and CD4+ T-cells. This set could be further extended
353 to include more sparse cell-types such as endothelial cells by obtaining a larger train-
4 ing cohort. Third, for multimodal training on the TCGA-SKCM dataset, we used
s MelanA, CD3 and CD20 markers from generated protein multiplex. The choice of
36 these lineage markers was based on their high level of information content for lym-
7 phocyte subpopulations and identification of tumor cells, however, this set could be
s potentially extended to study the importance of other markers towards survival and
0 immune subtyping tasks. Lastly, due to slice-to-slice variations in data, we focused on
0 the model’s utility in downstream tasks rather than strict pixel-level correspondence.
361 HistoPlexer opens several promising research directions. First, expanding the
2 framework to additional protein markers and cancer types could uncover valuable
33 insights into disease mechanisms and treatment responses without requiring additional
4 tissue material or incurring significant costs. By utilizing HistoPlexer on existing H&E
s images from clinical trials and population cohorts, it could support high-throughput
s workflows and offer comprehensive insights into spatial biology patterns correlated
7 with clinical responses and epidemiological trends. Second, by making the Ultivue
% InSituPlex® dataset generated for this study publicly available, we invite researchers
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w0 to explore novel diffusion models for multiplexed protein marker generation, partic-
s ularly those that account for slice-to-slice variations. Third, integrating generated
sn protein multiplex with other molecular data modalities holds potential for enhanc-
sz ing our understanding of tumor biology and improving patient stratification, thereby
a3 supporting personalized treatment strategies. Finally, as computational pathology
s continues to advance, tools like HistoPlexer will play an increasingly important role
a5 in bridging the gap between routine histological analysis and advanced molecular
s profiling, ultimately contributing to more precise and personalized cancer treatment
sm strategies.

378 In conclusion, HistoPlexer represents a significant advance in computational
;e pathology, enabling the cost-effective generation of protein multiplexes from clini-
s cally established histology slides. Our promising results support further efforts toward
s clinical application, with the potential to transform cancer diagnosis and treatment
2 planning for more personalized patient care.

w 4 Methods

= 4.1 Datasets and preprocessing
s 4.1.1 Tumor Profiler dataset

s We build our HistoPlexer framework using a subset of highly multi-modal metastatic
s7 - melanoma dataset generated by the Tumor Profiler Study (TuPro) [17]. Each patient
s was characterised using multiple technologies, including Digital Pathology and IMC.
s A total of six Rols of 1 mm? were selected on each H&E WSI, three within tumor
s center and three at the tumor front (intersection of tumor and TME). IMC data was
s generated for those six Rols on a consecutive section of the same tumor block. The
32 IMC data was generated at a resolution of 1pm/pixel and H&E images were scanned at
03 a resolution of 0.25 jm/pixel. Therefore, Rols of 1 mm? are represented by 1000 pixels
s for IMC data and 4000 pixels for H&E images. Since the paired data was generated
w5 by visually choosing Rols, in many cases a considerable positional shift and rotation
s between the specified H&E regions and the resulting IMC regions can be observed.
sr This was overcome by using template matching [39], resulting in a paired dataset of
s 336 H&E and IMC ROIs from 78 patients for training and testing model performance.
399 IMC profiling was performed using a panel of 40 antibodies, from which 11 have
wo been selected for this study based on the biological function of the correspond-
w1 ing proteins as well as high signal-to—noise ratio. The proteins targeted by the 11
w2 antibodies include cell-type markers, such as tumor markers (MelanA, gp100, S100,
w3 SOX10), lymphocyte markers (CD20, CD16, CD3, CD8a) and an endothelial marker
w:  (CD31). Moreover, two functional markers corresponding to proteins involved in
w5 antigen presentation (HLA-ABC, HLA-DR) are included in the protein set.

406 The raw IMC images were processed with CellProfiler software for cell segmen-
w7 tation [40]. The protein counts extracted from the images have been first clipped
ws  t0 99.9% per protein to exclude outliers ad then transformed using the arcsinh-
w0 function with cofactor one [41]. In order to exclude background noise, we apply OTSU
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a0 thresholding [42] with kernel size three and sigma three and the threshold, sepa-
a  rating signal from background, determined per sample using all available Rols. The
a2 resulting data per protein is first centered and standardized and then subjected to
a3 min-max-transformation, all using data statistics based on the train set only.

a14 The data is split at the patient level into train and test set, stratified by
a5 immune phenotype (inflamed, immune excluded, and immune desert). The stratifi-
a6 cation ensures the representation of both tumor and immune cells in each set. The
a7 patient-level splitting guarantees that all Rols from a given patient belong to only one
s set, preventing undesired information flow. The resulting train and test sets consist
a9 of 231 and 105 Rols, respectively. During model training, Rols are chosen at random
w20 and a tile of size 1024x1024 from H&E image and a corresponding IMC region of
21 256x256 is extracted.

2 For WSIs predictions, tissue segmentation is performed on the input H&E WSI by
w3 using OTSU thresholding [42]. Each segmented tissue region is then divided into tiles
aa  of size 1024x1024 pixels. The tiles undergo stain normalization using the Macenko
s method [43] to minimize staining variability and maintain color consistency across
w6 images. The generated IMC tiles are then stitched together to obtain WSI level IMC
27 multiplex.

2 4.1.2 Ultivue dataset

29 For qualitative evaluation of HistoPlexer on WSIs, we employed Ultivue InSituPlex®
s technology to obtain multiplexed images using the Immuno8 and MDSC FixVue"
a1 panels. The Immuno8 panel focuses on immune landscape characterization with mark-
a2 ers such as CD3, CD4, CD8, CD68, PD-1, PD-L1, FoxP3, and PanCK/SOX10. The
s MDSC panel identifies myeloid-derived suppressor cells using markers CD11b, CD14,
s CD15, and HLA-DR. Ultivue images were acquired at a resolution of 0.325 pum/pixel.
a5 For evaluation, we used CD3, SOX10, CD8a, and HLA-DR markers to assess visual
a6 similarity between the generated protein multiplex and Ultivue images.

237 Paired H&E and Ultivue WSIs were generated by first staining H&E on one tis-
a8 sue section, followed by acquiring Immuno8 and MDSC data on consecutive sections
a0 for 10 samples. A tonsil tissue was included with each sample as a positive control.
wo  Image registration between H&E and Ultivue WSIs was performed using an unsu-
w1 pervised multimodal method [44], leveraging the DAPI nuclear stain in Ultivue for
a2 alignment with H&E images. Both Ultivue and generated IMC images underwent min-
w3 max normalization and histogram equalization. Additionally, adaptive thresholding
e was applied to Ultivue images to reduce noise and extract true signal. Regions with
ws  false signals, particularly those corresponding to hemorrhage, bleeding, or erythrocytes
ws  in H&E, were manually annotated and excluded from analysis.

aa7 Upon acceptance, we plan to publicly release the H&E and Ultivue images, their
ws  alignment matrices, and annotated excluded regions. The dataset could serve as a
uo  valuable baseline for the field.
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w 4.1.3 TCGA-SKCM

st Diagnostic WSIs of SKCM were downloaded from the TCGA database' for a total of
2 472 cases. Clinical data of SKCM samples including age, gender, sample type (primary
»s3 tumor/metastatic) and disease-specific survival were also downloaded. For the survival
ssa prediction, we discarded cases where the diagnostic WSIs are of low resolution or the
s disease-specific survival data is missing, leaving 360 cases in total. For the immune
w6 subtype prediction, we kept a total of 257 cases where immune subtype labels are
7 available. For each task, we randomly split the cases stratified by age, gender and
s sample type to create 5-fold cross-validation with a 4:1 ratio of training-validation sets.

s 4.2 HistoPlexer architecture

w0 The HistoPlexer is based on cGAN which takes an H&E image as input condition
w1 and generates multiplexed IMC images where each corresponds to a spatially-resolved
w2 protein expression profile. The translator of the HistoPlexer is a fully convolutional
w3 U-Net [45] which consists of an encoder and a decoder. The encoder comprises six
w4 downsampling blocks, each with a convolution layer of stride 2 and kernel size 3. The
w5 decoder comprises of five upsampling blocks, each with nearest neighbor interpolation,
w6 followed by convolution layer of stride 1 and kernel size 3. Each layer is followed by a
w7 batch-norm layer and ReLLU activation. The discriminator consists of six blocks, each
s with a convolution layer followed by a spectral normalization layer and ReLU activa-
w0 tion. We use patches extracted from template-matched pairs of H&E and IMC Rols
a0 to train the HistoPlexer and optimize the model with three objectives: an adversarial
an loss to enforce image-level consistency, a Gaussian pyramid loss to enforce pixel-level
a2 consistency, and a patch-wise contrastive loss to enforce patch-level consistency.

a73 Adversarial loss: We use the least square loss proposed in LSGAN [46] as our
an  adversarial loss, and the 0—1 coding scheme where 0 and 1 are the labels for generated
w5 (i.e., fake) and real IMC images, respectively. We also adopt the multi-scale gradient
ws approach [47], which allows simultaneous gradient propagation at multiple scales (i.e.,
w7 resolutions). Considering a set of scales {s € S}, the multi-scale adversarial losses for
as the translator G and discriminator D are formulated as:

1 2
adv _ (s) _
LE \S|Ex”NXp {(D(G (xp)|xp) 1) } ,

adv 1

ses

(1)

]EXPNXP [(D(yp|xp) - 1)2} + Exprp [(D(G(S) (XP)|XP))2:|‘| .

ypNYp

a9 where X;, = {x, € Xgor} and Y, = {y, € Yror} denote paired training patches
w0 sampled from template-matched H&E and IMC Rols, respectively; G(*)(-) and D(:)
s denote the mapping functions parameterized by the translator (at the output scale s)
2 and discriminator, respectively; and | - | denotes the cardinality of a set.

Lhttps://portal.gdc.cancer.gov/

17


https://portal.gdc.cancer.gov/
https://doi.org/10.1101/2024.01.26.24301803
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.01.26.24301803; this version posted December 7, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

Gaussian pyramid loss: We also implement a pixel-level L; loss as in [21]. Since
our H&E and GT IMC images are not pixel-aligned, we relax the constraint on pixel-
to-pixel correspondence by calculating the L; loss at multi-resolution representations
of the generated and GT IMC images [12], termed as Gaussian pyramid loss [12]. More
specifically, a Gaussian pyramid is constructed through iterative Gaussian smoothing
and downsampling. Each level of resolution, termed as an octave, comprises a series
of images with increasing degrees of smoothness. Transition between resolutions is
achieved by downsampling the image at the highest smoothness level of the current
octave to initiate the next:

y;ﬁl = Downsample (y;#gS)

w3 where #gs denotes the number of Gaussian smoothing at one resolution. Note that
s for the generated IMC images, we only compute the Gaussian pyramid on the final
5 output scale. Considering a set of resolutions {r € R}, the Gaussian pyramid loss is a
s weighted sum of Ly loss computed on the primary layer of each octave, formulated as:

£ =3 unl v, 95 = 95 <2)

reR Yp~Tp

w7 where ¥y, denotes the generated IMC image patches, r denotes the resolution level,
s and w, is the weight of the L, loss at that level.

489 Patch-wise contrastive loss: We further incorporate a patch-wise contrastive
w0 loss, inspired by [19]. More specifically, we first extract multi-layer features using a
w1 pretrained feature encoder and apply a transformation via a small projection head
w2 (e.g., a Multi-layer Perceptron) on the extracted features to enrich their expressive-
w3 ness [48]. Then, we randomly select a set of pixel locations for each feature layer. By
wa  aggregating selected patch features from each layer, we can obtain two feature sets for
ws  the generated and GT IMC images, respectively.

296 Let %} denote the anchor feature of the i-th patch of the generated IMC image,
w7 extracted from the I-th layer of the feature encoder; while z; and Eli denote the positive
ws  and negative features of the corresponding patch (i.e., at the same pixel location) and
s the collection of non-corresponding patches (i.e., at different pixel locations), extracted
so from the same layer, respectively. Our patch-wise contrastive loss is defined as:

#layer #patch

1 1 o S
Econtrast — 21 0 E 21 LU 3
XP@NEXP Fayer Fipatch ; Zl w (2, 2)lmeonce (3], 21, 2), - (3)
Yp~Yp - =
where
+
_ exXp(z -z T
limgonce(z,21,27) = —log ( /7)

exp (z-2t/7)+ S exp (2 20 )/7)
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is the InfoNCE objective [49], and

wieta = (10 (%)) %100 (1) xn(simiei =)

s is the adaptive patch weight [19]. Here, #layer and #patch denote the number of
s2  layers and patches from which we extract features; t and T denote the current and
3 total training steps; h(-) denotes some weighting function; and sim(-) is some similarity
s+ measurement.

505 While the HistoPlexer translator outputs the prediction of all selected IMC mark-
s6  €rs, we encounter a practical limitation when employing a pre-trained feature encoder,
sov ~ which often requires an RGB image as input. To circumvent this, we first extract each
ss  channel (i.e., marker) of the output IMC image and replicate it along the channel
so0  dimension to create a pseudo RGB image. We then pass each of them to the feature
s encoder. The final patch-wise contrastive loss is the sum of that of each channel.

511 The total losses for G and D are formulated as,

£G _ ﬁgdv + Agpﬁgp + )\contrastﬁcontraSt
Lp= LYY + \r, Ry

where

2
Ry = ) ]EX ||VyD(YP|Xp)||2
yl;NY:

sz is the gradient penalty [50], and Agp,, contrast and Ag, are the weights for the Gaussian
si3 pyramid loss, patch-wise contrastive loss and gradient penalty, respectively.

s Implementation and training details: The model is trained for 100 epochs using
sis ADAM optimizer [51] with momentum parameters f1 = 0.5 and 52 = 0.999 with
sis  learning rates 0.004 and 0.0008 for translator and discriminator networks, respectively.
si7 The weights are initialized using Xavier initialization. The batch size is set to 16 and
s the patch size to 256 for IMC and 1024 for H&E images, to accommodate for the
si9  higher resolution of the latter. We increase the generalization capabilities of the model
s0 by adopting data augmentation, including color augmentation, random flipping, small
s translations, and rotations. We employ the least-squares GAN objective. The weights
s2 for loss terms is as follows: Agp=>5.0, Acontrast=1.0 and Agr,=1.0.

2 4.3 Evaluation metrics

s« To evaluate the quality of generated images, we use two widely adopted metrics: PSNR
s and MS-SSIM.

526 PSNR is used to measure the reconstruction quality by quantifying the ratio
s7  between the maximum possible signal power and the power of corrupting noise. It is
s expressed in decibels (dB), with higher values indicating better image quality. The
s20 PSNR is calculated as:

530

2
PSNR = 10log;, (NfSE) (5)
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sn  where L is the dynamic range of the pixel values (e.g., 255 for 8-bit images), and MSE
s represents the Mean Squared Error between the original image I and the generated
533 image I’

1 N . a2
MSE = 55 3 (1) = 1) (6)

s MS-SSIM extends the traditional SSIM metric by incorporating multiple scales to
s35  capture structural differences at various resolutions. The SSIM between two images [
s, and I’ is defined as:

(2/1,]#1’ + 01)(20'[[/ + CQ)
(17 + p3 + Cr)(of 4 a7, + Ca)

SSIM(1,1") = (7)

s where pu; and puy/ are the means, o7 and 0%, are the variances, and o is the covariance
s33 between the two images. C7 and C5 are small constants to stabilize the division. In
s MS-SSIM, SSIM is computed at multiple scales, and the final score is a weighted
ss0  product of SSIM values across these scales:

M
MS-SSIM(1, I') = H (SSIM; (I, 1'))™ (8)

se0 - where M is the number of scales and o is weighting factor at scale j. Higher MS-SSIM
se2  values indicate better perceptual similarity.

543 These metrics provide a comprehensive assessment of both pixel-level accuracy
s (PSNR) and perceptual similarity (MS-SSIM) of the generated images. Frechet Incep-
ss  tion Distance (FID) and Kernel Inception Distance (KID) are widely used metrics for
s evaluating the quality of generated images, however they are less effective on small
sev  datasets as they rely on mean and covariance of a cohort. Hence they are not used
ss  when evaluating HistoPlexer.

549 To quantify the evaluation by domain experts, we use HYPE score which mea-
sso - sures the error rate at which humans mistake generated images for real ones or vice
ssi - versa. It is defined as:

552

FP + FN
HYPE = (TP TTNfFP + FN) > 100
FP
HYPEfe = [ ————— | x 1
fake (TN+FP) X 100 )
FN
HYPErCal — (’m) X 100

553 where TP is the number of True Positives, TN is the number of True Negatives, FP
s+ is the number of False Positives and FN is the number of False Negatives. HYPE ¢,
ss5 and HYPE,..,; are the error rates for generated and real images, respectively.
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s 4.4 HistoPlexer for cell-level analysis
1 4.4.1 Pseudo-cells

sss Since spatial analyses of IMC data typically rely on cell-level readouts, we create
ss0  pseudo-single-cell data by extracting circular regions of 10 pm diameter around nuclei
s0  coordinates for both input H&E and GT IMC images. Protein expression is averaged
s1 across pixels within each pseudo-cell for individual markers. Nuclei coordinates for
s2  H&E images are obtained using the HoVer-Net model [24], while nuclei coordinates
ss  and cell-type labels for GT IMC multiplexes are derived using Ilastik [52] and Cell-
s« Profiler [40], as described in [8]. For simplicity, we refer to pseudo-cells as ”cells” in
ss  the following text.

so  4.4.2 Cell-typing

ssv  We use a Random Forest (RF) classifier [26] to categorize cells based on the average
ss  expression of 11 markers from the HistoPlexer. The classifier distinguishes between
sso  tumor cells, B-cells, CD8+ T-cells, CD4+ T-cells, and other cells. Training is per-
s formed using the scikit-learn library [53], with hyperparameters (100 base estimators,
sn maximum tree depth of 30) selected based on the lowest out-of-bag error. The model
sz achieves a macro-averaged F1 score of 0.81 on an internal test set. We then apply the
sz trained RF classifier to both GT and generated protein expression data to produce
s cell type maps for cells in test set.

s 4.4.3 t-SNE on cell level marker expression

s 1o explore spatial patterns beyond pairwise protein interactions, we conduct a low-
sz dimensional embedding analysis of cell-level marker expression. Following the approach
ss commonly used for mass cytometry data [54], we subsample 1,000 cells per Rol
so from both GT and generated IMC, resulting in total 2,000 cells per Rol. A joint
s00 t-SNE dimensionality reduction (two dimensions, perplexity of 50, and 1,000 itera-
s tions) is then applied. For visualization, protein abundance is scaled and clipped at
s the 99th percentile, and the t-SNE plots are colored according to the scaled protein
s expression [54].

s 4.5 Annotations for Immune phenotyping

ses Lo stratify samples into immune subtypes based on the spatial distribution of CD8+
s6  T-cells, we used annotated regions as established in [5]. Our dataset included 109
ss7 metastatic melanoma H&E WSIs from the TuPro cohort, with metastatic sites in
ses lymph nodes, soft tissue, brain, and other distant locations. The primary region for
se0  immune-subtyping, termed “Tumor Center”, comprises entirely tumor tissue, which
s  was manually defined as a continuous tumor mass excluding a 500pgm margin from
so the tumor—non-tumor boundary. This “Tumor Center” was further segmented into
se  two regions: the "Intratumoral Tumor” region, consisting of dense clusters of malig-
s3 nant melanocytes without stromal presence, and the ”Intratumoral Stromal” region,
s« which includes extracellular matrix (typically desmoplastic) interwoven within the
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sos  tumor cell mass but free from malignant melanocytes. These regions were automati-
ss  cally classified using a DL model implemented on the HALOA! platform, trained with
o7 selected H&E WSIs regions. Tissue classification was conducted at 0.30pm/pixel res-
ss olution with a minimum object size threshold of 50um?. Excluded regions—such as
s0  preexisting lymphatic tissue, large adipose and muscle regions, artifacts, necrosis, hem-
so orrhage, and background—were omitted from the analysis. Ultimately, we analyzed
sor 34 samples with the highest quality tissue classifications from the HALOA! model pre-
sz dictions. Supplementary Fig. S3 shows an example H&E WSI with region annotation
s3 and classification.

o 4.6 MIL-based Clinical Outcome Prediction

Attention-based MIL for survival and immune subtype prediction: MIL is
a weakly-supervised learning method for set-based data structures. In MIL, an input
X is a bag (i.e.,, permutation-invariant set) of instances X = {xy,...,xx}, where N
denotes the number of instances in the bag. Given a classification task with K classes,
the goal is to learn a function F from M training pairs {(X (™) y(™)IM_  that maps
X to a bag-level label y € K without knowing label y; € K for each instance in the
bag. In our context, the input is a WSI and the instances denote the extracted patches.
More specifically, we follow the embedding-based MIL approach [35] and extract a
feature vector h; = h(x;) € R? from each patch. Then, an attention-pooling operator
aggregates the patch features h,—1.x to a single WSI-level representation [35]

N
g=g(h)=> ah;,
i=1

where

exp{w ' (tanh(Vh;) ® n(Uh;))}
>ojL1 exp{w T (tanh(Vh;) © n(Uhy))}
es is the gated attention [35]. Here, weREX! VERLXDP UeRL*P are learnable param-
ws eters with hidden dimension L, ® is element-wise multiplication, and 7(-) denotes
o7 the Sigmoid function. Finally, a classifier f(-) maps the WSI-level representation to a
os WSI-level label y € K.
609 The end-to-end prediction takes the following general form:

a; =

v =F(X) = f(g({h(xi) . x; € X})> . (10)

For survival prediction, we model the time-to-event distributions as an ordinal
regression task with right censored data (i.e., patient death is unobserved until last
known follow-up). Following [36], we define discrete time intervals and model each
interval using an independent neuron in the output layer. More specifically, we par-
tition the continuous time scale into non-overlapping time intervals [t;_1,t;),5 €

[1,---,J] based on the quartiles of survival time values, denoted as y;. The continu-

ous time-to-event (™) for each patient is then replaced by a discrete time label yj(.m),
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where
ygm) =y, ift'™ € [t;_1,t;) for j € {0,---,J}.
s The problem then simplifies to classification where each patient is defined by a triplet

o (g (m) y(m) clm )). Here, g is the aggregated bag features; c is the censorship status
sz where ¢ = 0 if the death of the patient is observed and ¢ = 1 otherwise; and y; is
sz the discrete time GT label. We adopt the negative log-likelihood survival loss [55] for
s modal optimization, formulated as:

ACsurv ({X(m)a ygm)7 C(m)}%:1> =

M
Z ( —cm IOg(fsurv(Y§m) |g(m)))

i=1

+ (1 — C(m)) log(fsurv(y;m) - 1|g(m)))

+ (1 - C(M)) log(fhazard( g(m)))>

as  where fharzard(¥;|8) = Sigmoid(y;) is the discrete hazard function and four(y;lg) =
616 i:l (1 — fhazard(yk\g)) is the discrete survival function. Finally, the patient-level
sr  risk is defined as the negative sum of all logits [37], which enables the identification of
eis  distinct risk groups and the stratification of patients.

619 For immune subtype prediction, we adopt the cross-entropy loss defined as:
M K
— Z Zy log( )) . (12)
m=1 k=1

&0 Multimodal fusion via co-attention mechanism: To fuse the patch features from
e different modalities, we adopt the co-attention mechanism proposed in [36]. More
2 specifically, given the H&E feature bag H € RY*4 and IMC feature bag P € RV*,
63 we guide the feature aggregation of H using P by calculating the cross-attention:

W, PHTW/

H= Softmax( Nz

)W.H (13)

=Ap,gW,H,

s where W, W, W, € R%*4 are learnable weights and Ap_ g € RV*N is the co-
e attention matrix. Intuitively, the co-attention measures the pairwise similarity for how
e much an H&E instance h; attend to the IMC instance p; for i € N. Similarly, we
e7 can guide the feature aggregation of P using H via Ay _, p. Each co-attention guided
e feature bag is input to an attention-based MIL module, which outputs an aggregated
60 WSI-level representation. We concatenate the WSI-level representations from multiple
e modalities and project it back to the original feature dimension d via a linear layer,
sn  resulting in a multimodal WSI-level representation. Then, a classifier f(-) uses this
62 representation to predict the output label y.
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s Implementation and training details: We adopt the original implementation of
e attention-based MIL on GitHub? and modify it for survival prediction based on the
e code for SurvPath®. We implement the co-attention mechanism based on the original
e implementation of MCAT*. Each WSI is cropped to 256 x 256 non-overlapping patches
s at 20x magnification to create bags, where patches with more than 10% non-tissue
s area are discarded. We use ResNet18 [56] pretrained on pathology-specific datasets
a0 using self-supervised learning [57] to extract features from H&E patches and ResNet50
so pretrained on ImageNet [58] to extract features from IMC patches. Since ResNet18
s requires three-channel input, we concatenate IMC images of three different protein
&2 markers along the channel dimension: one tumor marker (MelanA) and two immune
s3s  markers (CD8 and CD20). The dimension of extracted features is 512 for both H&E
ss and IMC patches. We run the survival and immune subtype prediction for 5-fold
es  cross-validation. The model hyperparameters are set as: Adam optimizer with initial
os learning rate of le™* (survival) and 5e~° (immune subtype), a ReduceLROnPlateau
er  scheme based on validation loss for scheduling, and a mini-batch size of 1. The model
ws is trained for 100 epochs with early stopping based on validation loss (survival) and
s weighted Fl-score (immune subtype).

0 Computational requirements. The data processing and model training was done
1 on NVIDIA A100 40GB GPU. The DL models were trained using pytorch (1.13.1).
2 The pipeline was implemented in Python (3.8.12).

3  Data Availability. Data and material from the Tumor Profiler study are available
es  to members of the international Tumor Profiler Research Consortium. Requests for
es sharing of all data and material should be addressed to the corresponding author and
e include a scientific proposal. Depending on the specific research proposal, the Tumor-
67 Profiler consortium will determine when, for how long, for which specific purposes, and
es under which conditions the requested data can be made available, subject to ethical
9 consent. The multiplexed WSIs images for Immuno8 and MDSC FixVue" panels from
o Ultivue InSituPlex® technology, along with paired H&E images will be made available
61 upon acceptance of publication. The H&E WSIs for TCGA-SKCM were downloaded
s2  via GDC data portal (https://portal.gdc.cancer.gov/).

3 Code Availability. The source code for HistoPlexer is available at https://github.
ss com/ratschlab/HistoPlexer.
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