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Abstract26

Multiplexed imaging technologies provide crucial insights into interactions27

between tumors and their surrounding tumor microenvironment (TME), but their28

widespread adoption is limited by cost, time, and tissue availability. We introduce29

HistoPlexer, a deep learning (DL) framework that generates spatially-resolved30
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protein multiplexes directly from histopathology images. HistoPlexer employs31

the conditional generative adversarial networks with custom loss functions that32

mitigate slice-to-slice variations and preserve spatial protein correlations. In a33

comprehensive evaluation on metastatic melanoma samples, HistoPlexer consis-34

tently outperforms existing approaches, achieving superior Multiscale Structural35

Similarity Index and Peak Signal-to-Noise Ratio. Qualitative evaluation by36

domain experts demonstrates that the generated protein multiplexes closely37

resemble the real ones, evidenced by Human Eye Perceptual Evaluation error38

rates exceeding the 50% threshold for perceived realism. Importantly, Histo-39

Plexer preserves crucial biological relationships, accurately capturing spatial40

co-localization patterns among proteins. In addition, the spatial distribution of41

cell types derived from HistoPlexer-generated protein multiplex enables effective42

stratification of tumors into immune hot versus cold subtypes. When applied43

to an independent cohort, incorporating additional features from HistoPlexer-44

generated multiplexes enhances the performance of the DL model for survival45

prediction and immune subtyping, outperforming the model reliant solely on46

Hematoxylin & Eosin (H&E) image features. By enabling the generation of47

whole-slide protein multiplex from the H&E image, HistoPlexer offers a cost-48

and time-effective approach to understanding the TME, and holds promise for49

advancing precision oncology.50

1 Introduction51

Tumors are complex systems that obtain hallmark traits by creating a supportive52

tumor microenvironment (TME) which facilitates tumorigenesis and metastasis [1, 2].53

Understanding cancer cell interactions with this surrounding tissue provides insights54

into disease progression and therapeutic response [3–5]. Multiplexed immunohisto-55

chemistry and immunofluorescence (mIHC/IF) technologies, such as Imaging Mass56

Cytometry (IMC), allow for spatially-resolved quantification of up to 40 protein mark-57

ers, offering comprehensive insights into tumor-TME interactions [4, 6, 7]. These58

technologies facilitate analysis of spatial cell distribution, phenotype co-localization,59

and interactions in cellular communities—promising factors for clinical decision-60

making [4, 5, 8, 9]. However, IMC is limited by low throughput, high cost, and coverage61

restricted to small Region-of-Interests (RoIs), hindering its broader clinical adoption.62

In contrast, Hematoxylin & Eosin (H&E) staining remains the gold standard for63

cancer diagnosis in clinical practice due to its low-cost, high throughput, and coverage64

of entire tissue sections. H&E images reveal crucial morphological features of tissue65

organization that aid in cancer grading, proliferation assessment, and staging [10].66

Recent advances in Deep Learning (DL) have shown that these features can inform67

the prediction of protein markers. For instance, several studies have successfully pre-68

dicted single markers such as pan-cytokeratin for pancreatic cancer [11], HER2 for69

breast cancer [12], and Ki-67 for neuroendocrine and breast cancers [13] directly from70

H&E images. Only a few studies have attempted a multiplexed prediction, with a71

focus, however, solely on either tumor [14, 15] or immune markers [16], limiting their72

utility for investigation of tumor-TME interactions. In addition, these studies either73
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employ separate models for each marker [14, 16] or lack quantitative validation on the74

advantages of multiplexed prediction with a single model [15, 16].75

To address these limitations, we introduce HistoPlexer, a DL model that gener-76

ates protein multiplexes from H&E images. HistoPlexer simultaneously predicts 1177

markers, consisting of both tumor and immune markers, which enables an integrative78

visualization of tumor-host interactions. We train HistoPlexer on metastatic sam-79

ples from the Tumor Profiler Study (TuPro) [17] using paired H&E and IMC images80

from serial sections. Through quantitative evaluation, we demonstrate the impor-81

tance of simultaneous marker prediction through improved model performance and82

enhanced spatial co-localization of markers. We validate the biological relevance of83

generated IMC images through cell-typing and immune phenotyping analyses, par-84

ticularly in characterizing immune-hot (inflamed) and immune-cold (excluded/desert)85

tumors based on CD8+ T-cell distributions. We also demonstrate out-of-distribution86

generalizability of HistoPlexer on samples from the human skin cutaneous melanoma87

(SKCM) study of The Cancer Genome Atlas (TCGA) project [18].88

Our results show that HistoPlexer generates high-quality IMC images that closely89

align with real data distributions. These generated multiplexes enable precise immune90

phenotyping through spatial analysis of tumor-immune cell interactions, particu-91

larly in distinguishing immune-hot and cold subtypes. We also demonstrate that92

simultaneously predicting multiple protein markers preserves biologically meaning-93

ful relationships among them. Furthermore, by augmenting H&E Whole-Slide Images94

(WSIs) with generated IMC multiplex, HistoPlexer improves both survival and95

immune subtype prediction on the TCGA-SKCM dataset, indicating its potential to96

aid clinical decisions.97

2 Results98

2.1 HistoPlexer: a toolkit for histopathology-based protein99

multiplex generation100

The HistoPlexer is a generative model based on conditional GAN (cGAN) which101

predicts spatially-resolved profiles of multiple proteins simultaneously from a single102

input H&E image. The model is trained on paired H&E and multiplexed IMC image103

patches (Figure 1A) extracted from aligned H&E and IMC RoIs. During training, the104

H&E patches are fed into the translator G, which learns to generate protein multiplexes105

(i.e., IMC images) based on the tissue morphology from high-resolution H&E images.106

The generated IMC image patches, along with the input H&E image patches, are fed107

to the discriminator D to produce a realness score, which produces a realness score108

indicating how closely the generated IMC patches resemble ground truth (GT) IMC109

patches (Fig. 1B(i)). The translator and discriminator is trained adversarially using110

a least squares Generative Adversarial Network (GAN) loss, such that the generated111

IMC image patches are able to fool the discriminator to classify it as real. Besides the112

GAN loss, we incorporate two additional losses to ensure pixel-level and patch-level113

consistency between the generated and GT IMC images. The pixel-level consistency114

loss calculates the L1 distance between the generated and GT IMC images. However,115

since the H&E and GT IMC images are obtained from serial sections of the tissue block,116
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there is a degree of spatial displacement of tissue organization between consecutive117

slices (termed slice-to-slice variations). While registered at the structural level after118

template-matching, consecutive slides obtained from real-world diagnostic material119

are not pixel-level aligned. To account for these differences, we adopt the Gaussian120

Pyramid loss [12], which relaxes the alignment constraint by evaluating the similarity121

between the generated and GT IMC images at multiple scales (Fig. 1B(ii)). For patch-122

level consistency, we utilize a patch-wise contrastive loss to ensure that corresponding123

patches in the generated and GT IMC images are closer in the embedding space124

than distant ones (Fig. 1B(iii)). We further incorporate adaptive weights for different125

patches based on their proximity to GT following [19].126

We build our HistoPlexer framework using a multimodal metastatic melanoma127

dataset generated by the Tumor Profiler Study [17]. Each patient was characterized128

by multiple modalities, including H&E and IMC images. RoIs of 1 mm2 were selected129

on each H&E WSI based on visual inspection by a pathology expert and IMC data130

was generated for those RoIs on a consecutive section of the same tumor block. Using131

template matching [20], we created a paired dataset of 336 H&E and IMC RoIs132

from 78 patients. We focus on predicting 11 protein markers that are essential for133

characterizing the tumor and its surrounding TME. These include tumor markers134

(MelanA, S100, gp100, SOX10), immune markers (CD3, CD8a, CD20, CD16, CD31),135

and antigen-presentation markers (HLA-ABC, HLA-DR).136

2.2 HistoPlexer generates accurate and realistic protein137

multiplex.138

We benchmark the HistoPlexer against Pix2pix [21] and PyramidP2P [12], evaluating139

each method in two settings: multiplex (MP) and singleplex (SP). In the MP setting,140

a single model is trained to predict all markers simultaneously, whereas in the SP141

setting, separate models are trained to predict each marker individually, after which142

the predictions are stacked for a (pseudo-)multiplexed output. All models are trained143

on 231 and tested on 105 RoIs.144

We evaluate the quality of generated IMC images using Multiscale Structural Sim-145

ilarity Index (MS-SSIM) [22] for perceptual similarity at multiple scales and Peak146

Signal-to-Noise Ratio (PSNR) [23] for pixel-level distortion. Our results show that the147

HistoPlexer model trained in the MP setting achieves the highest MS-SSIM and PSNR148

values (refer Table 1), suggesting greater similarity to GT IMC images generated from149

consecutive tissue sections. Additionally, models in the MP setting consistently out-150

performs those in the SP setting across all methods, demonstrating that simultaneous151

prediction of all markers enhances performance by effectively capturing inter-marker152

correlations. The performance of individual markers for the HistoPlexer-MP model is153

presented in Table S1.154
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Notations: Trainable model Frozen model Anchor patches Positive/Negative patches Convolution 

: H&E patches , : Real/fake IMC patches G : Translator D : Discriminator F : VGG-19 feature extractor 

Objective functions of HistoPlexer

A

B

(iii) Patch-wise contrastive loss

AnchorPositive Negative

FGaussian filter

(ii) Gaussian pyramid loss

MelanA
CD20
CD3

Survival Analysis

Immune typing

Cell typingPredicted IMC 
patches      

Predicted IMC 
WSI 

H&E WSI

Tissue 

Slide 1

Slide 2 Real IMC patches 

H&E patches 

G

D

(i) Adversarial loss

D

G

Fig. 1 Overview of HistoPlexer architecture. (A) The HistoPlexer consists of a translator
G that takes H&E and IMC images as input and predicts protein multiplexes from morphology
information encoded in the H&E images, ultimately generating protein multiplex on the WSI level
from H&E input. (B) The objective functions of HistoPlexer contain the GAN adversarial loss,
gaussian pyramid loss with average L1 score across scales and patch-wise contrastive loss with anchor
from generated IMC and positive and negative from GT IMC.

We further qualitatively evaluate the generated IMC images by comparing them155

with the GT (Fig. 2A and Supplementary Fig. S1) and observe good alignment in156

global patterns. However, pixel-level correspondence is not expected due to the inher-157

ent slice-to-slice variations. In a few cases, we observe slight confusion between CD20158

and CD3/CD8a markers. For instance, in the bottom-right region of Fig. 2A (ii), there159
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exists an overexpression of CD20 and an underexpression of CD3 and CD8a markers.160

This may stem from the highly similar and visually indistinguishable morphology of161

B- and T- cells in H&E images, leading to confusion between their markers (CD20 for162

B-cells and CD3/CD8a for T-cells) [24].163

To quantify the perceived realism of generated IMC images, we employ the Human164

Eye Perceptual Evaluation (HYPE) framework [25] where experts evaluate pairs of165

IMC images (real or generated) for specific markers alongside their corresponding166

H&E images. Given that H&E staining reveals distinct nuclear and tissue morphology167

patterns crucial for identifying tumor regions and lymphocytes [24], we created two168

evaluation sets: tumor-associated markers (MelanA, S100, gp100, SOX10) and lym-169

phocyte markers (CD20, CD3, CD8a). For each set, two pathology experts assessed170

250 image pairs, with an equal distribution of real and generated images. The image171

pairs were created using RoIs from test set, with data augmentation through small172

translations and rotations. The evaluation yields mean HYPE scores of 41.8%(±0.3%)173

for lymphocyte markers and 42.8%(±0.6%) for tumor markers. The generated images174

achieved HYPE scores of 61.6% (±1.3%) and 72.8% (±1.1%), indicating that the175

majority (>50%) were perceived as real by domain experts, demonstrating their high176

perceived realism.177

Next, we go beyond pixel-level evaluation by identifying relevant cell types. We178

use GT cell-type annotations from the GT IMC training set, following [8], and train179

a Random Forest classifier [26] based on average marker expression per cell to classify180

them into five classes: tumor cells, B-cells, CD8+ T-cells, CD4+ T-cells, and others.181

This classifier is then applied to both GT and generated IMC images from the test182

set to obtain cell-type maps (Fig. 2B). We visualize RoIs from the tumor center and183

the tumor front at the tumor–TME interface and examine spatial patterns based184

on immune subtype labels. We observe that immune “hot” tumors, characterized by185

high immune cell infiltration, show strong interactions between tumor and CD8+ T-186

cells (Fig.2B(i)), whereas immune “cold” tumors, with low immune presence, display187

minimal immune cell interaction, especially in the tumor center (Fig.2B(ii)). Immune188

“cold” RoIs at the tumor front similarly exhibit sparse or clustered immune cells with189

little interaction with tumor cells (Fig.2B(iii), (iv), (v)). The strong alignment between190

predicted and GT cell-type maps, as well as their spatial organization, suggests that191

Method MS-SSIM ↑ PSNR ↑

MP
Pix2pix [21] 0.278±0.004 13.747±0.122

PyramidP2P [12] 0.284±0.004 13.894±0.172

HistoPlexer 0.299±0.003 14.162±0.076

SP
Pix2pix [21] 0.260±0.002 13.015±0.009

PyramidP2P [12] 0.263±0.015 13.216±0.482

HistoPlexer 0.279±0.002 13.353±0.038

Table 1 Comparison of Model Performance against
benchmarks using MS-SSIM and PSNR for multiplex (MP)
and singleplex (SP) settings. ↑ arrow indicates higher values
are better.
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HistoPlexer effectively captures morphological features in H&E images relevant for192

predicting cell types using IMC data.193

A
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H&E MelanA CD3 CD8a CD20 SOX10 CD16
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ed
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T
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CD4 T-Cell
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ed

G
T

(v)

(iii)

Tumor Center Tumor Front

Fig. 2 Qualitative RoI-level assesment of HistoPlexer. A H&E (first column) and expression
profiles of individual markers: MelanA, CD3, CD8a, CD20, SOX10 and CD16 (from second to last
column). Top row: ground-truth (GT) expression profiles; bottom row: predicted (Pred) expression
profiles. B Cell-typing results: H&E (first row), GT and predicted cell types (middle and bottom
row) in RoIs grouped by their location within the tissue: “Tumor Center” and “Tumor Front”.
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2.3 HistoPlexer preserves spatial co-localization patterns194

As importance of spatial patterns has been previously shown by [27, 28], we assess the195

spatial co-localization patterns by quantifying the correlation between two or more196

proteins markers simultaneously expressed within a given region. For each protein pair,197

we compute the Spearman’s Correlation Coefficient (SCC) between the two proteins198

and average the correlation across RoIs, considering only pairs with strong positive199

(> 0.15) or strong negative (< −0.15) correlation in GT IMC images. We then compare200

the SCC obtained from GT and generated IMC multiplex.201

As shown in Fig. 3A(i), the Multiplex (MP) model’s predictions align more closely202

with the GT than those of the Singleplex (SP) model in terms of pairwise SCC, espe-203

cially for protein pairs involving CD-based immune markers such as CD16:HLA-DR,204

CD3:HLA-ABC and CD16:CD8a, which are sparsely represented in the training data.205

We hypothesize these sparse markers lack sufficient tissue context for the SP model206

to generate accurate predictions. In contrast, the MP model benefits from learning207

inter-marker correlations by predicting all markers simultaneously. Leveraging auxil-208

iary tissue morphology information from abundant markers, it enhances the prediction209

of both sparse markers and co-localization patterns. However, for a few protein pairs210

(CD3:CD8a and CD20:CD3), the SCC in MP exceeds that of the GT. This is likely due211

to the similar morphological features of CD8+ T-cells (a subset of CD3 T-cells) and212

CD3 T-cells, as well as of B-cells (CD20) and CD3 T-cells in H&E images [24], which213

can lead to the overprediction of sparse markers and, consequently, co-localization214

patterns. We further quantify spatial co-localization by measuring the Mean Square215

Error (MSE) between the SCC values from GT and generated IMC data across all test216

RoIs (Fig.3A(ii)). Compared to the SP model, the MP model achieves an MSE that is217

approximately an order of magnitude lower, which reinforces our hypothesis. A com-218

parison of HistoPlexer with Pix2Pix[21] and PyramidP2P [12] baselines is provided in219

Supplementary Fig. S2A.220

To explore spatial patterns beyond protein pairs, we visualize the expression pro-221

files using t-SNE embeddings of cells from both GT and generated IMC multiplex,222

following [29]. We observe a good correspondence between t-SNE from both GT and223

generated IMC multiplex (Fig.2.3B). For instance, cells that are positive for CD3 and224

CD8a are at the same time negative for CD31, gp100 and MelanA. This is in line225

with their biological function, as CD3 and CD8a are expressed on T-cells but not226

on endothelium (CD31) or tumor cells (gp100 and MelanA). Full t-SNE plots for all227

markers are shown in Supplementary Fig. S2.228

In conclusion, our quantitative and qualitative results suggest that the spatial co-229

localization patterns in GT can be effectively replicated using the generated IMC230

images. These spatial patterns are preserved across tissue sections, thus offering a231

robust evaluation metric that mitigates the impact of slice-to-slice variations.232

2.4 HistoPlexer enables multiplexed proteomics profiling on233

the WSI-level.234

HistoPlexer enables the generation of IMC images from H&E WSIs of up to235

100,000×100,000 pixels, allowing for the simultaneous visualization of multiple protein236
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Fig. 3 A(i) Spearman’s correlation coefficients between protein pairs, comparing the ground truth
(GT) with both singleplexed (SP) and multiplexed (MP) predictions of the HistoPlexer. The pairs
on the X-axis are ordered by increasing Spearman’s correlation in the GT. A(ii) Mean squared
error between the GT and predicted Spearman’s correlation coefficients, comparing the SP and MP
predictions of the HistoPlexer. B Joint t-SNE visualization of protein co-localization patterns for
selected markers: CD3, CD8a, CD31, gp100 and MelanA. The color represents protein expression.

markers across entire tissue sections. This capability provides a comprehensive view237

of tumor and TME interactions at the WSI level. Since GT IMC data is available only238

for RoIs, we use Ultivue’s InSituPlex® technology to obtain multiplexed WSIs using239

the Immuno8 and MDSC FixVue™ panels. These panels include key markers, such240

as SOX10 for tumors, HLA-DR for antigen presentation, and CD3/CD8a for T-cell241

profiling, which are shared with the generated protein multiplex. Figure 4 provides a242

qualitative comparison between the generated IMC and Ultivue multiplex at the WSI243

level. In both cases, a strong correspondence in global structures and hotspot regions244

is observed across all markers. In Fig. 4(ii), while there is good alignment for CD3245

and SOX10 markers, discrepancies appear for CD8A and HLA-DR, particularly along246

the tissue periphery (e.g., the bottom-left border). These differences are likely due to247

slice-to-slice variations between H&E and Ultivue images, which lead to slight shifts248

in tissue boundaries.249

2.5 HistoPlexer facilitates immune phenotyping250

We showcase the utility of HistoPlexer by stratifying immune subtypes according251

to the spatial distribution of CD8+ T-cells obtained using only H&E images from252

TuPro metastatic melanoma samples. Fig.5A illustrates the integrative visualization253
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Fig. 4 Qualitative WSI-level assessment of HistoPlexer. H&E (first column) and expression
profiles of individual markers: CD3, SOX10, CD8a and HLA-DR (from second to last column). Top
row: GT expression profiles from Ultivue images; bottom row: predicted (pred) expression profiles on
WSI level both samples in (i) and (ii).

of predicted tumor and CD8+ T-cells on H&E WSIs. In immune-hot cases, charac-254

terized by substantial CD8+ T-cell infiltration and typically better immunotherapy255

responses [30, 31], we observe the presence of both attacker tumor cells and infiltrating256

CD8+ defender T-cells within the tumor region, indicating active immune response.257

Conversely, immune-cold cases show minimal or no CD8+ T-cell infiltration in the258

tumor area, which generally correlates with poor immunotherapy outcomes. Building259

upon the immune subtype classification approach developed in [5], we further obtain260

intratumoral (iCD8) and stromal (sCD8) CD8+ T-cell densities in tumor center com-261

partment after localizing CD8+ T-cells using HistoPlexer. For this, we annotated the262

tumor center compartment and segmented it into an intratumoral and stromal regions263

using HALOAI platform across 34 TuPro metastatic melanoma samples.264

Fig. 5B(i) shows stratification of immune subtypes using iCD8 and sCD8 densities265

measured per µm2. We observe that immune desert cases exhibit very low iCD8 and266

sCD8 density, indicating the presence of only rare or isolated CD8+ T-cells. Immune267

excluded cases also show very low iCD8 density but slightly higher sCD8 density com-268

pared to immune desert cases, suggesting some CD8+ T-cells have reached the stroma269

but not the intratumoral regions. Inflamed cases display high densities of both iCD8270

and sCD8, indicating the presence of CD8+ T-cells in the stromal compartment and,271

most importantly, their infiltration into intratumoral regions. These observations align272

with the findings in [5], demonstrating the utility of our model. When assessing the273
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clinical relevance in distinguishing immune-hot (inflamed) and immune-cold (excluded274

and desert) cases, we find that both iCD8 and sCD8 densities are lower in immune-275

cold and higher in immune-hot cases (Fig. 5B(ii)). Additionally, we trained a random276

forest classifier to differentiate immune-hot and -cold cases and achieved F1 score of277

0.873 (SD 0.006) and macro-average AUROC of 0.845 (SD 0.047) over 5-fold cross-278

validation. In conclusion, we demonstrate the capability of the HistoPlexer for immune279

phenotyping, which has potential implications for treatment recommendations.280
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Fig. 5 Immune phenotyping using HistoPlexer. A H&E image along with overlay of predicted
tumor and CD8+ T-cells within tumor center region using HistoPlexer model for two immune hot
and two immune cold cases from TuPro metastatic melanoma cohort. B(i) Box plot of intratumoral
(iCD8) and stromal (sCD8) CD8+ T-cell densities in tumor center compartment, stratified by immune
desert, excluded and inflamed classes. B(ii)Box plot of intratumoral (iCD8) and stromal (sCD8)
CD8+ T-cell densities in tumor center compartment, stratified by immune hot and cold classes.

2.6 HistoPlexer generalizes to independent patient cohort data281

We evaluate the generalizability of the HistoPlexer model on Out-of-Distribution282

(OOD) data from an independent TCGA-SKCM cohort [18]. Fig. 6A displays the283

generated protein multiplex at the WSI level, along with expression profiles for three284

markers: tumor-associated MelanA, T-cell marker CD3, and B-cell marker CD20.285

In the immune-high sample, we observe higher expression and tumor infiltration of286
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CD3 and CD20 markers, contrasting with the minimal or absent expression in the287

immune-low case, where immune labels are based on RNAseq expression [32].288

Next, we assess the utility of generated IMC in augmenting clinical outcome pre-289

diction using expression profiles from MelanA, CD3 and CD20 markers due to their290

known prognostic significance [33, 34]. We encode the H&E and generated IMC WSIs291

using pretrained feature extractors. The features are input to an attention-based Mul-292

tiple Instance Learning (MIL) predictor [35]. We train the MIL predictor under two293

settings: (1) the unimodal setting, where only H&E features are input to the predic-294

tor and (2) the multimodal setting, where features extracted from the corresponding295

H&E and predicted IMC patches are first aggregated via a co-attention layer [36], and296

the bag-level representations of H&E and predicted IMC WSIs after the MIL pooling297

layer are concatenated before fed into the classification head (Fig. 6).298

We perform two clinically relevant tasks: immune subtype and survival prediction.299

For the survival prediction, we use the disease-specific survival from patients’ metadata300

as it provides a more accurate representation of the patient’s disease status [37]. For301

the immune subtype prediction, we classify the patients into three immune subgroups:302

low, intermediate and high with ground-truth labels obtained using Bulk RNA-seq303

expression data [32]. Overall, we observe the predictive performance of the multimodal304

setting to be superior to that of the unimodal setting for both tasks. Specifically, for305

the survival prediction task, incorporating features from predicted IMC images leads306

to an improvement of 3.18% in average time-dependent C-index [38] over 5-fold cross-307

validation. We further visualize the Kaplan-Meier survival curves for the multimodal308

setting, in which patients are separated into two groups of low-risk and high-risk309

based on predicted risk scores (Definition in 4.6). The logrank statistical significance310

test to determine if the separation between low and high-risk groups is statistically311

significant (p-value = 5.05 × 10−7). For the immune subtyping task, using features312

from both modalities demonstrates an improvement of 17.02% in terms of average313

weighted F1 score over 5-fold cross-validation. These results demonstrate not only the314

generalizability of the HistoPlexer to OOD samples, but also the clinical utility of the315

generated protein expression profiles by HistoPlexer in augmenting clinical decisions.316
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Fig. 6 OOD generalization. (A) Two examples (immune-high and -low) from the TCGA-SKCM
cohort, showing H&E images (first column), predicted protein multiplexes (second row) as well as
expression profiles of MelanA, CD3 and CD20 markers (last three colums). (B) Model architecture
for multimodal survival and immune subtype prediction. (C)(i) Survival prediction results, display-
ing time-dependent c-index scores (left) and Kaplan-Meier survival curves for the multimodal setting,
with separation of low- and high-risk groups (right).; (C)(ii) Immune subtype prediction results,
showing the weighted F1 score (left) and confusion matrix (right) for classification into low, interme-
diate, and high immune subtypes.

3 Discussion317

In this study, we introduce HistoPlexer, a generative model that enables prediction of318

a high order (11) of multiplexed protein expression profiles, including both tumor and319

immune markers, directly from H&E images. Our approach addresses the challenge of320

predicting multiplexed IMC data, where individual protein markers lack the structural321

details available in conventional Immunohistochemistry (IHC) images. By simulta-322

neously predicting multiple proteins, our model successfully captures sparse markers323
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and preserves biologically meaningful relationships, as validated through spatial cor-324

relation analysis of protein co-localization patterns. Our comprehensive evaluation325

demonstrates that the multiplexed prediction approach consistently outperforms sin-326

gleplex alternatives, evidenced by higher MS-SSIM and PSNR values, and lower MSE327

of protein co-localization SCC compared to GT. Notably, the domain experts found the328

generated IMC images highly realistic, with HYPE error rates of 61.6% and 72.8% for329

lymphocyte and tumor markers, respectively, supporting the quality of our predictions.330

The clinical utility of HistoPlexer is demonstrated through two key applications.331

First, HistoPlexer enables immune phenotyping at WSI level by quantifying spatial332

patterns using intratumoral (iCD8) and stromal (sCD8) CD8+ T-cell densities in333

the tumor center compartment. We found the spatial patterns in concordance with334

state-of-the-art approach [5], showcasing the utility of our model. We also successfully335

stratify patients into clinically actionable immune hot and cold subtypes. This capa-336

bility is particularly valuable for immunotherapy decisions, where understanding the337

spatial distribution of CD8+ T-cells is crucial. Second, HistoPlexer shows generaliz-338

ability to OOD data through evaluation on the independent TCGA-SKCM cohort.339

The integration of HistoPlexer-generated protein expression profile features with H&E340

features consistently improves the performance of DL-based predictive models in both341

survival (3.18% increase in time-dependent C-index) and immune subtype prediction342

(17.02% increase in weighted F1 score), demonstrating the potential of HistoPlexer in343

augmenting clinical decision-making.344

The study has some limitations. First, in some cases the model confuses between T-345

cells CD3/CD8a and B-cell CD20 markers which have similar morphological features.346

While this is not an issue for many downstream tasks such as survival and immune347

subtype prediction, for more fine-grained analyses, such as distinguishing between348

closely related cellular subsets, our model may face limitations. Thus, it is a priority349

for future work to refine the model’s ability to accurately distinguish between these350

finer subsets of cells. Second, we showed possibility to obtain major cell-types such as351

Tumor, B-cells, CD8+ T-cells and CD4+ T-cells. This set could be further extended352

to include more sparse cell-types such as endothelial cells by obtaining a larger train-353

ing cohort. Third, for multimodal training on the TCGA-SKCM dataset, we used354

MelanA, CD3 and CD20 markers from generated protein multiplex. The choice of355

these lineage markers was based on their high level of information content for lym-356

phocyte subpopulations and identification of tumor cells, however, this set could be357

potentially extended to study the importance of other markers towards survival and358

immune subtyping tasks. Lastly, due to slice-to-slice variations in data, we focused on359

the model’s utility in downstream tasks rather than strict pixel-level correspondence.360

HistoPlexer opens several promising research directions. First, expanding the361

framework to additional protein markers and cancer types could uncover valuable362

insights into disease mechanisms and treatment responses without requiring additional363

tissue material or incurring significant costs. By utilizing HistoPlexer on existing H&E364

images from clinical trials and population cohorts, it could support high-throughput365

workflows and offer comprehensive insights into spatial biology patterns correlated366

with clinical responses and epidemiological trends. Second, by making the Ultivue367

InSituPlex® dataset generated for this study publicly available, we invite researchers368
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to explore novel diffusion models for multiplexed protein marker generation, partic-369

ularly those that account for slice-to-slice variations. Third, integrating generated370

protein multiplex with other molecular data modalities holds potential for enhanc-371

ing our understanding of tumor biology and improving patient stratification, thereby372

supporting personalized treatment strategies. Finally, as computational pathology373

continues to advance, tools like HistoPlexer will play an increasingly important role374

in bridging the gap between routine histological analysis and advanced molecular375

profiling, ultimately contributing to more precise and personalized cancer treatment376

strategies.377

In conclusion, HistoPlexer represents a significant advance in computational378

pathology, enabling the cost-effective generation of protein multiplexes from clini-379

cally established histology slides. Our promising results support further efforts toward380

clinical application, with the potential to transform cancer diagnosis and treatment381

planning for more personalized patient care.382

4 Methods383

4.1 Datasets and preprocessing384

4.1.1 Tumor Profiler dataset385

We build our HistoPlexer framework using a subset of highly multi-modal metastatic386

melanoma dataset generated by the Tumor Profiler Study (TuPro) [17]. Each patient387

was characterised using multiple technologies, including Digital Pathology and IMC.388

A total of six RoIs of 1 mm2 were selected on each H&E WSI, three within tumor389

center and three at the tumor front (intersection of tumor and TME). IMC data was390

generated for those six RoIs on a consecutive section of the same tumor block. The391

IMC data was generated at a resolution of 1µm/pixel and H&E images were scanned at392

a resolution of 0.25 µm/pixel. Therefore, RoIs of 1 mm2 are represented by 1000 pixels393

for IMC data and 4000 pixels for H&E images. Since the paired data was generated394

by visually choosing RoIs, in many cases a considerable positional shift and rotation395

between the specified H&E regions and the resulting IMC regions can be observed.396

This was overcome by using template matching [39], resulting in a paired dataset of397

336 H&E and IMC ROIs from 78 patients for training and testing model performance.398

IMC profiling was performed using a panel of 40 antibodies, from which 11 have399

been selected for this study based on the biological function of the correspond-400

ing proteins as well as high signal–to–noise ratio. The proteins targeted by the 11401

antibodies include cell-type markers, such as tumor markers (MelanA, gp100, S100,402

SOX10), lymphocyte markers (CD20, CD16, CD3, CD8a) and an endothelial marker403

(CD31). Moreover, two functional markers corresponding to proteins involved in404

antigen presentation (HLA-ABC, HLA-DR) are included in the protein set.405

The raw IMC images were processed with CellProfiler software for cell segmen-406

tation [40]. The protein counts extracted from the images have been first clipped407

to 99.9% per protein to exclude outliers ad then transformed using the arcsinh-408

function with cofactor one [41]. In order to exclude background noise, we apply OTSU409
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thresholding [42] with kernel size three and sigma three and the threshold, sepa-410

rating signal from background, determined per sample using all available RoIs. The411

resulting data per protein is first centered and standardized and then subjected to412

min-max-transformation, all using data statistics based on the train set only.413

The data is split at the patient level into train and test set, stratified by414

immune phenotype (inflamed, immune excluded, and immune desert). The stratifi-415

cation ensures the representation of both tumor and immune cells in each set. The416

patient-level splitting guarantees that all RoIs from a given patient belong to only one417

set, preventing undesired information flow. The resulting train and test sets consist418

of 231 and 105 RoIs, respectively. During model training, RoIs are chosen at random419

and a tile of size 1024×1024 from H&E image and a corresponding IMC region of420

256×256 is extracted.421

For WSIs predictions, tissue segmentation is performed on the input H&E WSI by422

using OTSU thresholding [42]. Each segmented tissue region is then divided into tiles423

of size 1024×1024 pixels. The tiles undergo stain normalization using the Macenko424

method [43] to minimize staining variability and maintain color consistency across425

images. The generated IMC tiles are then stitched together to obtain WSI level IMC426

multiplex.427

4.1.2 Ultivue dataset428

For qualitative evaluation of HistoPlexer on WSIs, we employed Ultivue InSituPlex®
429

technology to obtain multiplexed images using the Immuno8 and MDSC FixVue™430

panels. The Immuno8 panel focuses on immune landscape characterization with mark-431

ers such as CD3, CD4, CD8, CD68, PD-1, PD-L1, FoxP3, and PanCK/SOX10. The432

MDSC panel identifies myeloid-derived suppressor cells using markers CD11b, CD14,433

CD15, and HLA-DR. Ultivue images were acquired at a resolution of 0.325 µm/pixel.434

For evaluation, we used CD3, SOX10, CD8a, and HLA-DR markers to assess visual435

similarity between the generated protein multiplex and Ultivue images.436

Paired H&E and Ultivue WSIs were generated by first staining H&E on one tis-437

sue section, followed by acquiring Immuno8 and MDSC data on consecutive sections438

for 10 samples. A tonsil tissue was included with each sample as a positive control.439

Image registration between H&E and Ultivue WSIs was performed using an unsu-440

pervised multimodal method [44], leveraging the DAPI nuclear stain in Ultivue for441

alignment with H&E images. Both Ultivue and generated IMC images underwent min-442

max normalization and histogram equalization. Additionally, adaptive thresholding443

was applied to Ultivue images to reduce noise and extract true signal. Regions with444

false signals, particularly those corresponding to hemorrhage, bleeding, or erythrocytes445

in H&E, were manually annotated and excluded from analysis.446

Upon acceptance, we plan to publicly release the H&E and Ultivue images, their447

alignment matrices, and annotated excluded regions. The dataset could serve as a448

valuable baseline for the field.449
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4.1.3 TCGA-SKCM450

Diagnostic WSIs of SKCM were downloaded from the TCGA database1 for a total of451

472 cases. Clinical data of SKCM samples including age, gender, sample type (primary452

tumor/metastatic) and disease-specific survival were also downloaded. For the survival453

prediction, we discarded cases where the diagnostic WSIs are of low resolution or the454

disease-specific survival data is missing, leaving 360 cases in total. For the immune455

subtype prediction, we kept a total of 257 cases where immune subtype labels are456

available. For each task, we randomly split the cases stratified by age, gender and457

sample type to create 5-fold cross-validation with a 4:1 ratio of training-validation sets.458

4.2 HistoPlexer architecture459

The HistoPlexer is based on cGAN which takes an H&E image as input condition460

and generates multiplexed IMC images where each corresponds to a spatially-resolved461

protein expression profile. The translator of the HistoPlexer is a fully convolutional462

U-Net [45] which consists of an encoder and a decoder. The encoder comprises six463

downsampling blocks, each with a convolution layer of stride 2 and kernel size 3. The464

decoder comprises of five upsampling blocks, each with nearest neighbor interpolation,465

followed by convolution layer of stride 1 and kernel size 3. Each layer is followed by a466

batch-norm layer and ReLU activation. The discriminator consists of six blocks, each467

with a convolution layer followed by a spectral normalization layer and ReLU activa-468

tion. We use patches extracted from template-matched pairs of H&E and IMC RoIs469

to train the HistoPlexer and optimize the model with three objectives: an adversarial470

loss to enforce image-level consistency, a Gaussian pyramid loss to enforce pixel-level471

consistency, and a patch-wise contrastive loss to enforce patch-level consistency.472

Adversarial loss: We use the least square loss proposed in LSGAN [46] as our473

adversarial loss, and the 0−1 coding scheme where 0 and 1 are the labels for generated474

(i.e., fake) and real IMC images, respectively. We also adopt the multi-scale gradient475

approach [47], which allows simultaneous gradient propagation at multiple scales (i.e.,476

resolutions). Considering a set of scales {s ∈ S}, the multi-scale adversarial losses for477

the translator G and discriminator D are formulated as:478

Ladv
G =

1

|S|
Exp∼Xp

[(
D(G(s)(xp)|xp)− 1

)2]
,

Ladv
D =

1

|S|
∑
s∈S

[
Exp∼Xp

yp∼Yp

[
(D(yp|xp)− 1)2

]
+ Exp∼Xp

[
(D(G(s)(xp)|xp))

2
]]

.

(1)

where Xp = {xp ∈ XRoI} and Yp = {yp ∈ YRoI} denote paired training patches479

sampled from template-matched H&E and IMC RoIs, respectively; G(s)(·) and D(·)480

denote the mapping functions parameterized by the translator (at the output scale s)481

and discriminator, respectively; and | · | denotes the cardinality of a set.482

1https://portal.gdc.cancer.gov/
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Gaussian pyramid loss: We also implement a pixel-level L1 loss as in [21]. Since
our H&E and GT IMC images are not pixel-aligned, we relax the constraint on pixel-
to-pixel correspondence by calculating the L1 loss at multi-resolution representations
of the generated and GT IMC images [12], termed as Gaussian pyramid loss [12]. More
specifically, a Gaussian pyramid is constructed through iterative Gaussian smoothing
and downsampling. Each level of resolution, termed as an octave, comprises a series
of images with increasing degrees of smoothness. Transition between resolutions is
achieved by downsampling the image at the highest smoothness level of the current
octave to initiate the next:

yr+1
p,1 = Downsample

(
yr
p,#gs

)
where #gs denotes the number of Gaussian smoothing at one resolution. Note that483

for the generated IMC images, we only compute the Gaussian pyramid on the final484

output scale. Considering a set of resolutions {r ∈ R}, the Gaussian pyramid loss is a485

weighted sum of L1 loss computed on the primary layer of each octave, formulated as:486

Lgp =
∑
r∈R

wrExp∼Xp

yp∼Yp

∥∥yr
p,1 − ŷr

p,1

∥∥
1
, (2)

where ŷp denotes the generated IMC image patches, r denotes the resolution level,487

and wr is the weight of the L1 loss at that level.488

Patch-wise contrastive loss: We further incorporate a patch-wise contrastive489

loss, inspired by [19]. More specifically, we first extract multi-layer features using a490

pretrained feature encoder and apply a transformation via a small projection head491

(e.g., a Multi-layer Perceptron) on the extracted features to enrich their expressive-492

ness [48]. Then, we randomly select a set of pixel locations for each feature layer. By493

aggregating selected patch features from each layer, we can obtain two feature sets for494

the generated and GT IMC images, respectively.495

Let ẑil denote the anchor feature of the i-th patch of the generated IMC image,496

extracted from the l-th layer of the feature encoder; while zil and z̄il denote the positive497

and negative features of the corresponding patch (i.e., at the same pixel location) and498

the collection of non-corresponding patches (i.e., at different pixel locations), extracted499

from the same layer, respectively. Our patch-wise contrastive loss is defined as:500

Lcontrast = E
xp∼Xp

yp∼Yp

1

#layer

1

#patch

#layer∑
l=1

#patch∑
i=1

wt(ẑ
i
l , z

i
l )ℓInfoNCE(ẑ

i
l , z

i
l , z̄

i
l ), (3)

where

ℓInfoNCE(z, z
+, z−) = − log

exp(z · z+/τ)
exp (z · z+/τ) +

∑N
n=1 exp (z · z

−
n )/τ)
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is the InfoNCE objective [49], and

wt(ẑ
i
l , z

i
l ) =

(
1− g

(
t

T

))
× 1.0 + g

(
t

T

)
× h
(
sim(ẑil , z

i
l )
)

is the adaptive patch weight [19]. Here, #layer and #patch denote the number of501

layers and patches from which we extract features; t and T denote the current and502

total training steps; h(·) denotes some weighting function; and sim(·) is some similarity503

measurement.504

While the HistoPlexer translator outputs the prediction of all selected IMC mark-505

ers, we encounter a practical limitation when employing a pre-trained feature encoder,506

which often requires an RGB image as input. To circumvent this, we first extract each507

channel (i.e., marker) of the output IMC image and replicate it along the channel508

dimension to create a pseudo RGB image. We then pass each of them to the feature509

encoder. The final patch-wise contrastive loss is the sum of that of each channel.510

The total losses for G and D are formulated as,511

LG = Ladv
G + λgpLgp + λcontrastLcontrast

LD = Ladv
D + λR1

R1

(4)

where
R1 = E

xp∼Xp

yp∼Yp

∥∇yD(yp|xp)∥22

is the gradient penalty [50], and λgp, contrast and λR1
are the weights for the Gaussian512

pyramid loss, patch-wise contrastive loss and gradient penalty, respectively.513

Implementation and training details: The model is trained for 100 epochs using514

ADAM optimizer [51] with momentum parameters β1 = 0.5 and β2 = 0.999 with515

learning rates 0.004 and 0.0008 for translator and discriminator networks, respectively.516

The weights are initialized using Xavier initialization. The batch size is set to 16 and517

the patch size to 256 for IMC and 1024 for H&E images, to accommodate for the518

higher resolution of the latter. We increase the generalization capabilities of the model519

by adopting data augmentation, including color augmentation, random flipping, small520

translations, and rotations. We employ the least-squares GAN objective. The weights521

for loss terms is as follows: λgp=5.0, λcontrast=1.0 and λR1
=1.0.522

4.3 Evaluation metrics523

To evaluate the quality of generated images, we use two widely adopted metrics: PSNR524

and MS-SSIM.525

PSNR is used to measure the reconstruction quality by quantifying the ratio526

between the maximum possible signal power and the power of corrupting noise. It is527

expressed in decibels (dB), with higher values indicating better image quality. The528

PSNR is calculated as:529

530

PSNR = 10 log10

(
L2

MSE

)
(5)
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where L is the dynamic range of the pixel values (e.g., 255 for 8-bit images), and MSE531

represents the Mean Squared Error between the original image I and the generated532

image I ′533

MSE =
1

N

N∑
i=1

(I(i)− I ′(i))
2

(6)

MS-SSIM extends the traditional SSIM metric by incorporating multiple scales to534

capture structural differences at various resolutions. The SSIM between two images I535

and I ′ is defined as:536

SSIM(I, I ′) =
(2µIµI′ + C1)(2σII′ + C2)

(µ2
I + µ2

I′ + C1)(σ2
I + σ2

I′ + C2)
(7)

where µI and µI′ are the means, σ2
I and σ2

I′ are the variances, and σII′ is the covariance537

between the two images. C1 and C2 are small constants to stabilize the division. In538

MS-SSIM, SSIM is computed at multiple scales, and the final score is a weighted539

product of SSIM values across these scales:540

MS-SSIM(I, I ′) =

M∏
j=1

(SSIMj(I, I
′))

αj (8)

where M is the number of scales and αj is weighting factor at scale j. Higher MS-SSIM541

values indicate better perceptual similarity.542

These metrics provide a comprehensive assessment of both pixel-level accuracy543

(PSNR) and perceptual similarity (MS-SSIM) of the generated images. Frechet Incep-544

tion Distance (FID) and Kernel Inception Distance (KID) are widely used metrics for545

evaluating the quality of generated images, however they are less effective on small546

datasets as they rely on mean and covariance of a cohort. Hence they are not used547

when evaluating HistoPlexer.548

To quantify the evaluation by domain experts, we use HYPE score which mea-549

sures the error rate at which humans mistake generated images for real ones or vice550

versa. It is defined as:551

552

HYPE =

(
FP + FN

TP + TN+ FP + FN

)
× 100

HYPEfake =

(
FP

TN+ FP

)
× 100

HYPEreal =

(
FN

TP + FN

)
× 100

(9)

where TP is the number of True Positives, TN is the number of True Negatives, FP553

is the number of False Positives and FN is the number of False Negatives. HYPEfake554

and HYPEreal are the error rates for generated and real images, respectively.555
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4.4 HistoPlexer for cell-level analysis556

4.4.1 Pseudo-cells557

Since spatial analyses of IMC data typically rely on cell-level readouts, we create558

pseudo-single-cell data by extracting circular regions of 10 µm diameter around nuclei559

coordinates for both input H&E and GT IMC images. Protein expression is averaged560

across pixels within each pseudo-cell for individual markers. Nuclei coordinates for561

H&E images are obtained using the HoVer-Net model [24], while nuclei coordinates562

and cell-type labels for GT IMC multiplexes are derived using Ilastik [52] and Cell-563

Profiler [40], as described in [8]. For simplicity, we refer to pseudo-cells as ”cells” in564

the following text.565

4.4.2 Cell-typing566

We use a Random Forest (RF) classifier [26] to categorize cells based on the average567

expression of 11 markers from the HistoPlexer. The classifier distinguishes between568

tumor cells, B-cells, CD8+ T-cells, CD4+ T-cells, and other cells. Training is per-569

formed using the scikit-learn library [53], with hyperparameters (100 base estimators,570

maximum tree depth of 30) selected based on the lowest out-of-bag error. The model571

achieves a macro-averaged F1 score of 0.81 on an internal test set. We then apply the572

trained RF classifier to both GT and generated protein expression data to produce573

cell type maps for cells in test set.574

4.4.3 t-SNE on cell level marker expression575

To explore spatial patterns beyond pairwise protein interactions, we conduct a low-576

dimensional embedding analysis of cell-level marker expression. Following the approach577

commonly used for mass cytometry data [54], we subsample 1,000 cells per RoI578

from both GT and generated IMC, resulting in total 2,000 cells per RoI. A joint579

t-SNE dimensionality reduction (two dimensions, perplexity of 50, and 1,000 itera-580

tions) is then applied. For visualization, protein abundance is scaled and clipped at581

the 99th percentile, and the t-SNE plots are colored according to the scaled protein582

expression [54].583

4.5 Annotations for Immune phenotyping584

To stratify samples into immune subtypes based on the spatial distribution of CD8+585

T-cells, we used annotated regions as established in [5]. Our dataset included 109586

metastatic melanoma H&E WSIs from the TuPro cohort, with metastatic sites in587

lymph nodes, soft tissue, brain, and other distant locations. The primary region for588

immune-subtyping, termed “Tumor Center”, comprises entirely tumor tissue, which589

was manually defined as a continuous tumor mass excluding a 500µm margin from590

the tumor–non-tumor boundary. This “Tumor Center” was further segmented into591

two regions: the ”Intratumoral Tumor” region, consisting of dense clusters of malig-592

nant melanocytes without stromal presence, and the ”Intratumoral Stromal” region,593

which includes extracellular matrix (typically desmoplastic) interwoven within the594
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tumor cell mass but free from malignant melanocytes. These regions were automati-595

cally classified using a DL model implemented on the HALOAI platform, trained with596

selected H&E WSIs regions. Tissue classification was conducted at 0.30µm/pixel res-597

olution with a minimum object size threshold of 50µm2. Excluded regions—such as598

preexisting lymphatic tissue, large adipose and muscle regions, artifacts, necrosis, hem-599

orrhage, and background—were omitted from the analysis. Ultimately, we analyzed600

34 samples with the highest quality tissue classifications from the HALOAI model pre-601

dictions. Supplementary Fig. S3 shows an example H&E WSI with region annotation602

and classification.603

4.6 MIL-based Clinical Outcome Prediction604

Attention-based MIL for survival and immune subtype prediction: MIL is
a weakly-supervised learning method for set-based data structures. In MIL, an input
X is a bag (i.e., permutation-invariant set) of instances X = {x1, ...,xN}, where N
denotes the number of instances in the bag. Given a classification task with K classes,
the goal is to learn a function F from M training pairs {(X(m),y(m))}Mm=1 that maps
X to a bag-level label y ∈ K without knowing label yi ∈ K for each instance in the
bag. In our context, the input is a WSI and the instances denote the extracted patches.
More specifically, we follow the embedding-based MIL approach [35] and extract a
feature vector hi = h(xi) ∈ Rd from each patch. Then, an attention-pooling operator
aggregates the patch features hi=1:N to a single WSI-level representation [35]

g = g(hi) =

N∑
i=1

aihi,

where

ai =
exp{w⊤(tanh(Vhi)⊙ η(Uhi))}∑N

j=1 exp{w⊤(tanh(Vhj)⊙ η(Uhj))}
is the gated attention [35]. Here, w∈RL×1, V∈RL×D, U∈RL×D are learnable param-605

eters with hidden dimension L, ⊙ is element-wise multiplication, and η(·) denotes606

the Sigmoid function. Finally, a classifier f(·) maps the WSI-level representation to a607

WSI-level label ŷ ∈ K.608

The end-to-end prediction takes the following general form:609

ŷ = F(X) = f

(
g
(
{h(xi) : xi ∈ X}

))
. (10)

For survival prediction, we model the time-to-event distributions as an ordinal
regression task with right censored data (i.e., patient death is unobserved until last
known follow-up). Following [36], we define discrete time intervals and model each
interval using an independent neuron in the output layer. More specifically, we par-
tition the continuous time scale into non-overlapping time intervals [tj−1, tj), j ∈
[1, · · · , J ] based on the quartiles of survival time values, denoted as yj . The continu-

ous time-to-event t(m) for each patient is then replaced by a discrete time label y
(m)
j ,
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where
y
(m)
j = yj if t(m) ∈ [tj−1, tj) for j ∈ {0, · · · , J}.

The problem then simplifies to classification where each patient is defined by a triplet610

(g(m),y
(m)
j , c(m)). Here, g is the aggregated bag features; c is the censorship status611

where c = 0 if the death of the patient is observed and c = 1 otherwise; and yj is612

the discrete time GT label. We adopt the negative log-likelihood survival loss [55] for613

modal optimization, formulated as:614

Lsurv

(
{X(m),y

(m)
j , c(m)}Mm=1

)
=

M∑
i=1

(
− c(m) log(fsurv(y

(m)
j |g(m)))

+ (1− c(m)) log(fsurv(y
(m)
j − 1|g(m)))

+ (1− c(m)) log(fhazard(y
(m)
j |g(m)))

)
,

(11)

where fharzard(yj |g) = Sigmoid(ŷj) is the discrete hazard function and fsurv(yj |g) =615 ∏j
k=1

(
1 − fhazard(yk|g)

)
is the discrete survival function. Finally, the patient-level616

risk is defined as the negative sum of all logits [37], which enables the identification of617

distinct risk groups and the stratification of patients.618

For immune subtype prediction, we adopt the cross-entropy loss defined as:619

Lce = −
M∑

m=1

K∑
k=1

y
(m)
k log

(
ŷ
(m)
k

)
. (12)

Multimodal fusion via co-attention mechanism: To fuse the patch features from620

different modalities, we adopt the co-attention mechanism proposed in [36]. More621

specifically, given the H&E feature bag H ∈ RN×d and IMC feature bag P ∈ RN×d,622

we guide the feature aggregation of H using P by calculating the cross-attention:623

Ĥ = Softmax
(WqPH⊤W⊤

k√
d

)
WvH

= AP→HWvH,

(13)

where Wq,Wk,Wv ∈ Rd×d are learnable weights and AP→H ∈ RN×N is the co-624

attention matrix. Intuitively, the co-attention measures the pairwise similarity for how625

much an H&E instance hi attend to the IMC instance pi for i ∈ N . Similarly, we626

can guide the feature aggregation of P using H via AH→P . Each co-attention guided627

feature bag is input to an attention-based MIL module, which outputs an aggregated628

WSI-level representation. We concatenate the WSI-level representations from multiple629

modalities and project it back to the original feature dimension d via a linear layer,630

resulting in a multimodal WSI-level representation. Then, a classifier f(·) uses this631

representation to predict the output label ŷ.632
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Implementation and training details: We adopt the original implementation of633

attention-based MIL on GitHub2 and modify it for survival prediction based on the634

code for SurvPath3. We implement the co-attention mechanism based on the original635

implementation of MCAT4. Each WSI is cropped to 256×256 non-overlapping patches636

at 20× magnification to create bags, where patches with more than 10% non-tissue637

area are discarded. We use ResNet18 [56] pretrained on pathology-specific datasets638

using self-supervised learning [57] to extract features from H&E patches and ResNet50639

pretrained on ImageNet [58] to extract features from IMC patches. Since ResNet18640

requires three-channel input, we concatenate IMC images of three different protein641

markers along the channel dimension: one tumor marker (MelanA) and two immune642

markers (CD8 and CD20). The dimension of extracted features is 512 for both H&E643

and IMC patches. We run the survival and immune subtype prediction for 5-fold644

cross-validation. The model hyperparameters are set as: Adam optimizer with initial645

learning rate of 1e−4 (survival) and 5e−5 (immune subtype), a ReduceLROnPlateau646

scheme based on validation loss for scheduling, and a mini-batch size of 1. The model647

is trained for 100 epochs with early stopping based on validation loss (survival) and648

weighted F1-score (immune subtype).649

Computational requirements. The data processing and model training was done650

on NVIDIA A100 40GB GPU. The DL models were trained using pytorch (1.13.1).651

The pipeline was implemented in Python (3.8.12).652

Data Availability. Data and material from the Tumor Profiler study are available653

to members of the international Tumor Profiler Research Consortium. Requests for654

sharing of all data and material should be addressed to the corresponding author and655

include a scientific proposal. Depending on the specific research proposal, the Tumor-656

Profiler consortium will determine when, for how long, for which specific purposes, and657

under which conditions the requested data can be made available, subject to ethical658

consent. The multiplexed WSIs images for Immuno8 and MDSC FixVue™ panels from659

Ultivue InSituPlex® technology, along with paired H&E images will be made available660

upon acceptance of publication. The H&E WSIs for TCGA-SKCM were downloaded661

via GDC data portal (https://portal.gdc.cancer.gov/).662

Code Availability. The source code for HistoPlexer is available at https://github.663

com/ratschlab/HistoPlexer.664
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