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Abstract. MicroRNA-34a (miR-34a) is a direct transcrip-
tional target of p53, and is downregulated in several different 
types of cancer. However, the underlying mechanism of the 
miR-34a effects in colorectal cancer is not well understood. 
In this study, we explored the role of miR-34a in cell inva-
sion, migration, and apoptosis. Transient overexpression of 
miR-34a in SW480 cells caused a severe decrease in cell 
migration and invasion (both, p<0.05) compared to the 
control groups. Combining miR-34a transfection with 5-fluo-
rouracil (5-FU) treatment further enhanced the inhibition in 
SW480 cell migration and invasion (both, p<0.05) compared 
to 5-FU treatment alone. These cellular changes were associ-
ated with upregulation of acetylated‑p53 (ac-p53) and p21 and 
downregulation of sirtuin 1 (SIRT1). These data demonstrate 
that miR-34a regulates the expression of a number of critical 
proteins involved in apoptosis, proliferation and the response 
to chemotherapy. In summary, miR-34a increases the sensi-
tivity of colon cancer cells to 5-FU treatment through specific 
regulation of the SIRT1/p53 pathway.

Introduction

Colorectal cancer is one of the most prevalent types of 
cancer, with a high incidence of disease-related mortality 
and morbidity (1). The development of colorectal cancer is 
a multi-step process that is regulated by complex molecular 
networks. These networks are altered via sequential altera-
tions in oncogenes, tumor-suppressor genes and non-coding 
RNAs (ncRNAs). microRNAs (miRs) are a type of ncRNA 
molecules, which negatively regulate protein expression at the 

post-transcriptional level by interacting with the 3'-untrans-
lated region (3'-UTR) of target mRNAs and by inhibiting 
protein translation. Therefore, understanding the role of miRs 
is critical for defining cancer pathogenesis and developing new 
methods for diagnosis and treatment.

The family of miR-34 comprises some of the most studied 
miRs, which have been described as tumor suppressor genes in 
multiple cancer types including melanoma (2), pancreatic (3), 
prostate (4), colorectal (5) and non-small cell lung cancer (6) 
and neuroblastoma (7). miR-34a maps to the 1p36 genomic 
region in humans, and is expressed at higher levels compared 
to other family members. Several studies have indicated that 
upregulation of miR-34a can induce apoptosis, senescence, 
differentiation, cell-cycle arrest, and growth suppression (8-10). 
The abnormal expression of miR-34a results in cell‑cycle 
arrest, growth inhibition and attenuated chemoresistance to 
antitumor drugs. It was previously suggested that miR-34a 
has a potential role in the treatment of p53-defective prostate 
cancer (4). miR-34a is also a promising therapeutic target for 
patients with hormone-refractory prostate cancer or patients 
showing drug resistance, where conventional chemical drug 
treatment exerts limited effects, or patients with distant 
tumor metastasis and recurrence (11). Sirtuin 1 (SIRT1) is a 
nicotinamide adenine dinucleotide (NAD)-dependent histone 
deacetylase, which has been associated with inflammation, 
circadian rhythm, hypoxic responses, cell survival, longevity 
and metabolic processes (12-15). SIRT1 is also involved in 
the mitochondrial antioxidant capacity, attenuating oxida-
tive stress in coronary arterial endothelial cells  (16). The 
tumor protein p53 is a sensor of chronic or acute alterations 
in cellular physiology, and more importantly, engages with 
DNA to maintain chromosomal integrity (17). The p53 levels 
are associated with those of miR-34a in keratinocytes (18), 
human mammary epithelial cells (19) and lymphoblast cell 
lines (20). miR-34a enhances p53 activity through a decrease 
in deacetylation, which in turn results in a decrease in SIRT1 
expression. This decrease is achieved at the post-transcrip-
tional level through binding to the 3'-UTR (21,22). In addition, 
inhibition of SIRT1 activates p53-dependent apoptosis via 
deacetylation and stabilization of p53. miR-34a-mediated 
inhibition of SIRT1 led to apoptosis in wild-type human colon 
cancer cells, while no apoptosis was observed in p53-deficient 
cancer cells (23). The positive feedback loop involving p53, 
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SIRT1 and miR-34a may thus provide new therapeutic tools 
for the treatment of cancer.

However, the effect of the combination of miR-34a and 
chemotherapeutic drugs on colorectal cancer has rarely been 
syetematically explored. In addition, there are no reports 
investigating the synergistic effect of miR-34a with 5-fluoro-
uracil (5-FU) on SW480 cells. In this study, we explored the 
effects of miR-34a in cell invasion, migration and apoptosis 
in SW480 cells. We further investigated the antitumor effect 
of both miR-34a and 5-FU in SW480 cells. Our experimental 
data provides evidence that miR-34a may be a suitable molec-
ular target for colorectal cancer therapy. Finally, we examined 
the physiological pathway involving miR34a, p53 and SIRT1, 
which may be involved in the observed effects.

Materials and methods

Cell culture, transfection and treatments. SW480 cells were 
obtained from Nanfang Hospital, Southern Medical University 
(Guangzhou, China). The cells were cultured in Dulbecco's 
modified Eagle's medium (DMEM, HyClone Logan, UT, 
USA) with 10% fetal bovine serum (FBS; Sijiqing, Hangzhou, 
China) and 100 U/ml of penicillin and streptomycin, following 
standard procedures. Transfections were performed using 
Invitrogen™ Lipofectamine® 2000 (Thermo Fisher Scientific, 
Waltham, MA, USA). Cells were treated as follows: nega-
tive control mimic (control group), 100 nM miR-34a mimic 
(miR‑34a group), 200 µg/ml 5-FU (5-FU group), or 200 µg/ml 
5-FU plus 100 nM miR-34a mimic (5-FU + miR-34a group) 
for 48 h. The negative control and the miR-34a mimics were 
obtained from GeneChem (Shanghai, China), and 5-FU was 
purchased from Jinyao Amino Acid Co., Ltd. (Tianjin, China).

Reverse transcription-quantitative polymerase chain reaction 
(RT-qPCR). Total RNA was extracted using TRIzol reagent 
(Thermo Fisher Scientific, Bremen, Germany) according to 
the manufacturer's instructions. The first strand cDNA was 
synthesized by stem-loop primer reverse transcription reaction 
(Thermo Fisher Scientific). The following primer sequences 
were used: Hsa-miR-34a RT primer, 5'-CTCAACTGGT-
GTCGTGGAG TCGGCAATTCAGTTGAGACAACCAG-3'; 
sense: 5'-ACA CTCCAGCTGGGTGGCAGTGTCTTAG-3'; 
and antisense: 5'-CTCAACTGGTGTCGTGGAGTCG-3' for 
Hsa‑miR‑34a; and sense: 5'-CTCGCTTCGGCAGCACA-3' 
and antisense: 5'-AACGCTTCACGAATTTGCGT-3' for U6. 
The real-time quantitative PCR kit (Fermentas, Helsingborg, 
Sweden) was used to facilitate the reactions. Reactions were 
conducted on an Applied BioSystems 7900HT thermocycler 
(Applied Biosystems, Inc.) and performed under the following 
thermal cycling conditions: 95˚C for 10min, followed by 40 
cycles of 95˚C for 15 sec, 60˚C for 30 sec and 72˚C for 15 sec; 
followed by a 60˚C for 1 min, 95˚C for 15 sec. Raw data of 
all samples were normalized to that of the control and fold 
changes were calculated using a relative quantification equa-
tion (RQ=2‑ΔΔCt).

Western blot analysis. Western blot analysis was performed as 
previously described (24). Briefly, SW480 cells were homoge-
nized in phosphate-buffered saline (PBS) containing a protease 
inhibitor cocktail (Beyotime Institute of Biotechnology, 

Shanghai, China). The samples were incubated overnight 
at 4˚C with rabbit anti-p53 antibody, -acetyl p53, -SIRT1, or 
-acetyl p21 antibody (all from Cell Signaling Technology Inc., 
Danvers, MA, USA). The antibody signal was detected using 
a Chemiluminescent Detection kit according to the manufac-
turer's protocol (Beyotime Institute of Biotechnology, Jiangsu, 
China). The relative band intensities in the blots were deter-
mined using the Adobe Photoshop software (Adobe Systems 
Inc., San Jose, CA, USA).

Apoptosis analysis. Following treatment for 48 h as described 
above, SW480 cells were harvested, washed in ice-cold PBS, 
resuspended in 500 µl of binding buffer (C1062-2,Beyotime 
Institute of Biotechnology, Jiangsu, China) and incubated 
for 15 min in the dark with 5 µl of propidium iodide (PI; 
Beyotime Institute of Biotechnology, Jiangsu, China) and 5 µl 
of Annexin V-fluorescein isothiocyanate (FITC; Beyotime 
Institute of Biotechnology, Jiangsu, China). The samples were 
washed and resuspended in 500 µl PBS, and immediately 
analyzed by fluorescence-activated cell sorting (FACS) on a 
EPICS XL-MCL flow cytometer (Beckman Coulter, Brea, CA, 
USA).

Cell cycle analysis. Following a 48 h treatment, SW480 cells 
were harvested, washed with PBS, and fixed in ice-cold 70% 
ethanol. Fixed cells were treated with DNase-free RNaseA 
(TransGen Biotech, Beijing, China) in PBS at 37˚C for 30 min, 
followed by staining with PI at room temperature for 10 min. 
The proportion of cells at the different stages of the cell cycle 
was estimated by flow cytometry.

Transwell cell migration assay. SW480 cells (48  h post-
treatment) were trypsinized with 0.25% trypsin (Beyotime 
Institute of Biotechnology, Jiangsu, China) and suspended 
in serum-free DMEM at 5x105 cells/ml. A total of 200 µl of 
the cell suspension were placed in the top chamber of a two-
chamber Transwell assay system (Corning Inc., Corning, NY, 
USA) and 800 µl of medium containing 10% FBS were added 
in the lower chamber. Cells were cultured at 37˚C for 12 h. The 
cells on the surface of the upper chamber were swapped and 
the cells under the surface of the lower chamber were stained 
with crystal violet (0.1%). Cell migration was evaluated by 
counting the cells that had migrated into the filters.

Transwell cell invasion assay. Similar to the migration assay, 
50 µl BD Matrigel™ (BD Biosciences, Franklin Lakes, NJ, 
USA) was added into each Transwell upper chamber and placed 
in a 37˚C incubator for 2 h to solidify. The tumor cell invasive 
capacity was then assessed similarly to the cell migration assay.

Statistical analysis. The results are expressed as mean ± stan-
dard deviation. Statistical significance was determined with 
Student's t-tests (two-tailed, unpaired). P<0.05 was considered 
to indicate a statistically significant difference.

Results

miR-34a enhances the 5-FU effect on the SIRT1/p53 pathway 
in SW480 cells. To first understand the effects of miR-34a, the 
expression level of this miR was measured by RT-qPCR in 
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SW480 cells before and after transfection with the miR-34a 
mimic. The level of miR-34a in SW480 cells after transfec-
tion was markedly higher compared to the control group. In 
addition, the combination of the miR-34a mimic and 5-FU 
showed a synergistic effect on miR-34a expression (Fig. 1A). 
We also examined the protein expression of p53 and acetylated 
(ac)‑p53 by western blot analysis. There was no significant 
change in the p53 level after treatment with the miR-34a mimic 

or 5-FU. The level of p53 was slightly but not significantly 
increased following combined treatment with the miR-34a 
mimic and 5-FU. By contrast, the combined treatment 
increased the level of ac-p53 compared to the control group 
(p<0.05), while no change was observed when miR-34a was 
used alone (Fig. 1B and D). To further understand the miR-34a 
pathway, we examined the protein expression of SIRT1 
and p21, and found that SIRT1 expression is significantly 

Figure 1. Activation of the miR-34a/SIRT1/p53 pathway by the miR-34a mimic and 5-FU. (A) Expression of miR-34a was determined by reverse transcrip-
tion‑quantitative PCR (RT-qPCR). (B) The different components of the miR-34a/SIRT1/p53 pathway were detected by western blotting with GAPDH as the 
loading control. (C-F) The relative expression of p53, ac-p53, SIRT1 and p21 was quantified from the western blot. (G) A model summarizing the findings from 
this study combined with previously published data, and describing the 5-FU/p53/p21 interactions. Quantitative data are presented as mean ± SD (n=3), with 
*p<0.05 and **p<0.01. miR, microRNA; ac, acetylated; 5-FU, 5-fluorouracil; SIRT1, sirtuin 1.
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Figure 2. Effect of miR-34a and 5-FU on SW480 cell apoptosis. (A-D) Cells were stained with Annexin V-FITC/PI and analyzed by flow cytometry to determine 
the population of cells at the early and late apoptosis in the different treatment groups: negative control mimic-treated (control), miR-34a mimic‑treated (miR‑34a), 
5-FU-treated (5-FU) and miR-34a mimic + 5-FU-treated (miR-34a + 5-FU). (E) The percentage of apoptotic cells in each group relative to the total number of 
cells was used to evaluate the apoptotic rates. miR, microRNA; 5-FU, 5-fluorouracil; FITC, fluorescein isothiocyanate; PI, propidium iodide. 

Figure 3. miR-34a inhibits the cycle phase transition from G0/G1 to S. (A-D) SW480 cells were treated with the negative control mimic (control), miR-34a 
mimic, 5-FU, or both, and were analyzed by flow cytometry to determine the percentage of cells in each of the different cell cycle phases, G1, S, and G2/M. 
(E) Bar diagram illutrating the distribution of cells from each group in the different cell cycle phases. (F) A model summarizing the findings from this study 
combined with previously published data, and describing the molecular interactions involved in cell cycle regulation. miR, microRNA; 5-FU, 5-fluorouracil; 
CDK, cyclin‑dependent kinase; CCND1, cyclin D1.
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decreased following treatment with miR-34a compared to the 
control group (p<0.05). 5-FU had a similar effect on SIRT1 
expression in SW480 cells, with the changes being statisti-
cally significant (p<0.05) (Fig. 1B and E). In addition, the 
level of p21 was significantly and markedly changed by the 
combined miR-34a + 5-FU treatment compared to the other 
groups (p<0.01) (Fig. 1B and F). The results from western 
blot analysis were used in combination with published data to 
create a model illustrating the relationships among miR-34a, 
5-FU and SIRT1/p53 (Fig. 1G).

miR-34a induces apoptosis in SW480 cells and acts synergis-
tically with 5-FU. To determine the effects of miR-34a and 
5-FU treatment on cell death, we double-stained SW480 cells 
with Annexin V-FITC and PI and analyzed apoptosis by FACS 
at 48 h post-treatment. The shifts in cell population with the 
different treatments clearly indicated that the apoptotic rate of 
the miR-34a + 5-FU-treated group is higher than that of the 
miR-34a or the 5-FU group, while the control group showed 
the lowest rate of apoptosis (Fig. 2).

miR-34a blocks the cell cycle in synergy with 5-FU. We further 
examined the effect of miR-34a on the SW480 cell cycle by 
flow cutometry. This assay showed that both miR-34a and 5-FU 
block cell cycle progression and have a synergistic effect when 

combined. Individually, both miR-34a and 5-FU increased the 
percentage of cells detected at the G1 phase, and the combined 
treatment further increased this percentage, while the control 
group had the lowest proportion of G1-phase cells (Fig. 3A-D). 
The cell-cycle machinery involves the cyclin‑dependent 
kinases (CDK)/cyclin complex, and p21 is known to suppress 
CDK1 activity via a p53-independent pathway. This event 
blocks cell progression into the G2/M phase. Moreover, p21 
can block the progression of cells into the S phase, through 
inhibition of the CDK2 activity. miR-34a is involved in this 
cascade by blocking the progression of cells into the S phase 
through inhibition of the CDK2/4/6 activity (Fig. 3F).

miR-34a inhibits migration and invasion of SW480 cells 
in vitro. To investigate whether miR-34a also plays a role in 
cell migration and invasion, we tested if SW480 cells have the 
potential to digest Matrigel and migrate through the 8-mm 
membrane pores of a Transwell chamber. The Transwell 
tumor cell migration assay demonstrated that the miR-34a 
mimic-treated cells have a significantly reduced migrating 
capacity compared to the control group (p<0.01), and this 
effect was enhanced with the combined treatment miR-34a 
mimic + 5-FU (p<0.05) (Fig. 4A and B). The Transwell tumor 
cell invasion assay also showed that transfection with the 
miR-34a mimic significantly inhibits the invasive capacity 

Figure 4. Migration and invasion of SW480 cells following different treatments. (A) Brightfield microscope images (magnification, x20) of SW480 cells from 
the different treatment groups, and quantified data from the (B)  migration and (C) invasion assays. Data are presented as mean ± SD (n=3), with *p<0.05, 
**p<0.01.
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of SW480 cells (p<0.05). This effect was enhanced with the 
miR-34a mimic + 5-FU combination, compared to 5-FU treat-
ment alone (p<0.05) (Fig. 4A and C).

Discussion

SW480 cells were used as a model to investigate the biological 
function of miR-34a in the context of colorectal cancer. The 
transient overexpression of miR-34a combined with 5-FU 
treatment reduced cell migration and invasion and increased 
apoptosis in these cells. These changes were most probably 
a result of the increased expression of ac-p53 and p21 and 
the decreased expression of SIRT1. These results demonstrate 
that miR-34a regulates the expression of critical proteins 
involved in cell apoptosis, proliferation and the response 
to chemotherapy. Moreover, miR-34a allowed sensitization 
of colon cancer cells to 5-FU, likely acting through the 
p53/SRIT1 pathway.

Typically, miRs are transcribed and processed in the 
nucleus to form pre-miRs. These pre-miRs are then exported 
to the cytoplasm and processed into miR duplexes. One 
strand from the duplex is incorporated into the miR-induced 
silencing complex  (25). The study of miRs is a rapidly 
expanding research field, which includes investigation of their 
roles in tumor- or non-tumor-related diseases. miRs play an 
important role in cell function and fate in both the disease 
and the homeostatic states. These molecules are continuously 
reported as oncogenes or tumor suppressor genes. Not only are 
they detected in virtually every type of tumor, but they also 
display specific profiles in pathologies, which allow assessing-
malignancy and evaluating the potential for metastasis (26). 
Increasing evidence has ascertained that a large number of 
miRs exhibit dysregulated expression in primary cancer speci-
mens compared to tissues from healthy patient populations, 
including miR-21, miR-125b, miR-143, miR-145, miR-10b, 
miR-26a, miR-155 and miR-301 (27,28).

Although the tumor inhibition effect of miR-34a has been 
previously documented, its therapeutic potential on colorectal 
cancer remained unclear to date. Most research studies so far 
have focused on the role of miR-34a as a p53 transcriptional 
target and on its involvement in p53-mediated tumor suppres-
sion processes (29). Reduced or no miR-34a expression has 
been detected in a variety of tumors and cancer cell lines. To 
understand the role of miR-34a in SW480 cells, we tested the 
effects of miR-34a transfection on cell migration and invasion, 
and demonstrated that miR-34a inhibits SW480 cell migration 
and invasion; notably, this inhibition effect is enhanced when 
miR-34a transfection is combined with 5-FU treatment (Fig. 4). 
FACS analysis further showed indicated that miR-34a induces 
SW480 cell apoptosis,an effect again enhanced by 5-FU treat-
ment (Fig. 2). These data overall suggest that miR-34a exerts 
an important antitumor effect on SW480 cells, which is similar 
to results reported in other studies on chronic lymphocytic 
leukemia (30), lung cancer (31), mesothelioma (10), neuroblas-
toma (32), prostate (33) and pancreatic cancer (34,35).

miR-34a induces cell cycle arrest by downregulating 
cell‑cycle-related proteins such as cyclin D1 (CCND1), 
cyclin E2 (CCNE2), CDK4 and CDK6. Our data suggests that 
p53, p21 and miR-34a form a strong interaction network in 
the cell cycle (Fig. 3F). miR-34a has documented roles in the 

increase of acetylated p53 and in modification of p21 expres-
sion through the inhibition of SIRT1 expression. Our study 
confirmed that miR-34a significantly decreases the SIRT1 
protein level, and the levels of ac-p53 and p21 were found 
particularly increased with the combined miR-34a + 5-FU 
treatment (Fig. 4). 5-FU is a pyrimidine antimetabolite cyto-
toxin, which induces DNA and RNA damage, resulting in 
cell death. 5-FU functions in a p53-dependent manner, likely 
causing changes in DNA metabolism and initiating events that 
culminate in the alteration of p53 expression (35). When the 
damaged cells cannot be repaired, p53 triggers cell elimina-
tion by inducing the expression of pro-apoptotic genes such 
as Fas and Bax (36). Interestingly, miR-34a can negatively 
regulate 5-FU resistance in human colorectal cancer DLD-1 
cells by targeting the SIRT1 and E2F3 genes (37).

SIRT1 inactivates p53 by deacetylating a specific lysine 
residue to target it degradation. An increase in the miR-34a 
and a decrease in the SIRT1 levels were observed in leukemic 
cells that had been simultaneously exposed to nicotinamide 
and etoposide (38). miR-34a restoration alone confers drug 
resistance via the SIRT1-NFκB pathway in tumors with p53 
deficiency, which renders the combination of an NF-κB inhibitor 
and miR-34a a promising therapeutic strategy (39). A previous 
study indicated that SIRT1 regulates the expression of several 
antioxidant genes in bovine aortic endothelial cells, including 
MnSOD, Prx3, Prx5, Trx2, TR2, and UCP-2 (40), which may be 
involved in the p53-independent pathway.

In summary, our data has demonstrated, for the first time to 
the best of our knowledge, that miR-34a reduces the migratory 
and invasive ability of SW480 cells, and induces apoptosis 
and cell cycle arrest, in a synergetic manner with 5-FU. As 
previously reported, miR-34a plays an important role as an 
apoptotic mediator, by alleviating drug resistance of colorectal 
cancer cells through the SIRT1/p53 pathway. Our data clearly 
illustrates the therapeutic potential of miR-34a, especially in 
combination with 5-FU, in the treatment of colorectal cancer.
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