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Abstract

Implementing genomic-based prediction models in genomic selection requires an understanding of the measures for evaluating prediction
accuracy from different models and methods using multi-trait data. In this study, we compared prediction accuracy using six large multi-
trait wheat data sets (quality and grain yield). The data were used to predict 1 year (testing) from the previous year (training) to assess pre-
diction accuracy using four different prediction models. The results indicated that the conventional Pearson’s correlation between observed
and predicted values underestimated the true correlation value, whereas the corrected Pearson’s correlation calculated by fitting a bivariate
model was higher than the division of the Pearson’s correlation by the squared root of the heritability across traits, by 2.53–11.46%. Across
the datasets, the corrected Pearson’s correlation was higher than the uncorrected by 5.80–14.01%. Overall, we found that for grain yield
the prediction performance was highest using a multi-trait compared to a single-trait model. The higher the absolute genetic correlation
between traits the greater the benefits of multi-trait models for increasing the genomic-enabled prediction accuracy of traits.
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Introduction
Wheat is one of the most important cultivated crops in the world
and is a major source of energy and protein in the human diet. It
is used to produce a diversity of foods with specific end-use
requirements including protein quantity, quality, and kernel
hardness (Pe~na et al. 2002). Wheat consumption has grown con-
tinuously, leading to a gradual increase in the industrial produc-
tion of wheat-based foods (Shewry et al. 2003; Shewry and Hey
2015) with strict and uniform quality requirements for process-
ing.

Genomic prediction (GP) uses the phenotypic and genotypic
data of a training population to predict the phenotypic values of
a test population that has only been genotyped. In the context of
wheat breeding, a major objective is selection of lines with high
grain yield performance and good grain quality. Initial breeding
cycles select on grain yield performance, while quality traits are
improved in later stages due to the scale of seed requirements
and the financial and time cost of quality assessments. GP could
improve selection accuracy in both early and later breeding
stages by improving the overall grain yield of lines in the first
stage and considerably reducing the cost of the screening process
in the second multi-trait selection stage (Ibba et al. 2020).

Considerable research has been done in recent years to improve
the prediction accuracy of GP models aimed at developing single-
trait models and, more recently, multi-trait models (e.g., multivari-
ate analyses). Single-trait models are trained to predict the value of
a single continuous (or categorical) phenotype in a testing data set,
while multi-trait models are trained to predict two or more traits si-
multaneously. The extension from single-trait to multi-trait linear
mixed models that estimate and use trait correlations to calculate
best linear unbiased predictions (BLUPs) of genetic value is well
established (Henderson and Quaas 1976). In general, multi-trait
models represent complex relationships between traits more effi-
ciently as they not only exploit correlations between lines, but also
correlations between traits. The genetic correlation between traits
is the basis for the benefit of a multivariate analysis for GP as the
higher the absolute genetic correlation between traits, the greater
the benefit of the multivariate analysis. Parameter estimates have
greater precision accounting for the genetic (and residual) correla-
tion between traits and environments under study (Montesinos-
López et al. 2016, 2019a,b). In addition, multi-trait models can im-
prove indirect selection, since they increase the precision of genetic
correlation parameter estimates between traits (Montesinos-López
et al. 2016, 2018a,b).
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The wheat multi-trait quality information produced in each
breeding cycle can be used to develop GP models that may help
reduce the number of lines for quality trait analyses. Battenfield
et al. (2016) showed that for quality traits in wheat, a higher pre-
diction accuracy was obtained when the size of the training pop-
ulation increased over years. Ibba et al. (2020) have shown
moderate to high genomic-enabled prediction performance of
wheat quality traits in consecutive years.

Assessing the effectiveness of genomic-enabled prediction
should measure how accurate the prediction of the genetic val-
ues (ĝ) is in comparison with the true unknown and unobservable
genetic value (g). The predictive ability [the correlation between
the observed phenotypic value, y, and genomic estimate breeding
value GEBV (ĝÞ� of the different GP models is usually used
(Dekkers 2007). Different random cross-validations (CVs)
schemes are proposed to measure these predictive abilities for
single-trait analyses. Burgue~no et al. (2012) and Jarquı́n et al.
(2014) studied the prediction ability of genotype and genotype �
environment interaction (G�E) for single-trait models using two
random CV schemes, one that evaluated the prediction of a pro-
portion of lines unobserved in all the environments (CV1), and
another that evaluated the predictions of lines observed in some
environments but not in others (CV2).

However, since true breeding value (g) is unknown, the
Pearson’s correlation between the observed phenotypic value, y,
and the genomic estimate breeding value GEBV, ĝ; overestimates
the true prediction accuracy. An estimate of the true accuracy
can be obtained by dividing the correlation of ĝ and y by

ffiffiffiffiffi
h2
p

(where h2 is the heritability of the trait). This correction of
Pearson’s correlation attempts to account for the unknown value
of g and works well if the estimates of variance components are
reasonable and precise. However, accuracy in the estimation of
heritability is of paramount importance, since it might cause arti-
ficial increases or decreases in the reported prediction accuracy
of genomic-enabled predictions, and this could have implications
for the evaluation of multi-trait GP models. Other criteria com-
monly used to select the best predictive models are the mean
squared error prediction (MSEP) and the mean arctangent abso-
lute percentage error (MAAPE) (Ibba et al. 2020), which also have
the same problem as the Pearson’s correlation when used to eval-
uate the performance (prediction accuracy) of the true genetic,
because they also are based on the observed phenotypic values.

As an alternative to correcting the Pearson’s correlation byffiffiffiffiffi
h2
p

, Runcie and Cheng (2019) derived additional methods to pre-
correct the correlation between the observed and predictive val-
ues. The aim was to predict the performance of one trait using in-
formation from other traits in other individuals, similar to the
CV2 case described above. They observed that there is bias in
estimates of GP accuracy when there is an exchange of nonge-
netic information between traits (or environments or individuals)
through the model; this only happens in random CV2 and
depends on the covariance parameters between traits.
Intuitively, there is dependency on the predictions of the same
individuals with secondary traits and, in general, the observa-
tions are not independent, as they have a covariance structure
intra-traits and between traits. The Runcie and Cheng (2019)
results are promising and the authors concluded that precau-
tions must be taken when CV schemes are applied to multi-trait
predictions to avoid biased results when secondary traits are
used to predict primary traits.

Ibba et al. (2020) pointed out that Bayesian multi-trait multi-
environment (BMTME; Montesinos-López et al. 2016, 2019b,c,d)
analysis of multi-trait multi-environment data was useful to

select wheat lines for quality traits. These used data from the
International Maize and Wheat Improvement Center (CIMMYT)
spring wheat breeding program in which 1400 preliminary yield
trial (YT) entries are characterized for several quality traits and
�600 lines are advanced to the next cycle based on yield and
quality traits. The study included only wheat quality traits mea-
sured in the second stage of testing, with first stage testing done
based on single-trait grain yield.

Despite the promise of multi-trait GP, there is a need to evalu-
ate different CV methods to ensure models and methods are ac-
curately and efficiently compared (Runcie and Cheng 2019). In
this study, the main objective was to compare the estimates of
GP accuracy based on four CV methods, the first two based on
the standard Pearson correlation, and the second two based on
the Pearson correlations corrected as described by Runcie and
Cheng (2019). This comparison used data from Ibba et al. (2020),
with the addition of another prediction year (2019–2020). The
original 13 quality traits measured in each of six pairs of years,
plus grain yield, were used. The addition of grain yield to the 13
quality traits is important, as it is the trait measured in the pre-
ceding stage of selection and is therefore expected to improve the
accuracy of prediction.

Materials and methods
Plant material
Spring wheat lines selected for quality and grain yield analyses
from CIMMYT first year yield trials (YT) were used as the training
population to predict the quality of lines selected from elite yield
trials (EYT) for quality and grain yield analyses in a second year.
The analyses were conducted for 14 traits defined in Table 1, un-
less specified differently, and using six sets of data, as reported
below:

• Data 1(2013–2014/2014–2015), 1,301 lines from the 2013–2014
YT and 472 lines from the 2014–2015 EYT trial. In this data
set, traits L (average abscissa) and P (maximum overpressure)
were not measured, meaning that 11 quality traits and 1 grain
yield trait were used.

• Data 2 (2014–2015/2015–2016), 1,337 lines from the 2014–2015
YT and 596 lines from the 2015–2016 EYT trial.

• Data 3 (2015–2016/2016–2017), 1,161 lines from the 2015–2016
YT and 556 lines from the 2016–2017 EYT trial.

• Data 4 (2016–2017/2017–2018), 1,372 lines from the 2016–2017
YT and 567 lines from the 2017–2018 EYT trial.

• Data 5 (2017–2018/2018–2019), 1,386 lines from the 2017–2018
YT and 509 lines from the 2018–2019 EYT trial.

• Data 6 (2018–2019/2019–2020), 1,276 lines from the 2018–2019
YT and 124 lines from the 2019–2020 EYT trial.

Data sets 1–5 are similar to those used by Ibba et al. (2020) but
with the addition of grain yield data. Data set 6 is new quality
and yield data. All quality analyses were performed according to
the methods approved by the AACCI International, or other mod-
ified methods described in Battenfield et al. (2016). The full
names, descriptions and abbreviations of the traits evaluated in
the six data sets are provided in Table 1. Further details of how
each trait was measured can be found in Ibba et al. (2020).

Genotypic data
All the lines were genotyped using genotyping-by-sequencing
(GBS; Poland et al. 2012). The TASSEL v.5 (Trait Analysis by
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Association Evolution and Linkage) GBS pipeline was used to call
marker polymorphisms (Glaubitz et al. 2014), and a minor allele
frequency of 0.01 was used for single nucleotide polymorphism
(SNP) discovery. The resulting 6,075,743 unique tags were aligned
to the wheat genome reference sequence (RefSeq v.1.0) (IWGSC
2018) with an alignment rate of 63.98%. After filtering for SNPs
with homozygosity >80%, P-value for Fisher’s exact test <0.001
and v2 value lower than the critical value of 9.2, we obtained
78,606 GBS markers that passed at least one of those filters.
These markers were further filtered for less than 50% missing
data, greater than a 0.05 minor allele frequency and less than 5%
heterozygosity in all the datasets. Markers with missing data
were imputed using the “expectation-maximization” algorithm in
the “R” package rrBLUP (Endelman 2011).

Genome-based statistical models
If in each environment i ¼ 1; . . . ; I, for each line j ¼ 1; . . . ; J; nT

traits are measured, Yijt, t ¼ 1; . . . ; nT, a multi-trait genomic linear
mixed model is given by

Y ¼ 1lT þ XEbE þ ZLb1 þ ZLEb2 þ e ð1Þ

where Y ¼ YT
1 ; :;Y

T
I

h iT
is the matrix response values of all traits

and all lines in all environments, Yi ¼ Yi1; . . . ;YiJ
� �T,

YT
ij ¼ Yij1; . . . ;YijnT

� �
, l ¼ l1; . . . ; lnTð ÞT is the vector with general

means for the nT traits, XE, is the matrix design of fixed environ-
ment effects (bE), ZL and ZEL are the incident matrix design of ran-
dom lines (b1) and interaction-genotype by environment effects
(b2), respectively, and e is the error term matrix with a matrix
normal distribution MN 0; IIJ;Rð Þ and is assumed independently of
b1 and b2, which have distributions MNJ�nT 0;G;RTÞð and
MNIJ�nT 0; II � G;RTÞð , where II is the identity matrix of dimension
I� I, R and RT are the positively defined matrices of dimension
nT � nT; � the Kronecker product and G is the genomic relation-
ship matrix of dimension J� J and was computed as suggested by
VanRaden (2008).

A Bayesian estimation of this model can be achieved by as-
suming the following priors: f l; vec bEÞð Þ / 1ð , and independent
distributions for the covariance matrices of residuals R and for
RT, RT � IW vT;STð Þ and R � IW vR;SRð Þ, where vec �ð Þ and IW denote
the vectorization operation and the inverse Wishart distribution.
This model was implemented with the Multitrait function in the
BGLR R package version GitHub: https://github.com/gdlc/BGLR-R
(Pérez and de los Campos 2014) that is considered work in

progress where the hyper-parameters for the priors could be
modified in the future.

Derivation of the corrected Pearson’s correlation
If Ytst ¼ lþ gtst þ etst is the phenotypic response of a line in testing
data, then ĝtst is a prediction of the genotypic effect of this same -
line obtained with only the information of training data.
Therefore, because Cov ĝtst; etst

� �
¼ 0; the correlation of the ĝtst

with the phenotypic response can be expressed as

Corðĝtst;YtstÞ ¼
Covðĝtst;YtstÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðĝtstÞVarðYtstÞ
p ¼ Covðĝtst; lþ gtst þ etstÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðĝtstÞVarðYtstÞ
p

¼ Covðĝtst; gtstÞ þ Covðĝtst; etstÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðĝtstÞVarðYtstÞ

p ¼ Covðĝtst; gtstÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðĝtstÞVarðYtstÞ

p
¼ Covðĝtst; gtstÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðĝtstÞVarðgtstÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðgtstÞ
VarðYtstÞ

s
¼ Corðĝtst; gtstÞ

ffiffiffiffiffi
h2
p

where h2 ¼ Var gtstð Þ
Var Ytstð Þ is the heritability.

Motived by the derivation above and from the results that
stated that the sample correlation between the phenotypic val-
ues and the estimated breeding values of lines to be predicted
(testing data) divided by the square-root of heritability,
Cor ĝ; y
� �

=
ffiffiffiffiffi
h2
p

, is an approximate unbiased estimator for the cor-
relation between true and predicted breeding
value Corðĝtst; gtstÞ (Daetwyler et al. 2013; Runcie and Cheng 2019),
h2 was computed using the whole data set, next we described the
way to calculate the different corrected Pearson’s correlation be-
tween observed and predicted values. We study the Runcie and
Cheng (2019) which is referred as PC3 or method 3.

Calculating corrected Pearson correlations (PC)
PC1 (method 1) and PC2 (method 2)
The standard correlation between observed phenotypic values
and the predicted breeding values will be referred as PC1 (method
1, or predictive ability). As described above, this standard correla-
tion between observed phenotypic values and the predicted
breeding values divided by square-root of heritability, will be re-
ferred as PC2 (method 2, or predictive accuracy). Note that PC2 is
a nonparametric estimator of the genetic correlation (correlation
between the unknown true genetic value with the estimate ge-
netic value).

PC3 (method 3)
The calculation of PC3 is based on fitting the following bivariate
genomic model:

Table 1 Traits evaluated in the six data sets

Number Trait abbreviation Name trait Type of trait

1 ALVPL Curve configuration ratio, indicative of the ratio between dough tenacity and extensibility Quality trait
2 ALVW Dough deformation energy, indicative of the overall gluten strength Quality trait
3 FLRPRO Flour protein reported at 14% moisture content Quality trait
4 FLRSDS Sodium dodecyl sulfate sedimentation Quality trait
5 GRNHRD Grain hardness Quality trait
6 GRNPRO Quality trait
7 GY Grain yield in tons per hectare Grain trait
8 LOFVOL Bread loaf volume measured by rapeseed displacement in accordance

with AACC method 10-05.01 (AACC, 2010)
Quality trait

9 MIXTIM Time to peak mixing strength Quality trait
10 MIXTORQ Height at the midline of peak mixing strength Quality trait
11 TESTWT Test weight in kg hL�was measured using a 37.81-mL sample Quality trait
12 TKW 1000-kernel weight in grams Quality trait
13 L Average abscissa, of rupture, indicative of dough extensibility Quality trait
14 P Maximum overpressure, indicative of dough tenacity Quality trait
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Yio
Yip

� �
¼ lo

lp

� �
þ gio

gip

� �
þ eio

eip

� �

where Yio and Yip, i ¼ 1; . . . ; ntst are the observed phenotype val-

ues and their corresponding predicted values (under a multi-trait
or under a single trait model) of a trait of interest, respectively, in

the testing data, g ¼ g1; . . . ; gntstð ÞT � N 0ntst ;G RÞ
�

,

R ¼
r2

go r2
gop

r2
gpo r2

gp

" #
, ei ¼ eio; eipð ÞT � N2 02;Rð Þ and R ¼

r2
eo r2

eop

r2
epo r2

ep

" #
.

Having estimated the parameter of this model, the PC3 is calcu-
lated as:

PC3 ¼
r̂2

gop

r̂2
go þ r̂2

gp

ffiffiffiffiffiffi
ĥ

2

p

r

where ĥ
2
p ¼

r̂2
gp

r̂2
gpþr̂2

ep
is the estimated heritability of the predicted

trait value (Yp) under this auxiliar bivariate model. The PC3 is the
corrected Pearson’s correlation referred as method 3 and is con-
sidered the parametric estimate the correlation between the true
and predicted breeding values ½Corðgtst; ĝtst; Þ].

To obtain the value of PC3 the package MCMCglmm (Hadfield,
2010) will be used by setting the prior for R as list(V ¼ dia-
g(c(.5,.01),2),nu ¼ 3), and the prior for R as list(V ¼ diag(c(.5,.5),2),
nu ¼ 3, alpha.mu ¼ rep(0,2), alpha. V ¼ diag(1,2)). This gave an
approximately uniform distribution on the genetic correlation.
For the residual covariance, we specified r2

eop ¼ 0 by specifying
rcov ¼ �idh(trait):units because there is no nongenetic correla-
tion between Yio and Yip in this experiment. The prior mean for
the r2

epp was set close to 0 because this parameter is expected to
be very small when the predictions Yip are posterior means of a
parameter in the original model with covariance G.

PC4 (method 4)
Because, Cor ĝtst;Ytst

� �
¼ Cor ĝtst; gtst

� � ffiffiffiffiffi
h2
p

, then if an estimate for
Cor ĝtst; gtst
� �

is given, then by multiplying this by
ffiffiffiffiffi
h2
p

, an estimate
for Cor ĝtst;Ytst

� �
is obtained. This uncorrected Pearson’s correla-

tion (PC4) will be denoted as method 4.
In order to evaluate the prediction performance, we compared

PC1 to PC4 along with the mean squared error of prediction
(MSEP) computed between the observed and predicted testing
values in each partition.

Cross-validation strategy
Since each data set contains information for two breeding cycles
(previous and current), the evaluation of the prediction perfor-
mance of model (1) was carried out using a cross-validation strat-
egy that consisted of predicting 90% (testing; current cycle) of
lines with the full information of the previous cycle, plus the
remaining 10% of the current cycle, which allows us to estimate
the environmental effects included in the model. The selection of
10% of current lines for inclusion in the training set was random
and represents a proportion of material which could be rapidly
tested prior to post-harvest selection decisions being finalized.
This random selection was performed with five-fold cross-valida-
tion, resulting in five different values of each metric used, and
from which the average was reported as the prediction perfor-
mance.

Results
Several phenotypic correlations were recorded between the traits
measured for each data set. Table 2 displays the phenotypic

correlations between the traits under study between data sets 1
and 2 with the remaining correlations between datasets given in
Appendix Table A1 (Phenotypic Pearson’s correlation of data sets
3 and 4) and Table A2 (Phenotypic Pearson’s correlation of data
sets 4 and 5).

Differences between predictive performance of
four methods
The average Pearson’s correlation (APC) for all methods across
the 5-testing set configurations are shown in Figures 1–6, for the
6 pairs of years. From this, we observe that in data sets 1, 2, 4 and
5 for all traits method 3 shows the largest values as well as for 10
of the 14 traits in data set 3 and 13 of 14 traits in data set 6. For
the traits where method 3 was not superior, the APC correspond-
ing to method 2 showed the highest values with a similar result
observed across data sets. For traits ALVW, FLRSDS, L, LOFVOL,
MIXTIM, MIXTORQ, P, TESTWT, and TKW in all data sets, method
3 gave the highest values of APC. For traits ALVPL, FLRPRO,
GRNHRD, GRNPRO, and GY in 5 out 6 data sets method 3 also
gave the best performance. Where these traits were missing,
method 2 resulted in better performance.

Taken across all traits, method 3 gave the highest APC. In
each data set, the average APC difference of method 3 compared
to method 2 was 15.07 (data set 1), 7.06 (data set 2), 18.04 (data
set 3), 12.22 (data set 4), 17.35 (data set 5) and 19.62% (data set 6);
in data set 3 the corresponding APC value for trait GRNHRD was
not considered. Therefore, considering traits where method 3
gave the best performance, the difference between method 3 and
the commonly used Pearson’s correction method (method 2)
across all traits ranged from 7.06% to 19.62% (Figure 7).

On a trait basis across all data sets, method 3 estimated a
higher prediction accuracy (in terms of APC) compared to method
2. The average APC of method 3 was larger than the correspond-
ing APC value of method 2 by 15.01, 11.64, 7.39, 11.11, 20.79, 7.18,
6.66, 29.74. 21.93, 10.87, 15.41, 16.08, 15.3, and 16.83% for traits
ALVPL, ALVW, FLRPRO, FLRSDS, GRNHRD, GRNPRO, GY, L,
LOFVOL, MIXTIM, MIXTORQ, P, TESTWT, TKW, respectively
(Figure 8). These results mean that, in general across data sets,
the APC for method 3 is higher than the APC of method 2 by
6.66% to 29.74%. In the cases where the APC of method 3 was ob-
served to be better than APC of method 2, the traits in which the
smaller and larger increase happened were different for each
data set: for data set 1, it was GY and GRNHRD; for data set 1 it
was in traits FLRPRO and TESTWT; for data set 3 FLRSDS and L;
for data set 4, FLRPRO and GRNHRD; for data set 5, GRNPRO and
L; and for data set 6, FLRSDS and LOFVOL.

As previously described, Figures 1–6 also report the APC values
obtained with the “uncorrected” version of the Pearson’s correla-
tion (methods 1 and 4). These were also used to estimate the cor-
relation between the predicted and true breeding values. These
are the corrected versions obtained with methods 2 and 3, respec-
tively, but multiplied by the square root of the heritability, and
therefore no further comparisons are made between the uncor-
rected versions of methods 1 and 4.

However, it is interesting to compare the relative differences
in terms of prediction performance for APC under the corrected
and not corrected versions (e.g., method 1 vs method 2; method 3
vs method 4). Because the APC of methods 1 and 4 can be
obtained by multiplying by the square root of the heritability by
the APC of methods 2 and 3, then the APC of methods 1 and 4 will
not be superior to the APC of methods 2 and 3, respectively, and
in general, the relative difference is equal to 1=

ffiffiffiffiffi
h2
p

� 1. In Figure
9, across traits we observe the difference in predictions for each
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data set of method 3 (method 2) with regard to the method 4
(method 1), where the smallest difference was observed to be
6.74% (data set 5) and the largest was 9.27% (data set 6). In turn,
Figure 10 shows, for each trait across environments, the relative
differences between method 3 (method 2) and method 4 (method
1), where we observe that the smallest difference was 3.66% (trait
MIXTORQ), whilst the largest was of 18.31% for GY.

Multi-trait genomic models outperform single-
trait models
In order to compare predictive performance, the multi-trait
model (1) was trained using the 14 traits in all six data sets (ex-
cept for data set 1 which only contained 12 traits). In the testing
set, it was assumed that all traits were missing and should be
predicted. In the single-trait model, we trained the model with
grain yield and the predictive performance of the test set was
compared with the predictive performance for yield from the
multi-trait model. In both multi-trait and single-trait models, the
same predictors were used. Table 3 shows the resulting predic-
tion performance with both models, including the APC under the

four methods described previously and the average mean square
error of prediction (MSEP) for both models.

This shows that across data sets and methods, the multi-trait
model outperformed the single-trait model in the prediction of
grain yield. The only exception is the first data set, where the
single-trait model was better with methods 1, 3, and 4. The
multi-trait model also gave better MSEP than the single-trait
model in 4 of the data sets, while in the first and last data sets
the single-trait model was better. For APC under method 1 the
smallest and largest gains of the multi-trait model were observed
in data sets 6 and 2, with 3.70% and 26.09%, respectively. Under
method 2, the smallest and largest gains of the multivariate were
1.08% (data set 1) and 41.51% (data set 2), respectively. With
method 3, 11.24 (data set 6) and 28.54% (data set 3), and with
method 4, the smallest gain was obtained in data 4 (5.34%), while
the largest gain in data set 3 (19.14%).

Likewise, Table 3 shows that the multivariate model gives bet-
ter performance in terms of MSEP for all data sets except in data
set 1 and 6; the average of this difference across the data sets
where the multi-trait model was superior is 3.73%. For MSEP, the
lowest and highest improvements were observed in data set 3

Table 2 Raw phenotypic sample correlation matrix between traits based on all information of data set 1 (values in upper triangular
table) and data set 2 (values in lower triangular table)

TESTWT TKW GRNHRD GRNPRO FLRPRO FLRSDS MIXTIM MIXTORQ ALVW ALVPL LOFVOL L P GY

TESTWT 1.00 0.25 �0.32 0.01 0.02 0.00 �0.17 �0.15 �0.05 0.14 0.06 — — 0.35
TKW 0.36 1.00 �0.27 �0.06 �0.04 0.00 �0.22 �0.21 �0.12 0.14 �0.06 — — 0.25
GRNHRD �0.60 �0.43 1.00 0.01 �0.03 0.09 0.11 0.10 �0.01 �0.33 0.06 — — �0.34
GRNPRO �0.02 0.03 �0.10 1.00 0.90 0.34 �0.01 0.05 0.21 �0.23 0.55 — — �0.17
FLRPRO �0.14 �0.06 0.00 0.92 1.00 0.39 �0.01 0.05 0.24 �0.20 0.59 — — �0.15
FLRSDS 0.14 0.09 �0.24 0.43 0.40 1.00 0.36 0.40 0.56 �0.06 0.52 — — 0.03
MIXTIM �0.10 �0.19 0.01 �0.05 �0.02 0.38 1.00 0.98 0.84 0.19 0.18 — — �0.28
MIXTORQ �0.02 �0.12 �0.08 0.03 0.05 0.48 0.97 1.00 0.88 0.20 0.23 — — �0.31
ALVW 0.13 0.02 �0.26 0.23 0.21 0.64 0.80 0.88 1.00 0.26 0.38 — — �0.17
ALVPL 0.45 0.35 �0.56 �0.13 �0.21 0.12 0.16 0.26 0.39 1.00 �0.34 — — 0.23
LOFVOL �0.30 �0.26 0.20 0.49 0.54 0.51 0.34 0.36 0.39 �0.38 1.00 — — �0.02
L �0.36 �0.30 0.39 0.31 0.38 0.28 0.20 0.16 0.13 �0.75 0.65 — — —
P 0.44 0.30 �0.57 0.01 �0.07 0.40 0.43 0.54 0.73 0.88 �0.11 �0.49 1.00 —
GY 0.54 0.33 �0.51 �0.14 �0.28 0.08 �0.10 �0.07 0.07 0.44 �0.31 �0.37 0.40 1.00

The corresponding values for traits L and P in data set 1 are missing.

Figure 1 Data 1 (2013–2014/2014–2015). Average Pearson’s correlation (Cor) computed with four methods. Method 1 (M1): Pearson’s correlation between
observed phenotypic values and predicted breeding values. Method 2 (M2): Pearson’s correlation computed dividing method 1 by the square-root of the
heritability. Method 3 (M3): Corrected Pearson’s correlation proposed by Runcie and Cheng (2019). Method 4 (M4): Pearson’s correlation computed
multiplying method 3 by

ffiffiffiffiffi
h2
p

:½AQ9�
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(2.12%) and 5 (4.88%). Furthermore, the relative difference of
MSEP with the single-trait model with regard to the multivariate
model in data set 1 was of 3.11%, and in data set 6 this difference
was 0.70%. Across all metrics, the prediction of GY improved
moderately when using the multi-trait genomic model when
compared to the single-trait model.

Finally, we compared the relative difference in terms of pre-
diction performance between method 1 and method 2 or between
method 3 and method 4, for which the relative difference is

1ffiffiffiffi
h2
p � 1. For the multi-trait results, method 2 (method 3) was supe-
rior to method 1 (method 4) by 11.10, 22.56, 14.79, 26.72, 17.98,
and 16.67% for data sets 1, 2, 3, 4, 5, and 6, respectively, and
across data sets at an average of 18.31%. Under the single-trait
model, method 2 (method 3) was superior to method 1 (method 4)

by 5.5, 9.22, 6.37, 9.47, 6.86, and 10.73% for data sets 1, 2, 3, 4, 5, 6,
respectively, and on average 8.02% across data sets.

Discussion
Despite the benefit of performing multi-trait analyses, multi-trait
models are computationally intensive and complex. Varying trait
response patterns also create very complex genotype � environ-
ment interactions (G�E). Multi-trait models could also increase
convergence problems when fitted with classical methods (like
maximum likelihood or restricted maximum likelihood;
Montesinos-López et al. 2019c).

Two main factors affecting the efficiency of GP are the pheno-
type heritabilities and the choice of the training population in

Figure 2 Data 2 (2014–2015/2015–2016). Average Pearson’s correlation (Cor) computed with four methods. Method 1 (M1): Pearson’s correlation between
observed phenotypic values and predicted breeding values. Method 2 (M2): Pearson’s correlation computed dividing method 1 by the square-root of the
heritability. Method 3 (M3): Corrected Pearson’s correlation proposed by Runcie and Cheng (2019). Method 4 (M4): Pearson’s correlation computed
multiplying method 3 by

ffiffiffiffiffi
h2
p

:

Figure 3 Data 3 (2015–2016/2016–2017). Average Pearson’s correlation (Cor) computed with four methods. Method 1 (M1): Pearson’s correlation between
observed phenotypic values and predicted breeding values. Method 2 (M2): Pearson’s correlation computed dividing method 1 by the square-root of the
heritability. Method 3 (M3): Corrected Pearson’s correlation proposed by Runcie and Cheng (2019). Method 4 (M4): Pearson’s correlation computed
multiplying method 3 by

ffiffiffiffiffi
h2
p

:
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relation to the test population (Crossa et al. 2017). Wheat quality
traits mostly exhibit moderate to high narrow-sense heritability
(h2) values (Ibba et al. 2020). Battenfield et al. (2016) showed that
in wheat, a higher prediction accuracy was obtained when in-
creasing the size of the training population over years from 250
to 4095 wheat lines. However, obtaining a large training popula-
tion for multi-trait wheat quality traits is expensive, therefore,
the wheat multi-trait quality information produced each breed-
ing cycle can be used to develop GP models that may help reduce
the number of lines for quality trait analyses. This would reduce
the cost of wheat quality analyses by discarding lines predicted
to have undesirable quality traits and keep only the lines that are
promising for their processing traits. For example, Ibba et al.

(2020) evaluated the prediction performance of two multi-trait
models for 13 wheat quality traits using five data sets from lines
evaluated in the field during two consecutive years. Lines in the
second year (testing) were predicted using the quality informa-
tion obtained in the first year (training) and showed moderate to
high prediction accuracies for most of the quality traits.

Since genomic selection is a predictive methodology, it is there-
fore crucial to adequately select: the model (Bayesian or
nonBayesian, linear or nonlinear, single- or multi-trait, and so on.),
the training set, and the traits of interest. Each of these elements
contributes in different ways to successful implementation of GS
and is assessed subsequently in terms of metrics to evaluate predic-
tive performance (MSEP, Pearson’s correlation, MAAPE).

Figure 4 Data 4 (2016–2017/2017–2018). Average Pearson’s correlation (Cor) computed with four methods. Method 1 (M1): Pearson’s correlation between
observed phenotypic values and predicted breeding values. Method 2 (M2): Pearson’s correlation computed dividing method 1 by the square-root of the
heritability. Method 3 (M3): Corrected Pearson’s correlation proposed by Runcie and Cheng (2019). Method 4 (M4): Pearson’s correlation computed
multiplying method 3 by

ffiffiffiffiffi
h2
p

:

Figure 5 Data 5 (2017–2018/2018–2019). Average Pearson’s correlation (Cor) computed with four methods. Method 1 (M1): Pearson’s correlation between
observed phenotypic values and predicted breeding values. Method 2 (M2): Pearson’s correlation computed dividing method 1 by the square-root of the
heritability. Method 3 (M3): Corrected Pearson’s correlation proposed by Runcie and Cheng (2019). Method 4 (M4): Pearson’s correlation computed
multiplying method 3 by

ffiffiffiffiffi
h2
p

:
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The two most popular metrics for assessing predictive perfor-
mance are the Pearson’s correlation and the correlation divided
by the square root of the heritability. However, empirical re-
search shows that the computation of both metrics underesti-
mates the true correlation between the estimated breeding
values and the observed phenotype. For this reason, using real
data sets, we illustrated the calculation of the corrected
Pearson’s correlation, and compared it with the conventional
Pearson’s correlation (Daetwyler et al. 2008).

We observed that the conventional Pearson’s correlation
underestimates the value of the true correlation and is very con-
servative regarding the true genetic correlation. When comparing
the predictive performance between methods, method 4 underes-
timated the accuracy because the relative difference between
these methods is equal to 1=

ffiffiffiffiffi
h2
p

� 1. Method 2 and 3 are reason-
able estimates of the prediction accuracy of genetic values

represented by Corðgtst; ĝtst; Þ and are considerably higher than
method 1 which seems to clearly underestimate Corðgtst; ĝtstÞ.
Although the mathematical derivation of method 3 is reasonable
and current results of data used in this study suggest higher pre-
diction accuracy than method 2, we propose that further investi-
gations by means of computer simulations are required to model
different heritability’s and distribution of markers along with phe-
notypic effects. This will further clarify the role of method 3 for es-
timating the prediction accuracy of the correlation between the
true and estimated genetic value. More empirical, simulation and
analytical studies are necessary for deriving the expected values of
each method for computing the correlation, the precision of corre-
lation estimates and the degree of unbiasedness of each method.

Taken together our result indicate that the accuracy of GP
should be reported with the corrected Pearson’s correlation of
method 3, as proposed by Runcie and Cheng (2019). This

Figure 6 Data 6 (2018–2019/2019–2020). Average Pearson’s correlation (Cor) computed with four methods. Method 1 (M1): Pearson’s correlation between
observed phenotypic values and predicted breeding values. Method 2 (M2): Pearson’s correlation computed dividing method 1 by the square-root of the
heritability. Method 3 (M3): Corrected Pearson’s correlation proposed by Runcie and Cheng (2019). Method 4 (M4): Pearson’s correlation computed
multiplying method 3 by

ffiffiffiffiffi
h2
p

:

Figure 7 Percentage of relative differences between the average Pearson’s correlation (%APC) of method 3 with regard to the APC of method 2, across
traits where the former resulted in larger APC values, for each data set (data 1–6). For the data set 1, 2, 4, and 5 in all traits the APC value of method 3
was larger than APC of method 2, and also this happened in 10 and 13 out 14 traits, for data sets 3 and 6, respectively.
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method calculates the genetic correlation between the pre-
dicted breeding value and true breeding value by fitting a bivar-
iate model in which the phenotypic values correspond to one
trait and its corresponding predicted breeding values corre-
sponds to the second trait. This corrects the underestimation
obtained when the commonly used correction method of the
standard Pearson’s is applied (method 2).

We also found that a multi-trait model outperforms a single-
trait model in the prediction of grain yield [range of difference be-
tween 1.08 and 41.48% (Pearson’s correlation), and between 2.12
and 4.88 in terms of MSEP]. These results agree with previous
reports showing that multi-trait models outperform the predic-
tions of single-trait models (Montesinos-López et al. 2016, 2018b,
2019a,c; Schulthess et al. 2018) when the correlation between
traits is moderate or high.

Conclusions
Overall, our results suggest that the Runcie and Cheng (2019) cor-
rection method should be applied to the assessment of predictive
performance and that the use of multiple traits from different
stages of a breeding program can be incorporated in a multi-trait
model to improve predictions. This has implications for the use
of multi-trait data for genomic-assisted improvement in wheat
breeding programs.
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p � 1 for data 1–6.
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Table 3 Average Pearson’s correlation (APC) for the four methods, method 1 (M1), method 2 (M2), method 3 (M3), and method 4 (M4),
calculated as metrics for prediction performance for each data set, all metrics calculated under the model (1) (multi-trait) and under a
univariate genomic model with the same predictors as model given in equation (1) and GY as response (single-trait)

Multi-trait Single-trait

M1 M2 M3 M4 M1 M2 M3 M4
Data APC (SD) APC (SD) APC (SD) APC (SD) MSEP (SD) APC (SD) APC (SD) APC (SD) APC (SD) MSEP (SD)

1 0.5376
(0.0177)

0.5973
(0.0197)

0.628
(0.0473)

0.5652
(0.0426)

0.1354
(0.0056)

0.5600
(0.0144)

0.5908
(0.0152)

0.6395
(0.0361)

0.6062
(0.0343)

0.1313
(0.0026)

2 0.3307
(0.0212)

0.4053
(0.026)

0.4363
(0.017)

0.356
(0.0139)

0.1335
(0.004)

0.2623
(0.0343)

0.2865
(0.0375)

0.3425
(0.0634)

0.3136
(0.058)

0.1391
(0.0061)

3 0.3691
(0.0305)

0.4236
(0.035)

0.2999
(0.0263)

0.2613
(0.0229)

0.2303
(0.0037)

0.3421
(0.0563)

0.3639
(0.0599)

0.2333
(0.0502)

0.2193
(0.0472)

0.2352
(0.0066)

4 0.3315
(0.0228)

0.4202
(0.0289)

0.4663
(0.0362)

0.3679
(0.0286)

0.1581
(0.0116)

0.283
(0.0282)

0.3097
(0.0308)

0.3822
(0.0918)

0.3492
(0.0839)

0.1639
(0.0172)

5 0.4589
(0.0352)

0.5414
(0.0415)

0.5827
(0.0513)

0.4939
(0.0434)

0.2065
(0.0158)

0.398
(0.0479)

0.4253
(0.0512)

0.4699
(0.0351)

0.4398
(0.0328)

0.2165
(0.02)

6 0.3209
(0.0289)

0.3743
(0.0337)

0.3814
(0.0499)

0.327
(0.0428)

0.1246
(0.0079)

0.3094
(0.0436)

0.3425
(0.0482)

0.3429
(0.0757)

0.3097
(0.0684)

0.1237
(0.0089)

MSEP is the average mean square error of prediction. Its standard deviation across the five partition is given is in parenthesis (SD).
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Montesinos-López JC, Salas-Gutiérrez, et al. 2019c. A Bayesian ge-

nomic multi-output regressor stacking model for predicting

multi-trait multi-environment plant breeding data. G3

(Bethesda). 9:3381–3393. doi:10.1534/g3.119.400336

Pe~na RJ, Trethowan R, Pfeiffer WH, van Ginkel M. 2002. Quality im-

provement in wheat. Compositional, genetic, and environmental

factors. In: AS Basra and LS Randhawa, editors. Quality

Improvement in Field Crops. New York: Food Product Press. doi:

10.1300/J144v05n01_02
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Appendix A. Phenotypic Pearson’s correlation of data sets 3–6.

Table A2 Raw phenotypic sample correlation matrix between traits based on all information from data set 5 (values in upper triangular
table) and data set 6 (values in lower triangular table)

TESTWT TKW GRNHRD GRNPRO FLRPRO FLRSDS MIXTIM MIXTORQ ALVW ALVPL LOFVOL L P GY

TESTWT 1.00 �0.02 0.07 0.07 0.08 �0.04 �0.02 0.00 �0.01 0.01 �0.01 �0.04 0.01 �0.10
TKW 0.01 1.00 �0.37 0.03 0.04 �0.18 �0.24 �0.22 �0.23 �0.07 �0.21 �0.07 �0.17 0.03
GRNHRD �0.01 �0.57 1.00 0.04 0.10 0.16 0.27 0.31 0.32 0.36 0.01 �0.20 0.43 �0.07
GRNPRO 0.02 0.06 0.02 1.00 0.84 0.43 �0.13 �0.01 0.26 �0.11 0.42 0.28 0.09 �0.09
FLRPRO 0.08 0.09 0.00 0.92 1.00 0.49 �0.09 0.01 0.27 �0.12 0.49 0.32 0.08 �0.15
FLRSDS �0.08 �0.20 0.19 0.47 0.50 1.00 0.42 0.50 0.68 0.06 0.63 0.39 0.43 0.02
MIXTIM �0.04 �0.21 0.17 �0.08 �0.06 0.45 1.00 0.97 0.79 0.31 0.32 0.13 0.64 0.05
MIXTORQ �0.05 �0.19 0.19 0.04 0.06 0.53 0.97 1.00 0.86 0.37 0.35 0.11 0.73 0.04
ALVW �0.05 �0.20 0.21 0.25 0.30 0.68 0.83 0.89 1.00 0.36 0.49 0.21 0.81 0.01
ALVPL 0.01 �0.11 0.32 — �0.03 0.13 0.27 0.32 0.34 1.00 �0.25 �0.75 0.82 0.05
LOFVOL �0.05 �0.20 0.03 0.33 0.39 0.67 0.31 0.34 0.48 �0.13 1.00 0.61 0.14 �0.09
L �0.06 �0.02 �0.22 0.20 0.25 0.34 0.19 0.17 0.25 �0.71 0.51 1.00 �0.34 �0.07
P �0.02 �0.18 0.35 0.15 0.17 0.49 0.62 0.70 0.79 0.82 0.20 �0.31 1.00 0.04
GY �0.23 �0.02 �0.01 0.17 0.04 0.10 �0.07 0.00 �0.04 0.05 0.00 �0.08 0.01 1.00

Table A1 Raw phenotypic sample correlation matrix between traits based on all information from data set 3 (values in upper triangular
table) and data set 4 (values in lower triangular table)

TESTWT TKW GRNHRD GRNPRO FLRPRO FLRSDS MIXTIM MIXTORQ ALVW ALVPL LOFVOL L P GY

TESTWT 1.00 0.07 �0.78 �0.23 0.13 0.27 �0.20 �0.20 �0.01 �0.08 0.16 0.11 �0.06 0.64
TKW 0.04 1.00 �0.12 0.02 0.04 �0.06 �0.10 �0.09 �0.06 0.06 �0.11 �0.08 0.02 0.03
GRNHRD 0.05 �0.51 1.00 0.34 �0.09 �0.37 0.19 0.19 �0.04 0.09 �0.21 �0.15 0.05 �0.75
GRNPRO 0.08 0.13 0.02 1.00 0.86 0.25 0.08 0.18 0.30 �0.04 0.42 0.22 0.14 �0.41
FLRPRO 0.12 0.17 �0.08 0.93 1.00 0.48 �0.02 0.09 0.34 �0.09 0.57 0.33 0.13 �0.06
FLRSDS �0.01 0.02 �0.05 0.35 0.43 1.00 0.28 0.35 0.57 �0.09 0.65 0.47 0.25 0.27
MIXTIM �0.07 �0.17 0.19 �0.17 �0.23 0.35 1.00 0.96 0.78 0.27 0.23 0.13 0.57 �0.21
MIXTORQ �0.04 �0.13 0.18 �0.07 �0.10 0.45 0.97 1.00 0.86 0.33 0.28 0.12 0.66 �0.23
ALVW �0.02 �0.09 0.17 0.16 0.15 0.61 0.82 0.89 1.00 0.38 0.45 0.17 0.78 �0.08
ALVPL 0.09 0.02 0.23 �0.01 0.00 0.05 0.15 0.21 0.27 1.00 �0.33 �0.77 0.85 �0.12
LOFVOL �0.06 �0.08 �0.06 0.47 0.46 0.58 0.29 0.35 0.48 �0.21 1.00 0.68 0.03 0.08
L �0.14 �0.05 �0.19 0.16 0.14 0.35 0.25 0.24 0.26 �0.76 0.54 1.00 �0.42 0.09
P 0.06 �0.03 0.24 0.09 0.09 0.43 0.58 0.67 0.78 0.77 0.16 �0.33 1.00 �0.13
GY �0.03 �0.10 0.11 �0.23 �0.27 �0.04 0.11 0.08 0.01 0.05 �0.09 �0.05 0.03 1.00
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