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This study compared the clinical functionality of BrainSCAN (BrainLAB) and

Helios (Eclipse, Varian) for intensity-modulated radiation therapy (IMRT) treat-

ment planning with the aim of identifying practical and technical issues. The study

considered implementation and commissioning, dose optimization, and plan as-

sessment. Both systems were commissioned for the same 6 MV photon beam

equipped with a high-resolution multileaf collimator (Varian Millennium 120 leaf).

The software was applied to three test plans having identical imaging and contour

data. Analysis considered 3D axial dose distributions, dose-volume histograms,

and monitor unit calculations. Each system requires somewhat different input data

to characterize the beam prior to use, so the same data cannot be used for commis-

sioning. In addition, whereas measured beam data was entered directly into Helios

with minimal data processing, the BrainSCAN system required configured beam

data to be sent to BrainLAB before clinical use. One key difference with respect to

system commissioning was that BrainSCAN required high resolution data, which

necessitated the use of detectors with small active volumes. This difference was

found to impact on the ability of the systems to accurately calculate dose for highly

modulated fields, with BrainSCAN being more successful than Helios. In terms of

functionality, the BrainSCAN system uses a dynamically penalized likelihood in-

verse planning algorithm and calculates four plans at once with various relative

weighting of the planning target and organ-at-risk volumes. Helios uses a gradient

algorithm that allows the user to make changes to some of the input parameters

during optimization. An analysis of the dosimetry output shows that, although the

systems are different in many respects, they are each capable of producing sub-

stantially equivalent dose plans in terms of target coverage and normal tissue sparing.
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I. INTRODUCTION

Over the past 10 years, intensity-modulated radiation therapy (IMRT) has been the subject of

considerable research and development effort. Originally restricted to larger academic centers,

IMRT is now being implemented in many centers worldwide. In spite of its potential to im-

prove target coverage and normal tissue sparing, implementation and commissioning of IMRT

remain labor-intensive, and the choice of planning system is a crucial component that may, in

some circumstances, substantially impact the time and effort required.
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Traditional radiation therapy planning is a manual, iterative, forward process where fields

are placed, beam modifiers are inserted, and modifications are made after manual inspection of

the dose distribution calculated after each iteration. In contrast, IMRT planning is an inverse

process where the required dose distribution over the target and surrounding structures is speci-

fied, and an optimization algorithm calculates a 2D intensity pattern (fluence map) for each

field to achieve that specification. Most inverse planning algorithms use iterative methods in

which thousands of beam profiles are generated and evaluated before arriving at a solution that

satisfies the input criteria.(1) For each arrangement, a single value cost function, usually de-

fined in terms of irradiation of normal tissue and loss of dose homogeneity over the target, is

assessed. At each iteration, the algorithm attempts to reduce this cost function to a minimum. A

number of approaches have been developed to define and efficiently minimize cost functions

for inverse treatment planning.(2–6)

The degree of success achieved by the optimization process is largely dependent on the cost

function used by the algorithm (which in turn depends on the structures defined by the user)

and the algorithm used for minimization. While several studies have been carried out to evalu-

ate the various optimization algorithms available,(7–9) two recent studies have compared

commercial IMRT planning systems. A study by Fogliata et al.(10) compared the inverse plan-

ning algorithms used by three commercial systems. While thorough in its analysis of dosimetric

outcome, this study excluded all user considerations such as user interfaces, optimization effi-

ciency, and plan design and evaluation tools. A study by Mayo and Urie (11) proposes the use of

a systematic benchmark method for comparison and presents results of two commercial sys-

tems using two different multileaf collimator (MLC)/beam combinations applied to a carefully

designed phantom. Our center has two planning systems capable of inverse planning and will

shortly be implementing IMRT for treatments of the head and neck region. This study was

undertaken to survey the differences between the two systems in terms of user interface and

functionality. Both systems were commissioned for the same MLC/beam combination and

were applied to three typical patient CT image data sets.

II. METHOD

This investigation assessed the BrainSCAN v5.2 (BrainLAB AG, Germany) and Helios (Eclipse

v7.1.31, Varian Medical Systems Inc., USA) IMRT planning systems. The BrainSCAN treat-

ment-planning system includes both the inverse IMRT planning software and the forward

planning software, whereas Helios represents only the inverse IMRT planning software com-

ponent of the Eclipse forward treatment-planning system. The optimization algorithm employed

by BrainSCAN is the dynamically penalized likelihood method,(3) while Helios uses a gradient

method.(5) Using a 6 MV beam (CL21EX, Varian Medical Systems Inc., USA) equipped with

a high-resolution multileaf collimator (Millennium 120 leaf, Varian Medical Systems Inc.,

USA), these systems were compared in terms of commissioning and implementation, system

functionality, and quality of final output plans.

A. Implementation and commissioning
Both planning systems required specific beam commissioning data before use. A summary of

the data required is displayed in Table 1. Differences in the measurement resolutions required

by each system necessitated the use of different detector types. Specifically, BrainSCAN’s

requirement for high-resolution percentage depth dose (PDD), relative dose factor (RDF), and

transverse and radial profile measurements was fulfilled by using detectors with small active

volumes. These measurements were performed using an NAC009 miniature thimble ion cham-

ber with an ionization volume of 0.007 cm3 (2 mm central electrode, 6.3 mm outside diameter,
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3 mm length) as well as diode detectors. All other measurements were acquired using an IC10

ionization chamber (Scanditronix Wellhofer AG, Germany) with an ionization volume of 0.13

cm3.

Table 1. Commissioning beam data requirements

Following beam commissioning, the output of each system was validated using both 2D

film dosimetry and point checks using standard ionization chambers. These validation mea-

surements were performed using IMRT treatment plans for a sample prostate case. Both systems

were used independently to create five-field IMRT plans for this sample case. Field-by-field

distributions as well as composite distributions were verified using absolute film dosimetry

and ionization chamber point checks in low dose gradient regions.

Film dosimetry measurements were carried out using Kodak EDR2 film (Eastman Kodak

Inc., USA) placed perpendicular to the beam central axis at 5 cm depth in a light-tight Solid

Water cassette (Gammex RMI Inc., USA). This cassette consists of two 2 cm-thick solid water

slabs sealed along three edges with nylon screws and a rubber O-ring. To minimize the occur-

rence of air gaps, the film was removed from its envelope and paper liner and inserted into the

cassette under safelight. Film calibration was performed using PDD measurements on the same

phantom with the film parallel to the beam central axis. These PDD measurements were deliv-

ered at a source-to-surface distance of 98.5 cm with a 5 cm × 5 cm field size in order to

minimize the effects of low energy scattered photons on the film response.(12) All films were

digitized using a VIDAR VXR-16 Dosimetry Pro film scanner (Vidar Systems Corp., USA),

and conversion to absolute dose was performed using previously verified in-house film dosim-

etry software.(13)

Comparisons with respect to commissioning and implementation were based on complexity

and time required for beam data acquisition, processing of this data, and compilation of the

data file necessary for input into the planning software.

B. Effects of commissioning data resolution
The differences in the spatial resolution of the commissioning data requested by both systems

prompted an investigation into the effect of these differences on system output. This investiga-

tion was carried out using a method similar to that used in a study by Arnfield et al.,(14) which

explored the use of high-resolution film dosimetry to improve IMRT dose calculations. In this

study, also using Varian’s Eclipse treatment-planning system, Arnfield et al. showed that com-
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missioning data acquired using standard methods, in this case a standard ionization chamber

with a volume of 0.13 cm3, can lead to inaccuracies of up to 20% for IMRT fields with high-

resolution characteristics. In order to compare BrainSCAN and Helios in this respect, the

calculated dose distributions from both systems for an IMRT field with high spatial frequency

characteristics were compared with the measured dose distribution for this field acquired using

absolute film dosimetry.

The comparison was made possible by the ability of the Eclipse treatment-planning system

to import dynamic MLC files. As a result of this functionality, a high spatial frequency field

was selected from a BrainSCAN IMRT plan to perform the comparison. The dynamic MLC

file for this field was imported into Eclipse where a forward calculation yielded the predicted

dose distribution on a Solid Water phantom CT set. The dose distribution in a plane perpen-

dicular to the field at a depth of 5 cm was calculated with a resolution of 1.25 mm and exported

using DICOM RT. The corresponding distribution (also perpendicular to the field and at a

depth of 5 cm) was obtained from BrainSCAN using the Export Dose Map for Individual

Beams function in BrainSCAN. The resolution of the BrainSCAN distribution was 1 mm. The

same absolute film dosimetry method described in the previous section was employed to mea-

sure the dose distribution. This film-measured distribution was quantitatively compared to

both the Eclipse- and BrainSCAN-calculated distributions using both 1D dose profiles and 2D

gamma factor analysis.(15) The pass/fail criteria for the gamma analysis were a dose difference

of 3% of the prescription dose and a distance-to-agreement of 3 mm.

C. Optimization parameters and system functionality
Although both Helios and BrainSCAN make use of dose-volume histograms (DVHs) in the

objective functions to be achieved in plan optimization, the different optimization routines

employed by the systems require somewhat different formats for the input parameters to guide

the formation of each plan. Both systems required user-defined calculation grid sizes, fluence

map smoothing, and hot beamlet restrictions. These common parameters were found to have

minimal impact on the optimization results in both systems. The only input parameter found to

have a significant impact on the results was BrainSCAN’s Normal Tissue Expansion (NTE)

option. Normal Tissue Expansion allows BrainSCAN users to specify constraints on the tissue

surrounding the PTV by defining a structure enclosing the volume given by two margins around

the PTV. The first margin specified around the PTV, which has a minimum value of two times

the selected PTV grid size, allows for a volume of tissue immediately surrounding the PTV

where no restrictions are placed to allow a dose fall-off from the PTV. The second margin gives

the distance from the PTV for the extent of the calculation, and there is an option to make this

the outer patient contour. The volume defined between these two margins becomes a structure

where a restriction may be placed to force the algorithm to reduce the dose surrounding the

PTV within a defined distance. The effect of using NTE on optimization results was systemati-

cally investigated following the plan assessment portion of this study.

Following the setting of input parameters, Helios and BrainSCAN differ significantly in

terms of system functionality. Both systems have inherent tools and options that are advanta-

geous to the user once the optimization process has begun. Throughout the course of the study,

functionality of each system was systematically explored and a qualitative comparison per-

formed.

D. Plan assessment
To assess the output plans from both systems, three patients treated previously with 3D confor-

mal radiation therapy were selected, two with head and neck cancer and one with prostate

cancer. The choice of sample patients was made to assess and illustrate the ability of the plan-

ning systems to accommodate different target/normal tissue combinations. Case 1 was selected

to assess the ability to provide parotid sparing for a nasopharynx treatment. Case 2 was se-
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lected having a relatively large planning target volume (PTV) that could not be covered using

conventional conformal planning to assess the ability of IMRT to obtain coverage. Case 3

required the sparing of an organ-at-risk (OAR) directly in contact with the PTV.

Image sets together with target and OAR contours for the patients were entered into both

planning systems using DICOM transfer protocols. To establish benchmark parameters, a con-

formal plan giving the best possible dose distribution using conventional techniques was done

by an experienced planner for each patient. Dose-volume histogram data from these plans were

used to establish initial dose constraints for optimization.

The quality of an IMRT plan is determined by the parameters chosen for the optimization,

specifically the target dose homogeneity requirements and the OAR constraints. For all cases,

the PTV constraints were set to require that 100% of the PTV received a dose of 95%. In

BrainSCAN, the second PTV constraint was in the form of a “Desired Dose” which was set to

100%. The BrainSCAN algorithm inherently tries to provide a homogeneous dose distribution

over the PTV at this dose. For Helios, the second PTV constraint was a maximum dose set to

105%, giving a dose variation across the PTV of 10%.

While the target dose homogeneity can generally be clearly specified, OAR constraints are

not as easily defined, the general principle being that the lower the dose, the better the plan.

Most planning systems used for IMRT require the user to gain familiarity with the response of

the system to the input parameter variation to obtain optimum results. To ensure that this study

was as objective as possible, the planning systems were assessed with identical OAR con-

straints.

The OAR constraint values for this study were developed in a two-stage process as follows.

Each system was run with an initial set of constraints, and these values were adjusted indepen-

dently as required to obtain an optimized dose distribution based on both target and organ-at-risk

DVHs. The resulting set of constraints for the two systems was then compared, a final set

derived to give the best case scenario, and these constraints were used, without further modifi-

cation, to calculate the dose distribution for assessment (Table 2). Output plans from both

systems were then assessed in terms of axial doses, DVHs, and number of monitor units (MUs).

Table 2. Normal tissue constraints as a percentage of prescribed dose
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E. Efficiency
Analysis of the required MUs was performed by determining the ratio of the MUs for each

IMRT plan to the MUs required by the corresponding 3D conformal benchmark plan. All slid-

ing-window, dynamic MLC fields from both planning systems consisted of 28 segments. Other

parameters known to impact the MU requirements were set as follows: BrainSCAN’s Hot

Beamlet Restriction was set to 150%, and BrainSCAN’s Tongue-and-Groove optimization was

set to 20%.

III. RESULTS

A. Implementation and commissioning
The beam data required by both BrainSCAN and Helios were similar. Both systems required

measurements of the nominal LINAC output, PDDs at various field sizes, transverse and di-

agonal beam profiles at various depths, RDFs, MLC transmission, and effective leaf gap

measurements. As mentioned previously, a key difference between the systems with respect to

commissioning is the required measurement resolution. As displayed in Table 1, BrainSCAN

requires PDD measurements with a depth resolution of 1 mm (this requirement is relaxed to 5

mm resolution for depths over 50 mm), transverse and radial profile measurements with 0.5

mm resolution, and RDF data for field sizes as small as 10 × 10 mm2. In contrast, the resolution

required by Helios is 5 mm for PDD measurements and 2.5 mm for transverse and radial

profiles while Helios RDF measurements require data for a minimum field size of 20 × 20

mm2. The similarity of the data required by both systems caused the time requirements for

commissioning to be virtually identical. Although BrainSCAN’s smaller minimum field size

requirement for RDFs necessitates more measurements, this increase was found to be negli-

gible in terms of commissioning time. In terms of commissioning complexity, the only difference

between the systems is BrainSCAN’s requirement for a high-resolution mini-ionization cham-

ber. In order to increase confidence in the small field measurements acquired with this chamber,

a series of “spot check” measurements was performed using a photon diode detector. Diode

measurements agreed with mini-ionization chamber measurements within 0.5%.

Analysis of beam data and compilation of the data file varied between the systems. The

BrainSCAN system required that all data be sent to BrainLAB for verification, conversion of

radial profiles to radial factors, and compilation of the data into a collimator file that can be

directly read by the treatment-planning system. This process took approximately two days

from the time the data was sent to BrainLAB to the receipt of the collimator file. For Helios,

beam data was compiled, in-house, into a file readable by the planning system. This compila-

tion took approximately one day.

Output measurements using film dosimetry and ionization chamber point checks indicated

good agreement for the sample prostate IMRT plans from both systems. Maximum dose dis-

crepancies were well below 5% for both field-by-field measurements and composite

distributions.

B. Effects of commissioning data resolution
The calculated and film-measured dose distributions for the selected high spatial frequency

IMRT field are displayed in Fig. 1. Also displayed in this figure are 1D dose profiles through

the high frequency region of the field. From these profiles it is apparent that there is a differ-

ence between the distributions produced by BrainSCAN and Eclipse. The x and y profiles for

the BrainSCAN system show good agreement with the measured data in both low- and high-

resolution regions. In contrast, the profiles from the Eclipse distribution show good agreement

with measurement in low-resolution regions, while discrepancies are apparent for high-resolu-

tion areas. At the intersection point of these two profiles, marked by the cross hair in Fig. 1 (x
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= –0.32 cm, y = 4.19 cm), the percent dose difference from the measured distribution for

BrainSCAN was 1.86%, while Eclipse showed a 13.32% dose difference. Results of the 2D

gamma factor analysis are displayed in Fig. 2. The low gamma values in these maps indicate

that both BrainSCAN and Eclipse show good agreement with the measured data over most of

the dose distribution. As expected, the highest gamma values are found in the vicinity of the

high-frequency region of the field. This high-gamma value region is noticeably larger for the

Eclipse-calculated distribution. The sum of all gamma values, ∑ γ (i, j), as well as the mean and

max gamma values for both gamma factor maps, is displayed in Table 3, further highlighting

the dosimetric discrepancies of the Eclipse-calculated distribution.

Fig. 1. Comparison of measured and calculated fluence distributions from a selected intensity modulated field. The top
panel shows the film measurement (left), the BrainSCAN- (center), and Eclipse-calculated distributions (right). The two
lower panels show profiles through the three distributions horizontally (left) and vertically (right). The location along
which these profiles were obtained is indicated by the white crosshair on the film measurement distribution.
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Fig. 2. Two-dimensional gamma maps comparing film-measured distributions to BrainSCAN (left) and Eclipse-calcu-
lated distributions (right). Analysis was performed within the field edges.

Table 3. Properties of the masked γ map distributions comparing calculated distributions to film measured
distribution

C. Optimization parameters and system functionality
Input parameters used to guide the optimization were found to have minimal impact on the

optimization results with the exception of BrainSCAN’s NTE option. Results indicating the

effect of the NTE are shown in the following section.

Once the input parameters are set and the optimization process has begun, BrainSCAN and

Eclipse differ significantly in their functionality. The BrainSCAN system calculates four sepa-

rate plans with different priority on the dose to the OARs. Once all calculation parameters have

been chosen by the user, the BrainSCAN system automatically calculates four IMRT plans:

PTV Only, OAR Low, OAR Normal, and OAR High. The PTV Only plan is optimized to produce

a uniform dose distribution over the volume of the PTV with no consideration for the dose to

the OARs . The OAR Low, OAR Normal, and OAR High plans are optimized with varying

priorities placed on the dose to the OARs. The calculation of these plans is accomplished by

changing the penalization parameter in the dynamically penalized likelihood algorithm used

by BrainSCAN. Once the fluence patterns have been optimized, the dose distributions are

calculated and the user is presented with an interface that allows comparison of any two of the

plans. The optimal plan is selected based on dose distributions and the DVHs.

Once optimization has begun, the Helios system offers the user the ability to interactively

adjust the constraint parameters, and thus the objective functions, while the optimization pro-

cess is being performed. This allows points on the DVHs to be modified in real-time during
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optimization. For example, if the system was observed during optimization to be struggling to

achieve a particular important constraint for one of the OARs, the constraints of the other

OARs may be adjusted or relaxed until an optimal compromise is achieved. This functionality,

combined with the ability to re-enter and continue optimization at a later time, gives the user

direct control over the progression of the optimization.

The two systems also differ in the flexibility offered to define arbitrarily shaped DVHs.

Both systems are convenient in that they allow for general DVHs to be saved to a library for

repeated use. In BrainSCAN, each DVH is defined using a fixed number of points on a dose-

volume plot. The target DVH is defined by an average dose, set to 100%, and a single point to

define coverage of the PTV at a particular dose level. Helios offers the additional option of

defining both upper and lower dose limits for the target DVH. The DVHs for the OARs in

BrainSCAN are defined by four points on the curves. These points define the upper limits for

the resultant DVHs for these organs. In Helios, DVHs can be defined by an arbitrary number of

points or by a continuous line drawn by the user. As in BrainSCAN, OAR points define the

upper limits for the resultant DVHs for these organs. A unique feature to Helios is the defini-

tion of a priority for each point making up the DVH curves for OARs and the PTV. These

priorities indicate the relative importance placed on each constraint point and thus provide

additional control over the direction of the optimization. In BrainSCAN, the user has the op-

tion of adjusting the priority of each OAR relative to the others by specifying OAR Guardian

values. These values are used to specify the priority of all the DVH points for a given organ but

do not distinguish between individual constraint points on the same DVH.

Neither system optimizes gantry or couch angles. Both systems do, however, offer auto-

matic optimization of the collimator angles prior to entering the inverse planning process.

D. Plan assessment
The optimized dose distributions obtained independently from each system prior to derivation

of the final set of optimization constraints were observed to be very similar with no large

differences in DVH points between the systems. In all three clinical cases, the final constraints

were composed of an equal number of DVH points from the distributions produced by both

systems.

Results for Case 1 are shown in Fig. 3. The top panel shows the relatively complex shape of

the PTV and the position of the parotid glands. The benchmark conformal plan was composed

of one anterior and two lateral wedged fields while both IMRT plans consisted of seven uni-

formly spaced coplanar beams. The DVH plots illustrate that while neither system produced a

plan with PTV coverage as uniform as the conformal plan, both systems were able to achieve

substantial sparing of both parotid glands. In addition to displaying the un-normalized DVH

plots for the PTV, this figure also shows the DVHs for the PTV normalized at 99% coverage.

Dose-volume statistics for the PTV in all three cases are displayed in Table 4.
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Fig. 3. Planning comparison for Case 1. Top: axial, coronal, and sagittal views showing the anatomical relationship
between the PTV, right and left parotid glands, and spinal cord. Middle: calculated dose-volume histograms for the PTV
un-normalized (left) and normalized at 99% coverage of the PTV (right) using a benchmark conformal plan and seven-
field IMRT plans for BrainSCAN and Helios. Bottom: calculated dose-volume histograms for the parotid glands with all
three plans. The asterisks on the dose-volume histograms indicate the restraint values used for optimization.
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Table 4. PTV dose-volume statistics for all three cases as a function of prescription dose (Rx)

The PTV for Case 2 shown in the top panel of Fig. 4 is a complex horseshoe shape wrapping

around both the brainstem and the spinal cord. The benchmark conformal plan was composed

of two lateral fixed fields plus two anterio-lateral 105° conformal arcs while the IMRT plans

again consisted of seven uniformly spaced coplanar beams. The DVH plots show that the

conformal plan does not provide coverage of the PTV until a dose of approximately 80% of the

isocenter dose. Both BrainSCAN and Helios were able to achieve coverage of the PTV by

approximately 90% of the isocenter dose with no increase in maximum dose, with BrainSCAN

giving a slightly more homogeneous dose (95% to 5% volume change over a 7% variation in

dose for BrainSCAN compared to an 11% dose change for Helios). Both IMRT plans also

show improvement in dose to the brainstem and spinal cord over the conformal plan with

Helios giving a slightly lower dose to the spinal cord in the lower dose range.
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Fig. 4. Planning comparison for Case 2. Top: axial, coronal, and sagittal views of Case 2 showing the anatomical relation-
ship between the PTV and spinal cord. Middle: calculated un-normalized (left) and normalized (right) dose-volume
histograms for the PTV using a benchmark conformal plan and seven-field IMRT plans for BrainSCAN and Helios.
Bottom: calculated dose-volume histograms for the brainstem and spinal cord with all three plans. The asterisks on the
dose-volume histograms indicate the restraint values used for optimization.

Figure 5 shows the results for Case 3, a prostate plan with both bladder and rectum consid-

ered as OARs. The benchmark conformal plan was a four-field box. For this case, the IMRT

plans were composed of five uniformly spaced coplanar beams. The PTV DVHs shown in the

middle panel illustrate small differences in the three plans. When normalized to the isodose

value enclosing 99% of the PTV, it can be seen that the BrainSCAN plan gives increased dose

inhomogeneity throughout the PTV with a corresponding small advantage to the rectal dose,

mostly at the lower dose values. The bladder dose remains virtually the same in all cases.
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Fig. 5. Planning comparison for Case 3. Top: axial, coronal, and sagittal views of Case 3 showing the anatomical relation-
ship between the PTV, bladder, and rectum. Middle: calculated un-normalized (left) and normalized (right) dose-volume
histograms for the PTV using a benchmark conformal plan and five-field IMRT plans for BrainSCAN and Helios. Bot-
tom: calculated dose-volume histograms for the bladder and rectum with all three plans. The asterisks on the dose-volume
histograms indicate the restraint values used for optimization.

A comparison of the results of the four plans displayed by BrainSCAN after each optimiza-

tion for Case 2 is shown in Fig. 6. The top panel showing the results for the PTV illustrates that

while the PTV Only option provides the best dose homogeneity, not surprisingly, the addition

of the normal tissue and sensitive structure information will degrade this coverage. Clearly, the

addition of a constraint considering all tissue outside the PTV, designated “Normal Tissue” and

shown in the middle panel, provides for successive tissue sparing outside the PTV. From the

bottom panel showing the brainstem results, it can be seen that three of the four dose con-

straints are met with the OAR Normal result.
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Fig. 6. BrainSCAN-calculated dose-volume histograms for the PTV, all tissue outside the PTV (Normal Tissue) and the
brainstem for Case 2 for the four calculations considering the PTV only and the organs-at-risk as a high, normal, and low
priority.

The use of the NTE option adds further flexibility, as illustrated in Fig. 7. For this analysis,

an NTE was defined around the PTV extending from 8 mm to 48 mm from the PTV forming an

annular volume-at-risk with a width of 4 cm. The PTV DVHs shown in the top panel indicate

that restricting the maximum dose to this NTE to 20% of the isocenter dose degraded the dose

homogeneity and coverage of the PTV. Adding an NTE restriction with a dose maximum of

50% to the calculation including the OARs was almost equivalent to the calculation without

the NTE. Considering the normal tissue shown in the middle panel, the addition of the NTE

provides tissue sparing. The bottom panel showing the brainstem DVHs shows clearly that the

definition of an NTE alone will not provide appropriate structure specific dose sparing.
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Fig. 7. BrainSCAN-calculated dose-volume histograms for the PTV, all tissue outside the PTV (Normal Tissue) and the
brainstem for Case 2 taking into consideration a volume of risk defined immediately outside the PTV and designated
Normal Tissue Expansion (NTE). The four curves in each plot are for the calculations considering the organs-at-risk only,
the NTE with a maximum dose constraint of 20% and 50% of the isocenter dose and the combination of the organs-at-risk
and the NTE at the 50% level.

E. Efficiency
Results from this analysis are displayed in Table 5. Using BrainSCAN, the increase in required

MUs was higher than that for Helios for Case 1 with the two systems showing comparable

results for the other cases.

Table 5. Ratio of monitor units required to deliver IMRT plans compared to conventional conformal plan

IV. DISCUSSION AND CONCLUSIONS

In terms of implementation and commissioning, dose optimization, and plan assessment, no

substantial differences in performance were demonstrated between the BrainSCAN and Helios
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planning systems. Results indicated that both systems can produce substantially equivalent

dose plans in terms of target coverage and normal tissue sparing.

Implementation and commissioning of the systems were found to be identical in terms of

complexity and time involved. Acquisition of high-resolution data for BrainSCAN added only

marginally to the overall time required for beam data acquisition. While the requirement to

send the commissioning data to BrainLAB added an extra day to the overall commissioning of

the BrainSCAN system, it also eliminated the workload of having to compile the beam data

file.

While comparable in terms of output plans, BrainSCAN and Helios both have advantages

and disadvantages over each other in terms of functionality. Both systems have adequate input

mechanisms for dose constraints; however, the BrainSCAN system presents the user with four

plans for each optimization from which to choose the optimal. The PTV Only option is rarely

clinically viable and is done to provide the basis of the subsequent optimization, which in-

cludes the OAR constraints. However, the presentation of three calculated plans with slightly

different relative constraint weighting provides a quick assessment of the value of making

changes in the optimization parameters. We have found this useful in speeding up the software

learning process.

Alternatively, Helios offers the option of editing DVH parameters during calculation, thus

providing immediate interactive input during the optimization. This feature adds substantial

flexibility, provides a good learning tool, and may reduce the overall time for optimization

where adequate information for the definition of the constraints is not available a priori.

Analysis of the PTV curves shown in Figs. 2 to 4 illustrates one of the difficulties of IMRT

planning. With identical constraints set in each case, clearly, there is a frequent requirement for

a (small) renormalization of the dose distribution after optimization because the “optimized”

plans do not consistently reach the goals set for the PTV. For example, of the three IMRT plans,

only the Helios plan in Fig. 5 provides coverage of the PTV at the 95% dose level. There is also

a corresponding differing ability of the systems to reach the dose constraints set for the organs-

at-risk with each system failing to reach a particular constraint in one case or another.

While the analysis of the commissioning requirements of both systems revealed no signifi-

cant differences in terms of complexity and time requirements, the portion of this study

investigating the effects of the differences in commissioning data resolution revealed an inad-

equacy in the Eclipse treatment-planning system. Verification measurements on the sample

prostate case used during early commissioning revealed no discrepancies larger than 5%. This

validation was performed on a typical prostate case with significantly less complex fields com-

pared to the head and neck cases used in the later comparisons. Serious discrepancies as large

as 13% were observed when a field with high spatial resolution peaks was analyzed. The large

discrepancies observed for this field indicate that the resolution of the commissioning data

required by Eclipse is inadequate for dose calculations of high-resolution IMRT fields. This

problem is directly related to the pencil beam kernels used to calculate the dose distributions.

These kernels are derived from commissioning data and can be affected by the spatial resolu-

tion capabilities of the measuring device used.(16)

While studies have shown that dose calculations using kernels derived from standard (low

resolution) ionization chamber data are accurate for conventional planning scenarios,(17) this is

not the case for all IMRT fields. IMRT fields can contain highly modulated intensity regions

that will be affected by low-resolution pencil beam kernels.(14) The profiles for the Eclipse

distribution in Fig. 1 clearly illustrate these effects. These profiles are in good agreement with

the film-measured profiles except in highly modulated regions. In the horizontal profile, Eclipse

not only underestimates the dose of the high-intensity peak by over 13%, but the software also

overestimates the horizontal spread of dose at the sides of the peak. The BrainSCAN distribu-

tion is in good agreement throughout this profile. In the vertical profile, the narrow peak on the

right is again underestimated by the Eclipse system, whereas BrainSCAN is successful in its
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dose calculation. For the double peak on the left side of this plot BrainSCAN slightly overesti-

mates the dose but is successful in distinguishing the two peaks. Eclipse, on the other hand, is

unable to separate the peaks. Although this inadequacy of the Eclipse treatment-planning sys-

tem may have a direct impact on the treatment of IMRT plans, it should be noted that this is

inherently a problem with the Eclipse forward planning calculation and not with the Helios

inverse planning software.

While correction of this problem by directly entering higher resolution data into Eclipse is

not possible due to a minimum resolution capability of 2.5 mm, studies have shown that these

inaccuracies can be reduced by using high-resolution film dosimetry to measure the penumbra

region of transverse profile commissioning data(14) or through direct pencil beam kernel opti-

mization.(18) In addition, the clinical impact of this inadequacy is yet to be determined, and it

should be reiterated that this effect is only apparent for highly modulated fields. The high-

resolution field used to ascertain the effects of the commissioning data resolution was specifically

chosen as being the most highly modulated field produced in the DVH comparison.

In summary, we have demonstrated that both BrainSCAN and Helios have inherent advan-

tages for IMRT planning. Both inverse planning systems are capable of producing substantially

equivalent dose plans in terms of target coverage and normal tissue sparing. Several insignifi-

cant differences between the systems exist in terms of implementation and commissioning,

dose optimization, and plan assessment. One difference brought to light by this comparison

was the inadequacy of the Eclipse treatment-planning system to accurately calculate dose for

highly modulated fields. Although this study did not evaluate the clinical impact of this inad-

equacy, IMRT quality assurance generally has a large impact on time and effort, and discrepancies

between calculations and measurements for highly modulated fields will most certainly be

problematic.
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