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Abstract

High-frequency oscillations of the frontal cortex are involved in functions of the brain that

fuse processed data from different sensory modules or bind them with elements stored in

the memory. These oscillations also provide inhibitory connections to neural circuits that

perform lower-level processes. Deficit in the performance of these oscillations has been

examined as a marker for Alzheimer’s disease (AD). Additionally, the neurodegenerative

processes associated with AD, such as the deposition of amyloid-beta plaques, do not

occur in a spatially homogeneous fashion and progress more prominently in the medial tem-

poral lobe in the early stages of the disease. This region of the brain contains neural circuitry

involved in olfactory perception. Several studies have suggested that olfactory deficit can be

used as a marker for early diagnosis of AD. A quantitative assessment of the performance

of the olfactory system can hence serve as a potential biomarker for Alzheimer’s disease,

offering a relatively convenient and inexpensive diagnosis method. This study examines the

decline in the perception of olfactory stimuli and the deficit in the performance of high-fre-

quency frontal oscillations in response to olfactory stimulation as markers for AD. Two

measurement modalities are employed for assessing the olfactory performance: 1) An inter-

active smell identification test is used to sample the response to a sizable variety of odor-

ants, and 2) Electroencephalography data are collected in an olfactory perception task with

a pair of selected odorants in order to assess the connectivity of frontal cortex regions. Sta-

tistical analysis methods are used to assess the significance of selected features extracted

from the recorded modalities as Alzheimer’s biomarkers. Olfactory decline regressed to age

in both healthy and mild AD groups are evaluated, and single- and multi-modal classifiers

are also developed. The novel aspects of this study include: 1) Combining EEG response to

olfactory stimulation with behavioral assessment of olfactory perception as a marker of AD,

2) Identification of odorants most significantly affected in mild AD patients, 3) Identification

of odorants which are still adequately perceived by mild AD patients, 4) Analysis of the

decline in the spatial coherence of different oscillatory bands in response to olfactory
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stimulation, and 5) Being the first study to quantitatively assess the performance of olfactory

decline due to aging and AD in the Iranian population.

Introduction

Alzheimer’s disease (AD) is the most prevalent type of dementia affecting approximately one

individual in 10 in the population older than 65 [1]. Early diagnosis of AD is necessary to

ensure that the required clinical and social care are provided for affected individuals [2]. AD

is known to be associated with the aggregated deposition of surplus amyloid-beta (Aβ) protein,

a product of synaptic activity [3], as plaques causing neurotoxic events such as inflammation

and synaptic loss, and other neural degenerations linked to another protein, phosphorylated

tau [4].

Accumulated levels of these proteins in the brain have been measured as biomarkers for

AD through PET imaging of the brain or sampling the cerebrospinal fluid (CSF) [5, 6]. Several

neuropsychological tests have also been introduced to evaluate the mental state of subjects in a

clinical exam. Mini-Mental State Exam (MMSE) and Mini-Cog are two examples of such tests,

which are used by clinicians to evaluate the cognitive skills of the patients and decide upon

further evaluation tests [7–9]. Although no single protocol has been established for large-scale

screening of AD, there are proposed frameworks for diagnosis based on a set of biomarkers

such as those just mentioned [10]. An update to the National Institute on Aging—Alzheimer’s

Association (NIA-AA) Research Framework provides additional flexibility for introducing

new biomarkers to allow the results of new measurement modality evaluations in observa-

tional studies to establish their value in the clinical assessment of AD [11].

In addition to the mentioned assessment methods, previous studies have shown that olfac-

tory deficit is an early symptom of Alzheimer’s disease [12, 13]. Further studies have demon-

strated that standard methods of assessing the olfactory system such as sniffing kits can be

helpful in distinguishing mild AD patients from healthy individuals [14–16].

The neurodegenerative processes associated with the deposition of neurofibrillary tangles

and amyloid plaques in the brain do not progress in a homogeneous fashion [17], and are

more prominent in the medial temporal lobe in the early stage of the disease [18, 19]. Interest-

ingly, the medial temporal lobe is the region where olfactory perception also occurs. Therefore,

perception of smells is affected more severely in mild AD patients compared to its decline

caused by normal aging, and several studies have suggested that olfactory deficit can be used

as a biomarker for early diagnosis of AD [20, 21].

Unlike PET imaging or CSF sampling, measuring the odor perception abilities of patients

is an inexpensive and non-invasive procedure. However, the perception of odors highly

correlates with the culture of the individuals, and hence, the familiarity of subjects with the

employed odorants needs to be considered in defining a smell scoring procedure. The Univer-

sity of Pennsylvania smell identification test (UPSIT) [22] proposes a standard sniffing kit for

assessing the olfactory function and has been used for studying the olfactory deficit in mild

AD patients [23]. However, some of the odors used in this test may be unfamiliar for non-

American societies. To address this issue, researchers have proposed alternative scents in

modified sniffing kits to create tests that are suitable for their populations of interest [24–26].

A practical issue in administering sniffing kit tests is that they require the participant’s

cooperation. Patients with dementia-like symptoms may have difficulty following the written

test questions or the clinician’s instructions or may respond erroneously due to not recalling

PLOS ONE Olfactory response as a marker for Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0243535 December 15, 2020 2 / 23

The funders had no role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: No - The authors have

declared that no competing interests exist.

https://doi.org/10.1371/journal.pone.0243535


the name of an odorant they indeed perceived. Also, the way an examiner interacts with the

participant may introduce bias towards specific options in the response sheet [36]. To circum-

vent the interference of non-olfactory related issues in the performance of the tests, methods

relying on EEG recording during the presentation of odorants to participants have been pro-

posed. One such technique is the olfactory event-related potential (OERP) test, in which a

sequence of odorants is presented to the participant at regular time instances, allowing the

EEG response data to be averaged over several trial intervals for reducing noise and enhancing

the fidelity of the recorded data. Several studies have focused on the role of OERP test results

as an early biomarker for AD. In [27] OERP waveforms were analyzed to extract features for

differentiating mild AD patients and an age-matched control group. In a more recent study

[28], OERP test was employed to distinguish between AD and mild cognitive impairment

(MCI) patients.

Another method for the differential analysis of EEG data of mild AD patients and healthy

participants is coherence analysis. Coherence refers to the functional connectivity of different

brain regions and is measured by the synchrony of oscillations recorded at different EEG elec-

trodes. Earlier studies have indicated that the coherence of EEG channels can help in the diag-

nosis of AD [29–31]. These studies showed that the reduction in the functional connectivity of

the brain regions is captured as a decrease in the coherence between EEG channels [32]. Some

reports have also assessed the relative value of the coherence of EEG channels for different fre-

quency bands in the classification of mild AD patients and healthy participants [33, 34].

In this paper, we examine the characteristics of olfactory response as markers for the diag-

nosis of AD through the use of both EEG and behavioral olfactory response data. Our EEG

analysis comprises an assessment of the statistical significance of the coherence in the EEG

data across the spatial domain for different frequency bands. In the behavioral olfactory

response data, our approach identifies the best subset of odorants among those in a localized

version of the UPSIT kit (Iran-SIT [16]), which significantly contributes to classifying mild

AD patients and healthy participants. MMSE scores are also used as reference for evaluating

our olfactory-based results. Single-modality regressors are developed employing the significant

components identified in each set of olfactory response data (EEG coherence and behavioral

UPSIT) separately. The regressors are age-adjusted to account for the decline in the perfor-

mance caused by normal aging. Furthermore, by employing the statistically significant compo-

nents from both modalities, we propose a multi-modal classifier of mild AD patients versus

healthy participants, which also regresses the olfactory decline due to aging.

Materials and methods

Fig 1 illustrates an overview of the multimodal data analysis methodology used in our study.

Details of our experiment’s protocol are available at “protocols.io” under the DOI number: 10.

17504/protocols.io.bi2qkgdw.

Participants

This study was approved by the Review Board of Tehran University of Medical Sciences

(Approval ID: IR.TUMS.MEDICINE.REC.1398.524) and all participants gave their written

consent to participate in the experiment. Private information of participants including name

and date of birth were kept confidential and not used in any of the analyses. Participants were

selected among the individuals referring to the memory clinic of Ziaeian Hospital in Tehran

with memory performance complaints. All the tests were carried out in the Department of

Geriatric Medicine of Ziaeian Hospital. Two expert neuropsychologists assessed all the partici-

pants and recorded their smoking history, preferred hand, age, level of education, as well as
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any past olfactory problem. Demographic and medical history data were also collected for

each participant. Statistical analyses suggested that sufficient sample size for comparing AD

and healthy groups with a statistical power of 95% and type I error of 5% is about 7 participants

for each group. A total of 52 participants were recruited for the study, and after applying exclu-

sion criteria (as described in the next subsection), twenty-four individuals (age = 72.1 ± 9.0,

female = 54.25%), including 11 participants with AD (age = 76.6 ± 9.2, female = 64%) and 13

healthy participants (age = 68.2 ± 6.2, female = 46%) were selected for data analysis. The Mini-

Mental State Examination (MMSE), the Clock Drawing Test (CDT), and a verbal fluency test

were performed. After the neuropsychological assessment, a neurologist examined the partici-

pants and conducted the Functional Assessment Scales Test (FAST) [35].

Then, the participants performed the UPSIT examination and after a few minutes of rest,

performed the EEG-based olfactory measurement test. Table 1 shows the overall statistics of

Fig 1. a) An overview of our methodology. The coherence between EEG electrode pairs in different frequency bands and the modified UPSIT (Iran-SIT) score

are used as features for training an SVM classifier. The selection of the odorant subset in the UPSIT kit and the significant frequency bands and connections in the

EEG records is carried out by statistical analysis. b) EEG response to the sequence of stimuli is pre-processed and epochs are extracted for further analysis. c) A

measure of coherence deficit is calculated between each pair of channels for the gamma oscillation band. Similar operations are performed for each of the other

oscillatory bands (delta, theta, alpha, beta).

https://doi.org/10.1371/journal.pone.0243535.g001
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the participants. Details of the clinical assessment procedure and the MMSE, UPSIT, and

EEG-based experiments are described in the following subsections.

Clinical diagnostic assessment

An expert neurologist diagnosed probable Alzheimer’s disease according to the latest guideline

of the NIA-AA [36]. AD participants must meet the criteria prescribed for diagnosing demen-

tia as described in [36]. Results of the Mini-Mental State Examination (MMSE) and inquiry

about the onset and progressions of the symptoms from the patients and their companions

were used by the neurologist to diagnose cognitive impairment. In addition to criteria for

dementia, AD participants must also meet the criteria for probable AD dementia. Structural

MRI images (1.5 Tesla MR Scanner and a 16-channel HR head coil) were analyzed, and the

Medial Temporal Atrophy Scale, White Matter Lesions, and Global Atrophy Scale were used

for describing the image. Exclusion criteria were a history of stroke, schizophrenia, major

depressive disorders and electroconvulsive therapy (ECT) over the past six months, traumatic

brain injury, non-AD neurodegenerative diseases (Parkinson’s disease, Progressive Supranuc-

lear Palsy, Multi-System Atrophy, Cortico-Basal Degeneration), and any history of olfactory

pathway disorders. MCI patients were also excluded from this study.

Mini-Mental State Examination (MMSE)

MMSE [37] is a clinical test commonly used for measuring cognitive impairment. During the

MMSE test, different memory skills are evaluated, and a score out of 30 is produced. Based on

this score and the education level of the patients, clinicians assess the participant’s cognitive

skills.

MMSE consists of the following cognitive test categories: Orientation to time, Orientation

to place, Registration, Attention and calculation, Delayed recall, Naming, Repetition, Reading,

Writing, Visio-spatial, and Commands. A score is given in each category, and the sum of a par-

ticipant’s scores in all categories is used as the MMSE score. It should be mentioned that due

to the low literacy levels of many of the participants in this study, lower MMSE scores were

registered in both AD and healthy control groups.

University of Pennsylvania Smell Identification Test (UPSIT)

UPSIT and its modified versions have been employed in previous studies for early diagnosis of

AD. Due to the culture-specific nature of smell perception, the reliability of these tests has to

be evaluated in different populations [2, 38]. Localized versions of the UPSIT test kit have been

introduced in countries such as Brazil [24], Turkey [25], Lithuania [26], and Iran [16] (for an

exhaustive review refer to [14]).

To this date, no research results based on the UPSIT kit or other olfactory-based tests have

been reported for the detection of AD in the Iranian population. The current study is the first

Table 1. Participant characteristics: P-values denote the separation between healthy participants and mild AD patients in each characteristic.

Characteristic Healthy (n = 13) AD (n = 11) p-value

Age (years) 68.2 ± 6.2 76.6 ± 9.2 < 0.05

Gender, % female %46 %64 > 0.4

Education (years) 3.36 ± 2.94 4.15 ± 4.70 > 0.4

MMSE score 25.8 ± 3.3 15.7 ± 2.9 < 0.0001

UPSIT score 15.5 ± 2.8 8.2 ± 3.9 < 0.0001

https://doi.org/10.1371/journal.pone.0243535.t001
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to utilize a localized version of the UPSIT test (called Iran-SIT) to diagnose AD in its early

stages in Iran.

The test kit consists of 24 odors which are each exposed by scratching its corresponding

strip. The list of the odors is included in S1 Table in S1 Appendix. After presenting each scent

to the participant, four options to select from are provided, and the participant is asked to

identify the closest match among these options to the odor that they perceived. As some partic-

ipants in the study were not able to read the list of options printed in the kit, either because of

vision problems or due to illiteracy, the list of options for each odor presentation was read

loudly and clearly to the participants, once before and once after the presentation of each odor.

Classification. To assess the results of the UPSIT test, we employed a support vector

machine (SVM) classifier with a linear kernel to separate mild AD patients from healthy par-

ticipants based on the UPSIT score and the age of the participants. Normal aging is known to

be a major cause for olfactory deficit and hence, when dealing with the UPSIT or other olfac-

tory test results, it is essential to take into account the effect of aging.

Due to the small size of our dataset, we used 5-fold cross-validation to evaluate the accuracy

of the classifier. In this evaluation scheme, the dataset is divided into five equal folds, and each

time, the label of one fold is predicted using the model trained on data of the other folds.

Statistical analysis of UPSIT. The UPSIT score denotes the number of correct answers

for each participant. However, among the twenty-four odors of the test, some are probably

more effective at separating Alzheimer’s patients from healthy participants. To determine

these significant odors, each participant’s answers were converted to a vector of binary ele-

ments in which zeros represent wrong answers and ones indicate correct answers. These vec-

tors were divided into two groups of mild AD patients and healthy participants and then t-test

was applied to samples from these groups. By doing this, twenty-four p-values corresponding

to the presented odors were obtained. To control the false discovery rate (FDR), the Benja-

mini-Hochberg method was used [39]. The remaining small p-values (p-value < 0.05) indicate

odors that are significant in separating the two participant groups. The Scipy and Statsmodels

packages were used for statistical analysis and p-values < 0.05 were considered as significant.

The full flow of the statistical analysis for identifying significant odors is illustrated in S1 Fig in

S1 Appendix and the values behind the corrected p-values are shown in S2 Table in S1

Appendix.

After identifying the significant odors, we performed a linear regression analysis to obtain a

modified UPSIT score as a weighted sum of the significant odor scores. The coefficient of each

score in the linear regressor is set to maximize the separability of the mild AD patients and

healthy participants.

We fitted a linear regression model to each of the mild AD patients and healthy participant

groups using the modified UPSIT score and age. Each regression line demonstrates how the

olfactory perception is affected by age in the AD or healthy groups.

EEG-based olfactory measurement

EEG signals were recorded using a 32-channel Mitsar amplifier. Data were recorded from the

Fz, Cz, Pz, and Fp1 electrodes. The Fz, Cz, and Pz channels were chosen based on the results of

a similar study [28]. The Fp1 electrode data was used to identify eye movements and eye

blinks. The choice of using a limited number of channels in this study was to accommodate for

the age and mental condition of many of the participants, so the time to install and confirm

the functionality of the electrodes would be kept to a minimum. The channel impedance was

maintained under 15 kΩ for each electrode. The EEG sampling rate was 2000 Hz, and elec-

trodes were referenced to the A1 earlobe [40]. EEGLAB was used for data preprocessing [41].
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Participants performed an olfactory perception task [42]. During this task, the participant is

presented with a sequence of stimuli composed of two different odors, one of which occurring

more frequently (standard) and the other being presented rarely (deviant) [43]. Lemon was

chosen as the frequent stimulus and Rose as the rare one [28]. Our experimental protocol con-

sisted of a two-second stimulus presentation followed by 8 seconds of rest (pure water) inter-

val. The odors were delivered to the participant using a laboratory olfactometer [44]. The

probability of rare stimuli was 0.25 [28]. Each trial (epoch) took 10 seconds, and the whole

experiment for each participant consisted of 120 trials and took about 20 minutes. The 90 fre-

quent and 30 rare odors were presented in a random but preset order.

The choice of odors in olfactory experiments is an important issue. When the objective is to

test the performance of the olfactory system, odors must be selected so as not to arouse the tri-

geminal system. This is because the olfactory and the trigeminal systems are interconnected

and may interact by intensifying and suppressing each other during exposure to certain stimuli

[45]. Therefore, in our experiments, we replaced the eucalyptus odor which was used in other

studies [28] with lemon, since eucalyptus excites both the olfactory and trigeminal systems.

We also increased the duration of odor presentation to two seconds to allow for regular breath-

ing cycles by the participants (to accommodate for their age and mental condition). The

extracted event epochs included one second of pre-stimulus and two seconds of post-stimulus

data, following the empirical estimate of the olfactory response latency of about 600–700 milli-

seconds [46, 47].

EEG preprocessing. Steps involved in preprocessing the data and extracting epochs for

further processing are shown in Fig 1b. Signals were filtered to 0.5 to 40.5 Hz and down-

sampled to 200 Hz. Independent Component Analysis (FastICA [48]) was used for eye blink

removal using all recorded EEG channels. One component corresponding to eye blinks was

removed from the four components, and the rest were projected back to the electrode space.

The resulting signals were segmented into epochs as follows. Each epoch contains one second

of pre- and two seconds of post-stimulus onset (600 samples with a sampling frequency of 200

Hz). From the entire task which included 120 epochs, the ones corresponding to the frequent

(lemon) odor were selected for further processing. For each subject, this set includes about 90

epochs. Finally, heavily artifact-contaminated epochs were excluded using a semi-automated

method of rejecting epochs with high peak-to-average ratios and manually inspecting the

remaining epochs.

Coherence analysis. Fig 1c illustrates the flow of data processing to measure the deficit in

the spatial coherence of EEG response for the gamma oscillation band. Since coherence analy-

sis involves nonlinear operations, we first filtered the EEG data in the target band in order to

mitigate the effects of other frequency bands. Therefore, for the gamma oscillation band, the

preprocessed EEG data were filtered using a bandpass (30.0–40.5 Hz) filter. The upper fre-

quency limit of 40.5 Hz was imposed by the EEG recording system which was programmed to

remove higher frequency components including the 50 Hz powerline interference. The coher-

ence analysis method was then applied to the gamma band data for the epochs corresponding

to the frequent (lemon) stimuli.

For each pair of connections between the four channels, the imaginary part of coherence

(ImCoh) was obtained for each frequency using the following equation:

ImCoh Cxyðf Þ
� �

¼
ImðPxyðf ÞÞ

2

Pxxðf ÞPyyðf Þ
ð1Þ

in which Pxy( f ) indicates the cross power spectral density between channels x and y for fre-

quency f, and Pxx( f ) and Pyy( f ) indicate the power spectral densities of channels x and y for
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frequency f, respectively. The value of Pxy(f) is calculated as follows:

Pxyðf Þ ¼
Xþ1

m ¼ � 1

RxyðmÞe
� i2pft ð2Þ

in which RxyðmÞ ¼ Efxnþmy�ng; � 1 < n <1 is the cross correlation of the x and y chan-

nels, and E{.} denotes the expectation of its argument. Values of Pxx(f) and Pyy(f) are calculated

using similar equations. The values of Pxy(f), Pxx(f) and Pyy(f) are calculated based on FFT anal-

ysis according to the periodogram method [49]. In practical terms, each pair of corresponding

epochs from the x and y channels produces a value of cross power spectral density at each fre-

quency bin. To calculate this value for each epoch, the FFT of the cross correlation function is

calculated using one-second segments with 50% overlap using a Hamming window. The

resulting set of FFTs are averaged according to the periodogram method [49]. Using Eq (1),

the value of ImCoh is calculated for each frequency bin. This value is then averaged across all

epochs for each participant. Then, to calculate the coherence deficit in the gamma band, the

resulting values are averaged in the range of frequencies of the gamma band to obtain a single

number. We refer to this number as the ImCoh value for the gamma band, and it serves as a

measure of asynchrony between the x and y EEG channels in this band. In order to measure

similar coherence deficit values for other oscillation bands such as delta (0.5–3.99 Hz), theta

(4.0–7.99 Hz), alpha (8.0–12.99 Hz) and beta (13.0–29.99 Hz), the same calculation method is

conducted using respective bandpass filters for each target band and averaging the ImCoh val-

ues over the frequencies in that band.

Statistical analysis of coherence deficit. A total of 30 coherence values (5 oscillatory

bands times six pairs of electrodes: Fp1-Fz, Fp1-Cz, Fp1-Pz, Fz-Cz, Fz-Pz, Cz-Pz) were calcu-

lated. The Welch t-test [39] was applied, and p-values for all the ImCoh values were calculated.

Due to the redundancy in these values (data from the six connections have some degree of cor-

relation), we used the Benjamini-Hochberg correction method to control the FDR using an

effective sample size calculation method described in Chapter 8 of [39]. ImCoh values with p-

value < 0.05 were considered significant.

To assess the performance of the resulting significant ImCoh values in classifying mild AD

patients and healthy participants, an SVM classifier was trained using the significant ImCoh

values (beta and gamma ImCoh values for the Fz-Cz connection) as its features.

Multimodal analysis

An objective of this study is to propose a multi-modal method for distinguishing mild AD

patients from healthy participants based on the two olfactory-based data types. This is to sug-

gest the most efficient combination of olfactory-based tests for diagnosing AD. To achieve this

goal, an SVM classifier with a linear kernel was used to separate mild AD patients from healthy

participants based on the significant components of the modified UPSIT test and the signifi-

cant ImCoh values between the EEG electrodes, which were calculated for the beta and

gamma frequency bands in the Fz-Cz connection. Since cognitive and olfactory performance

declines with normal aging, two approaches were employed to address the presence of any

confounding effect caused by the age of the participants. In the first approach, we trained

our classifiers disregarding age as a feature. In the second approach, we measured the rate of

change of each of our target features (UPSIT scores, beta and gamma ImCoh values) with age

in the healthy group, and compensated the same feature in the AD group for the normal aging

effect. Evaluation of classifiers based on single- or multimodal features was conducted using

5-fold cross-validation.
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Results

A p-value less than 0.05 was used as the cut-off value for the significance of all the stated

results. The Scipy and Statsmodels packages were used for all statistical analyses described in

the following.

MMSE

Details of the MMSE results are shown in Table 2. This table includes the participant’s age,

diagnosis state, total MMSE score as well as the MMSE score in each category. The p-value for

each test category is also shown.

UPSIT

The UPSIT scores of the participants were used to classify them into the AD and healthy

groups. Similar to other cognitive measures, the UPSIT score also displays a rate of decline

with normal aging in healthy participants. As illustrated in Fig 2a, the two groups of partici-

pants demonstrate different rates of decline with aging. These rates can be inferred from the

slopes of the regressor lines fitted to the scores of each group in this figure. While a noticeable

Table 2. MMSE results.

Diagnosis Age Edu MMSE O Time O Place Reg AttCalc DelRec Name Rep Read Write VisSpat Comm

Mild AD 75–80 6 19 4 4 3 0 0 2 1 1 1 1 2

Mild AD 75–80 0 16 2 5 3 0 2 2 1 0 0 0 1

Mild AD 80–85 3 18 4 5 3 1 0 2 0 0 0 0 3

Mild AD 85–90 0 12 2 3 3 0 0 2 1 0 0 0 2

Mild AD 70–75 4 15 2 5 3 0 0 2 0 0 0 0 3

Mild AD 85–90 0 16 3 4 3 0 0 2 1 0 0 0 3

Mild AD 65–70 5 12 3 2 3 0 0 2 0 0 0 0 2

Mild AD 65–70 0 18 2 3 3 0 3 2 1 0 0 0 3

Mild AD 70–75 6 19 5 3 3 3 0 2 0 1 1 0 1

Mild AD 80–85 8 17 2 5 3 0 0 2 0 1 1 0 3

Mild AD 60–65 5 11 3 2 3 0 0 2 0 0 0 0 3

Normal 75–80 6 27 5 5 3 4 2 2 1 1 0 1 3

Normal 70–75 5 30 5 5 3 5 3 2 1 1 1 1 3

Normal 65–70 6 26 5 5 3 4 2 2 0 1 0 1 3

Normal 65–70 12 30 5 5 3 5 3 2 1 1 1 1 3

Normal 70–75 0 21 5 5 3 1 2 2 1 0 0 0 3

Normal 60–65 14 29 5 5 3 5 2 2 1 1 1 1 3

Normal 65–70 0 21 5 5 3 1 1 2 1 0 0 0 3

Normal 55–60 4 27 5 5 3 2 3 2 1 1 1 1 3

Normal 75–80 0 23 4 5 3 4 2 2 1 0 0 0 3

Normal 70–75 0 26 5 5 3 5 1 2 1 1 0 0 3

Normal 70–75 6 26 5 4 3 2 3 2 1 1 1 1 3

Normal 65–70 0 21 5 4 3 1 3 2 0 0 0 0 3

Normal 60–65 12 28 5 5 3 3 3 2 1 1 1 1 3

Abbreviations used: Edu = education (years), O Time = orientation to time, O place = orientation to place, Reg = registration, AttCalc = attention and calculation,

DelRec = delayed recall, Name = naming, Rep = repetition, Read = reading, Write = writing, VisSpat = visuo-spatial, Comm = commands. Data of excluded participants

are not shown in the table.

https://doi.org/10.1371/journal.pone.0243535.t002
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drop is observed in the performance of the AD group relative to the healthy group, the rate of

decline versus age remains similar. In order to assess the capability of the UPSIT score in dis-

criminating between the AD and healthy groups, two approaches were employed for removing

the effect of normal aging. First, age was disregarded and the UPSIT scores of each group’s

members were used to create histograms that are shown in Fig 2a (top). Applying a single-fea-

ture SVM classifier to these histograms yields an accuracy of 87.5% in classifying the two

groups. Second, age-adjusted scores were calculated by measuring residual distances of the

scores from the regressor line fitted to the healthy group’s data. Fig 2a (bottom) displays age-

adjusted UPSIT data for the two groups, from which the two illustrated histograms were pro-

duced, each capturing the residuals of a participant group from the healthy group’s age-

regressed line (here shown as a horizontal line due to age adjustment). A single-feature SVM

classifier was applied to these histograms and again, an accuracy of 87.5% was achieved in clas-

sifying the two groups. These results suggest a relationship between the olfactory functionality

(represented by the UPSIT score) and the diagnosis of AD even when the effect of age con-

found is removed from the data.

As mentioned in the previous section, p-value was calculated for each odor to identify the

most sensitive odorants. Two significant odors (p-value < 0.05) were identified (Grape and

Chocolate). These odors, as well as their p-values, are shown in Table 3.

We then calculated the modified UPSIT score for each participant by summing the

responses to the two significant odors. The resulting modified scores versus age are plotted in

Fig 2b (top) for the two groups. Following a similar approach for removing the effect of age,

the modified scores were employed to create the two histograms shown in Fig 2b (top), and

Fig 2. Total and modified UPSIT scores plotted versus age: a) Top: Regression of total UPSIT score with age. Distributions of total UPSIT scores for the two groups

are shown as histograms. Bottom: Effect of age on total UPSIT score is removed and residual values of the two groups are histogrammed. b) Top: Regression of

modified UPSIT score with age. Distributions of modified UPSIT scores for the two groups are shown as histograms. Bottom: Effect of age on modified UPSIT score is

removed and residual values of the two groups are histogrammed. The 95% confidence intervals are also plotted in the top figures.

https://doi.org/10.1371/journal.pone.0243535.g002
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employing a single-feature SVM classifier resulted in an accuracy of 70.8% in classifying the

two groups based on the modified scores. This result displays a drop in the performance com-

pared to the case when the entire UPSIT scores were used to classify the two groups. In the sec-

ond approach, the effect of age was adjusted for by measuring the residual distances of all

scores in the two groups from the regressor line fitted to the data of the healthy group. A sin-

gle-feature SVM classifier was then applied to the resulting age-adjusted histograms shown in

Fig 2b (bottom), yielding a classification accuracy of 87.5%. This result shows considerable

improvement comparing with the accuracy of the age-disregarded approach, and is at par with

the results obtained when the entire UPSIT scores were used to classify the two groups.

To analyze which odors can discriminate between mild AD patients and healthy partici-

pants and which odors can still be perceived by mild AD patients, two visualizations of the

UPSIT results are presented in Fig 3. The two significant odors (Grape and Chocolate) are

indicated in both plots. In Fig 3a, the percentage of mild AD patients or healthy participants

who answered each UPSIT odor identification question correctly is plotted. It can be seen that

more than half of mild AD patients correctly identified the smells of Minty Toothpaste, Jas-

mine, Pineapple, and Strawberry. Fig 3b shows the UPSIT results when the participants in

each group are divided into five-year age bins.

EEG coherence

The imaginary part of the coherence between each pair of EEG electrodes was calculated for

each of the delta, theta, alpha, beta, and gamma frequency bands. This value is an indication of

the lack of temporal synchrony between two signals. Fig 4a and 4b illustrate sample epochs in

which 13–30 Hz and 30–40.5 Hz filters were respectively used to extract beta and gamma band

components from the data of the Fz and Cz electrodes of one AD patient and one healthy par-

ticipant. As these plots demonstrate, the beta and gamma components recorded by the two

electrodes closely match each other in phase for the data of the healthy participant while the

data of the AD patient contains intervals of clear out-of-phase behavior for these components.

The overall measure used as the imaginary part of coherence (ImCoh) for a participant in a fre-

quency band is calculated as the mean of the imaginary parts of coherence across the frequency

band and averaged for all the frequent odor epochs used in the analysis.

The ImCoh values were calculated for each of the five frequency bands between each pair of

electrodes in each participant’s EEG data. In order to assess the effect of age on the synchroni-

zation behavior of the brain as measured by pairwise ImCoh values, we employed a regressor

fitting approach similar to the UPSIT analysis. Fig 4c and 4d show the regressor lines fitted to

the beta and gamma ImCoh values for the healthy and AD groups. For each frequency band,

histograms of ImCoh values were plotted for both cases when age is disregarded or when its

effect is removed from the data according to the normal aging change. Each of these methods

aims to remove any confound effect caused by normal aging from the data of AD patients.

These age-removed beta- and gamma-band ImCoh values are used to train multi-modal classi-

fiers (with and without the UPSIT scores), the results of which are described in the next

section.

Table 3. P-values derived from t-test for significant UPSIT odors separating the two groups of participants.

Odorant p-value

Q6 (Grape) <0.05

Q21 (Chocolate) <0.05

https://doi.org/10.1371/journal.pone.0243535.t003
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Fig 3. a) Percentage of correct answers for each UPSIT (Iran-SIT) odor identification question. The x-axis denotes the tested odors and is sorted from the left by the

number of correct answers that the mild AD patients gave. Hence, the leftmost odor is the one that the mild AD patients identified most. The y-axis is the

percentage of correct answers to each odor identification question in each group. Two odors that are statistically significant in distinguishing between mild AD

patients and healthy participants are denoted by + and x marks. b) The number of correct answers for each UPSIT (Iran-SIT) odor identification question divided

into five-year age bins. The shade of each bin denotes the number of correct answers. Green (light) pixels indicate that most participants in the corresponding age

bin answered the question correctly, and the blue (dark) pixels suggest that most of the participants were unable to identify the presented odor. The upper diagram

is for the healthy participants, and the lower diagram is for the mild AD patients. The two statistically significant odors are denoted by dashed boxes.

https://doi.org/10.1371/journal.pone.0243535.g003
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Fig 4. a) Beta-band component of a sample epoch from the data of the Fz and Cz electrodes for one AD (top) and one

healthy (bottom) participant. b) Gamma-band component of a sample epoch from the data of the Fz and Cz electrodes for

one AD (top) and one healthy (bottom) participant. c) Top: Regression of beta-band ImCoh value with age. Values for the

two groups are shown as histograms. Bottom: Age-adjusted beta-band ImCoh values are shown as histograms for the two

groups. d) Top: Regression of gamma-band ImCoh value with age. Values for the two groups are shown as histograms.

Bottom: Age-adjusted gamma-band ImCoh values are shown as histograms for the two groups. e) Statistical significance of

the gamma-band ImCoh value difference between mild AD patients and healthy participants. The Fz-Cz connection is the

most significant connection with p-value< 0.05. f) The ImCoh value of the Fz-Cz connection measured in each frequency

band. Statistically significant frequency bands are denoted by + and x marks.

https://doi.org/10.1371/journal.pone.0243535.g004
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Statistical analysis indicated the ImCoh value between the Fz and Cz channels to possess

the highest significance in separating the two groups of mild AD patients and healthy partici-

pants, with the gamma and beta ImCoh values having p-values less than 0.05. Fig 4e illustrates

the relative significance of the six electrode-pair connections for the gamma-band ImCoh val-

ues, with the best p-value in the Fz-Cz connection. Fig 4f shows the mean and the standard

deviation of the ImCoh values for all five frequency bands for the Fz-Cz connection across the

AD and healthy groups. The beta and gamma ImCoh values for this connection offer signifi-

cant discrimination power between the two groups.

Multimodal analysis

We employed three multimodal classification methods based on the significant ImCoh values

measured between the Fz and Cz channels in the beta and gamma frequency bands, and the

total or modified UPSIT scores. Using single-feature classifiers based on the total or modified

UPSIT scores resulted in classification accuracies reported in the UPSIT section earlier, which

are included in Table 4 for comparison with multi-modal results. Table 4a includes classifica-

tion results for the cases in which age was disregarded as a feature. In Table 4b, classification

results are shown for the cases in which all measured features are age-adjusted according to

the methods described earlier.

The multimodal classifier which employs the beta- and gamma-band ImCoh values across

the Fz-Cz electrode pair and the modified UPSIT score outperforms other classifiers in terms

of accuracy. This means that the data collection protocol corresponding to this classifier only

requires that the participants answer two questions in the UPSIT test and that the EEG data be

recorded from 3 electrodes (Fz, Cz, Fp1) and a reference (A1), offering a convenient procedure

for examining elderly participants. The performance of the proposed multimodal classifier is

comparable to the MMSE-based assessment used routinely in clinical examinations.

In addition, the modified UPSIT classifier performs equally well compared to the total

UPSIT score with age adjustment. This shows that even by using a limited number of selective

odors, clinicians can obtain valuable indications about the state of a patient. However, a more

extensive study is needed to further assess the validity of this claim.

In order to analyze how correlated the UPSIT score and the Fz-Cz beta and gamma ImCoh

values are with the clinical MMSE score, these values for all participants are plotted versus

Table 4. Classification accuracy for different modalities and the multi-modal analysis based on significant com-

ponents of each modality. a) Feature data were used for classification disregarding the age of the participants. b)

Residuals of each feature relative to its corresponding healthy group regressor were used for classification.

a) Classification Results (age-disregarded) Accuracy (%) AUC

Total UPSIT 87.5% 0.91

Modified UPSIT 70.8% 0.84

Beta and Gamma ImCoh in Fz-Cz 75.0% 0.85

Beta and Gamma ImCoh in Fz-Cz + Total UPSIT 87.5% 0.9

Beta and Gamma ImCoh in Fz-Cz + Modified UPSIT 91.7% 0.96

b) Classification Results (age-adjusted) Accuracy (%) AUC

Total UPSIT 87.5% 0.90

Modified UPSIT 87.5% 0.85

Beta and Gamma ImCoh in Fz-Cz 79.2% 0.85

Beta and Gamma ImCoh in Fz-Cz + Total UPSIT 83.3% 0.87

Beta and Gamma ImCoh in Fz-Cz + Modified UPSIT 91.7% 0.97

https://doi.org/10.1371/journal.pone.0243535.t004
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MMSE scores in Fig 5. The Pearson’s correlation coefficient between the UPSIT and MMSE

scores is 0.71 with a p-value of 0.0001, between the beta-band ImCoh value and the MMSE

score is -0.58, and between the gamma-band ImCoh value and the MMSE score is -0.55.

Discussion

Diagnostic methods such as PET, FDG-PET [50, 51] and MRI imaging and CSF sampling are

expensive [52]. In particular, CSF sampling involves an invasive procedure, making it imprac-

tical for longitudinal studies requiring repeated sampling. The proposed olfactory-based meth-

odology in this paper is convenient to conduct and has considerably lower cost. It is also more

accommodating for elderly patients as both the behavioral and EEG tests only require a small

number of measurements. It hence provides a viable solution for monitoring the progress of

the disease in a patient over time, and offers opportunities for longitudinal research studies.

In this study, we showed that the grape and chocolate odors could discriminate between

mild AD patients and healthy participants with good accuracy. Earlier studies have assessed

the ability of different scents in similar tasks. For example, the study by Kjelvik et al. [2] identi-

fied some significant odors, which interestingly, chocolate was among them. A proposition for

conducting olfactory-based studies would hence be to perform experiments in culturally-

diverse groups of populations and identify the marker odors which are significant universally

and those best suited for each culture or geography.

We also identified odors in our study which more than half of our mild AD patients could

still perceive and successfully recognize. Understandably, a survey of a larger population is

needed to identify such odors with more confidence. An interesting application for this set of

scents would be to include them in olfactory assessment tests to discriminate between mild

AD patients and individuals with anosmia or non-AD neurodegenerative diseases which can

lead to the loss of olfactory functionality.

It should be noted that some odors could not be correctly identified by either of the healthy

and AD groups. A reason for this lack of performance by the healthy participants might be the

unfamiliarity of the study group with certain scents. For instance, both the AD and healthy

groups were unable to identify the Coca-Cola odor because most Iranian elderly may have not

Fig 5. a) Correlation of the total UPSIT score and the MMSE score. b) Correlation of the beta-band ImCoh value and the MMSE score. c) Correlation of the gamma-

band ImCoh value and the MMSE score.

https://doi.org/10.1371/journal.pone.0243535.g005
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experienced this smell in their daily life. These non-discriminating odors can be replaced in

future sniffing kits by other scents to improve the performance of the test.

A known issue with interactive tests such as UPSIT is that the deficit in the perception of

odors can be confounded by memory and cognitive impairment affecting the recall of the

odor or its name. Nonetheless, the UPSIT experiment proved to possess sufficient discriminat-

ing power for the two subject groups in our study. Moreover, the fact that responses by the AD

group differ considerably across the set of odors provides additional clues about the progres-

sion of the impairments associated with the olfactory perception through the advancement of

the disease. The above points justify the inclusion of the UPSIT test in the studies on AD

progression.

On the other hand, the mentioned confound issue is totally mitigated in the EEG experi-

ment part of our study which does not involve verbal interactions with the subjects for identi-

fying the names of the odors. Identifying biomarkers in the EEG signal in response to

olfactory stimulation is indeed a major thrust of our study. The combined use of features from

the UPSIT and EEG tests improved the classification accuracy by about 4 percent for the total

UPSIT score and about 12 percent for the modified UPSIT score over the results of EEG alone.

Another gain offered by the UPSIT experiment was to allow the examination of a set of 24

odors while the EEG experiment was conducted using 2 odors. The two significant odors iden-

tified in our analysis of the UPSIT data can be used to define a simple interactive olfactory

screening test or as the two odors used in EEG recordings in the future.

The result of EEG-based olfactory assessment suggested that the coherence in the gamma

and beta bands significantly differs between mild AD patients and healthy participants. This

result is in agreement with the evidence about the roles that the gamma and beta bands play in

cognitive functions of the brain, and their deficit resulting from the neurodegenerative effects

of AD. The high-frequency gamma oscillations (30–100 Hz) and the beta oscillations (13–30

Hz) appear to be particularly well suited for the maintenance of functions in the brain that

involve binding the processed data from different sensory modules or elements stored in the

memory [53]. Multi-sensory data integration [54, 55], attentional sensory selection [56–58],

working memory association [59], and generation of long-term memory through associations

embedded as synaptic weight adaptation [60, 61], are all performed under the gamma and beta

oscillatory regimes in the neuronal populations involved [53].

Employing high-frequency oscillations in functions that access and combine data from

multiple sites in the brain is not a coincidence; the resolution that high-frequency oscillations

such as the beta and gamma bands offer in their phase allows for fine-tuned coding of relative

arrival times and latencies involved in accessing multiple threads of data and hence allows for

effective input selectivity through high-precision control of spike timing [53, 62, 63].

Earlier studies of the neurodegeneration mechanisms affecting the olfactory perception in

Alzheimer’s disease have indicated three possible candidates: 1) Disruption in the olfactory

bulb functionality [19], 2) Weakening of the feedforward data circuitry in the medial temporal

lobe [18, 19], and 3) Deficiency in the inhibitory feedback function of interneurons emanating

from the frontal lobe [64, 65]. The EEG analysis results of our study establish an evidence for

the significance of the third explanation, indicating loss of synchronous oscillations in the

frontal lobe as an early marker of AD.

Desynchronized neural activity and disruption of gamma oscillations have been observed

in both human mild AD patients [64, 66–68] and the AD mouse models [69–71]. As neuronal

connectivity is affected by the accumulation of amyloid-β in the extracellular space [72], con-

sidering such aggregation across a large population of neurons allows to model AD as a net-

work operation deficiency problem [73]. In such models, large inhibitory circuits operating

under high-frequency regimes turn into subpopulations that may produce these oscillations
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without synchrony with each other. As illustrated in Fig 6, amyloid-β plaques are accumulated

between neuronal populations in the frontal lobe, resulting in desynchronized inhibitory feed-

back to earlier layers. In [74] the deficit in coherence between oscillations measured by EEG

electrodes across the scalp in different frequency bands has been proposed as a diagnostic

marker of dementia caused by Alzheimer’s disease.

While it is still a matter of debate whether these deficits in high-frequency oscillations are a

consequence of the underlying disease progression or that they indeed play a causal role in

inducing more biological changes that promote the disease [72], the deficit in the high-fre-

quency oscillations can be associated on the functional level with the lowered binding activity

in the cortex, causing the known symptoms of AD such as cognitive decline and dementia.

Our study revealed the significance of the gamma and beta band coherences in separating

mild AD patients and healthy participants and showed the difference to be more significant

across the spatial range measured by the Fz and Cz electrodes. This is the scalp region close to

the cortical areas known to be involved in many cognitive functions.

Our study showed that the olfactory deficit could be a fairly accurate marker for AD when

behavioral assessment results are combined with the coherency results of the EEG recording.

The accuracy of the proposed multi-modal classifier is significantly above the chance level

(91.7%). Even if we develop a classifier based on the MMSE scores—which is based on tests

that directly evaluate the participant’s memory and cognition—we may not always reach 100%

accuracy. A common issue in performing the MMSE test is that some of its questions require

reading and writing skills and therefore, illiterate subjects cannot get any scores from those

parts. Also, running the test requires interaction between the participant and the memory spe-

cialist, increasing the probability of introducing bias during the test. Unlike MMSE, the pro-

posed method in this study requires much less interaction and the behavioral olfactory

assessment (UPSIT) test can be carried out even by the participants themselves if they have the

ability to read the questions.

Fig 6. Deposition of amyloid-β plaques in the frontal lobe leads to the weakening of neuronal connections.

Neuronal populations are still working, but they are not synchronous enough to send effective inhibitory feedback to

earlier processing layers.

https://doi.org/10.1371/journal.pone.0243535.g006
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Limitations

We have demonstrated the suitability of our methodology in identifying mild AD patients in a

limited study on the Iranian population. The proposed method needs to be applied to a bigger

population using a larger set of odorants in order to further validate and map out the useful-

ness of olfactory-based biomarkers in the diagnosis of AD. Furthermore, a larger-cohort study

can reveal the effectiveness of our methodology when patients suffering from non-AD demen-

tia or moderate and severe AD patients are also present in the study.

As odor perception is a culture-dependent phenomenon, the exact results derived in our

study may not be directly applicable to different populations. A more comprehensive study

comprising of populations of participants from different cultural backgrounds is needed to

verify the validity of the proposed approach in general, and the significance of the individual

scents or other features used in our regressors and classifiers in particular.

A related notable remark is that while the results of the smell identification test (UPSIT)

may have strong cultural dependencies, the EEG-based coherence analysis may prove to be a

relatively more robust procedure. This is due to the fact that higher-level functions of the brain

are represented in the coherence values measured in the EEG analysis, and some level of

abstraction from the particular smells that are perceived may be represented in these

measurements.

Another limitation of the smell identification test is that successfully answering questions in

it involves both the perception of the presented odor as well as its recognition through a mem-

ory recall process. This indicates an inherent ambiguity in this test between a lack of percep-

tion of the presented smell and failure to identify the name of the odor which may have indeed

been perceived. The EEG-based olfactory assessment is advantageous in this aspect to the

UPSIT test as it mainly focuses on the perception ability and not the identification or naming

functions.

Extensions

One interesting extension of this work is to repeat the EEG-based experiments using the two

odors (chocolate and grape) which were identified in the olfactory recognition task as signifi-

cant and compare the results of the coherence analysis with the current results. As these two

odors best separate the two groups of participants, it is interesting to see any gains their usage

may provide to the EEG-based coherence results.

An essential extension to the EEG analysis is to examine other approaches, such as the dif-

ference between the responses to the two odorants within each group of mild AD patients and

healthy participants. There are two possible ways to derive these differences. One is to repeat

the current coherence-based approach separately for each of the odorants. The other is to

make the comparison directly in the temporal domain of the recorded EEG data after artifact

and noise removal. Possible advantages of these odorant-differential analyses may include the

additional dimension that they provide as the difference in responses to the two presented

odors. To perform this extension, it is better to conduct the experiments with a sequence of

odors in which both odorants are presented randomly with equal probabilities so the number

of epochs related to the two odorants would be comparable.

Another possible domain for extending the EEG-based olfactory test is to repeat the experi-

ment for each participant in more than one session and use different pairs of odorants in each

experiment. This allows for studying the sensitivity map of each participant relative to different

odors. Running an experiment with more than two odorants presented by the same olfactome-

ter is a possibility but requires modifications in the design of the olfactometer.
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On the cohort design side, a necessary extension is to recall the participants for another

round of experiments after a period of six to twelve months and perform longitudinal analyses

to study the correlation between the olfactory decline and the progress of the disease in each

patient. Another critical extension that can further evaluate the specificity power of the pro-

posed approach is to include a third participant group consisting of non-AD MCI patients and

examine the single- and multi-modal analysis methods of the current study in discriminating

the three groups from one another. These two latter extensions are within the scope of our on-

going data collection campaign. Any additional results achieved in each of these extended

studies will be provided in future reports.

Conclusions

In this paper, we have demonstrated the efficacy of an inexpensive methodology for evaluating

the olfactory deficit in the elderly population for being utilized as a marker of AD with good

accuracy. Our proposed approach combines behavioral olfactory data with EEG measure-

ments to yield an accurate assessment of the participant’s state.

Statistical analysis of the results of the smell identification test yields two odors (Chocolate

and Grape) as significant (p-values< 0.05) from a set of 24 odorants. The EEG coherence anal-

ysis indicates the gamma and beta bands to be significant (p-values < 0.05) in the link between

the Cz and Fz channels, with the gamma band possessing a higher significance. The proposed

multi-modal classifier yields an accuracy of 91.7% in separating mild AD patients from healthy

participants.

The accessibility and low cost of the proposed procedure allow for large-scale screening of

AD in different geographical regions, a looming necessity across the world as the aging popula-

tion is rapidly expanding. Furthermore, athe results of this work can provide researchers with

new insights about the relationship between AD progression and olfactory deficit and can lead

to new treatment methods based on olfactory stimulation.
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45. Cécilia Tremblay JF. Olfactory and Trigeminal Systems Interact in the Periphery. Chemical Senses.

October 2018; 43(8): p. 611–616. https://doi.org/10.1093/chemse/bjy049 PMID: 30052799

46. T. S. Lorig ACSJCaWSC. Event-related. Bulletin of Psychonomic Society.; 131–134(31(2)): p. 131–134.

47. Caminiti Fabrizia DS SDC MCR MB PM SC R. Detection of Olfactory Dysfunction Using Olfactory

Event Related Potentials in Young Patients with Multiple Sclerosis. Plos One. July 21, 2014. https://doi.

org/10.1371/journal.pone.0103151 PMID: 25047369

48. Aapo Hyvärinen EO. Independent component analysis: algorithms and applications. Neural Networks

2000.

49. Welch P. The use of fast Fourier transform for the estimation of power spectra: A method based on time

averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, vol.

15, no. 2, pp. 70–73, June 1967.

50. Gupta Y, Lama RK, Kwon GR. Prediction and Classification of Alzheimer’s Disease Based on Com-

bined Features From Apolipoprotein-E Genotype, Cerebrospinal Fluid, MR, and FDG-PET Imaging Bio-

markers. Frontiers in Computational Neuroscience. October 16, 2019.

51. Samper-Gonzalez J, Burgos N, Bottani S, Fontanella S, Lu P, et al. Reproducible evaluation of classifi-

cation methods in Alzheimer’s disease: Framework and application to MRI and PET data. Neuroimage.

2018; 183: p. 504–521. https://doi.org/10.1016/j.neuroimage.2018.08.042 PMID: 30130647

52. Wolk D, Salloway S, Dickenson B. Putting the New Alzheimer Disease Amyloid, Tau, Neurodegenartion

(AT[N]) Diagnostic system to the test. JAMA. 2019; 321(23): p. 2289–2291. https://doi.org/10.1001/

jama.2019.7534 PMID: 31211328

53. Fries P, Nikolic D, Singer W. The Gamma Cycle. Trends in Neuroscience. 2007; 30(7): p. 309–316.

https://doi.org/10.1016/j.tins.2007.05.005 PMID: 17555828

54. Yuval-Greenberg S, Deouelle LY. What you see is not (always) what you hear: induced gamma band

responses reflect cross modal interactions in familiar object recognition. J. Neurosci. 2007; 27: p.

1090–1096. https://doi.org/10.1523/JNEUROSCI.4828-06.2007 PMID: 17267563

55. Mishra J, Martinez A, Sejnowski TJ, Hillyard SA. Early Cross-Modal Interactions in Auditory and Visual

Cortex Underlie a Sound-Induced Visual Illusion. Journal of Neuroscience. 2007; 27(15): p. 4120–

4131. https://doi.org/10.1523/JNEUROSCI.4912-06.2007 PMID: 17428990

56. Taylor K, Mandon S, Freiwald WA, Kreiter AK. Coherent Oscillatory Activity in Monkey Area V4 Predicts

Successful Allocation of Attention. Cerebral Cortex. 2005; 15(9): p. 1424–1437. https://doi.org/10.

1093/cercor/bhi023 PMID: 15659657

57. Börgers C, Epstein S, Kopell NJ. Background gamma rhythmicity and attention in cortical local circuits:

A computational study. PNAS. 2005; 102(19): p. 7002–7007. https://doi.org/10.1073/pnas.

0502366102 PMID: 15870189

58. Mishra J, Fellous JM, Sejnowski TJ. Selective attention through phase relationship of excitatory and

inhibitory input synchrony in a model cortical neuron. Neural Netw. 2006; 19(9): p. 1329–46. https://doi.

org/10.1016/j.neunet.2006.08.005 PMID: 17027225

59. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA. Temporal structure in neuronal activity dur-

ing working memory in macaque parietal cortex. Nat Neurosci. 2002; 5(8): p. 805–11. https://doi.org/

10.1038/nn890 PMID: 12134152

60. Fell J, Klaver P, Lehnartz K, Grunwald T, Schaller C, Elger CE, et al. Human memory formation is

accompanied by rhinal-hippocampal coupling and decoupling. Nat Neurosci. 2001; 4(12): p. 1259–64.

https://doi.org/10.1038/nn759 PMID: 11694886

PLOS ONE Olfactory response as a marker for Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0243535 December 15, 2020 22 / 23

https://doi.org/10.1016/j.jneumeth.2003.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15102499
https://doi.org/10.1016/j.resp.2018.07.002
https://doi.org/10.1016/j.resp.2018.07.002
http://www.ncbi.nlm.nih.gov/pubmed/30006255
https://doi.org/10.1093/chemse/bjy049
http://www.ncbi.nlm.nih.gov/pubmed/30052799
https://doi.org/10.1371/journal.pone.0103151
https://doi.org/10.1371/journal.pone.0103151
http://www.ncbi.nlm.nih.gov/pubmed/25047369
https://doi.org/10.1016/j.neuroimage.2018.08.042
http://www.ncbi.nlm.nih.gov/pubmed/30130647
https://doi.org/10.1001/jama.2019.7534
https://doi.org/10.1001/jama.2019.7534
http://www.ncbi.nlm.nih.gov/pubmed/31211328
https://doi.org/10.1016/j.tins.2007.05.005
http://www.ncbi.nlm.nih.gov/pubmed/17555828
https://doi.org/10.1523/JNEUROSCI.4828-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17267563
https://doi.org/10.1523/JNEUROSCI.4912-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17428990
https://doi.org/10.1093/cercor/bhi023
https://doi.org/10.1093/cercor/bhi023
http://www.ncbi.nlm.nih.gov/pubmed/15659657
https://doi.org/10.1073/pnas.0502366102
https://doi.org/10.1073/pnas.0502366102
http://www.ncbi.nlm.nih.gov/pubmed/15870189
https://doi.org/10.1016/j.neunet.2006.08.005
https://doi.org/10.1016/j.neunet.2006.08.005
http://www.ncbi.nlm.nih.gov/pubmed/17027225
https://doi.org/10.1038/nn890
https://doi.org/10.1038/nn890
http://www.ncbi.nlm.nih.gov/pubmed/12134152
https://doi.org/10.1038/nn759
http://www.ncbi.nlm.nih.gov/pubmed/11694886
https://doi.org/10.1371/journal.pone.0243535


61. Wespatat V, Tennigkeit F, Singer W. Phase sensitivity of synaptic modifications in oscillating cells of rat

visual cortex. J. Neurosci. 2004; 24(41): p. 9067–75. https://doi.org/10.1523/JNEUROSCI.2221-04.

2004 PMID: 15483125

62. Buzsaki G. Rhythms of the brain: Oxford University Press; 2006.

63. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence.

Trends in Cognitive Science. 2005; 9: p. 474–480. https://doi.org/10.1016/j.tics.2005.08.011 PMID:

16150631

64. Koenig T, Prichep L, Dierks T, Hubl D, Wahlund LO, John ER, et al. Decreased EEG synchronization in

Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2005; 26(2): p. 165–171. https://

doi.org/10.1016/j.neurobiolaging.2004.03.008 PMID: 15582746

65. Verret L, Mann E, Hang G, Barth A, Cobos I, Ho K, et al. Inhibitory Interneuron Deficit Links Altered Net-

work Activity and Cognitive Dysfunction in Alzheimer Model. Cell. 2012; 149(3). https://doi.org/10.

1016/j.cell.2012.02.046 PMID: 22541439

66. Uhlhaas PH, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and

pathophysiology. Neuron. 2006; 52(1): p. 155–168. https://doi.org/10.1016/j.neuron.2006.09.020

PMID: 17015233

67. Pijnenburg YA, Made Y v d, van Cappellen van Walsum AM, Knol DL, Scheltens P, Stam CJ. EEG syn-

chronization likelihood in mild cognitive impairment and Alzheimer’s disease during a working memory

task. Clin. Neurophysiol. 2004; 115(6): p. 1332–1339. https://doi.org/10.1016/j.clinph.2003.12.029

PMID: 15134700

68. Palop JJ, Chin J, Robersion ED. Aberrant excitatory neuronal activity and compensatory remodeling of

inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 2007; 55(5): p. 697–

711. https://doi.org/10.1016/j.neuron.2007.07.025 PMID: 17785178

69. Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, et al. Gamma frequency

entrainment attenuates amyloid load and modifies microglia. Nature. 2016;: p. 230–235. https://doi.org/

10.1038/nature20587 PMID: 27929004

70. Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, et al. Inhibitory interneuron deficit links altered

network activity and cognitive dysfunction in Alzheimer model. Cell. 2012; 149(3): p. 708–721. https://

doi.org/10.1016/j.cell.2012.02.046 PMID: 22541439

71. Gillespie AK, Jones EA, Lin YH, Karlsson MP, Kay K, Yoon SY, et al. Apolipoprotein E4 Causes Age-

Dependent Disruption of Slow Gamma Oscillations during Hippocampal Sharp-Wave Ripples. Neuron.

2016; 90(4): p. 740–751. https://doi.org/10.1016/j.neuron.2016.04.009 PMID: 27161522

72. Canter RG, Penney J, Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer’s dis-

ease. Nature. 2016; 539: p. 187–196. https://doi.org/10.1038/nature20412 PMID: 27830780

73. Palop JJ, Mucke L. Amyloid-β Induced Neuronal Dysfunction in Alzheimer’s Disease: From Synapses

toward Neural Networks. Nature Neuroscience. 2011; 13(7).

74. Musaeus CS, Engedal k, Hogh P, Jelic V, Morup M, Naik M, et al. Oscillatory connectivity as a diagnos-

tic marker of dementia due to Alzheimer’s disease. Clinical Neurophysiology. 2019; 130(10): p. 1889–

1899. https://doi.org/10.1016/j.clinph.2019.07.016 PMID: 31408790

PLOS ONE Olfactory response as a marker for Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0243535 December 15, 2020 23 / 23

https://doi.org/10.1523/JNEUROSCI.2221-04.2004
https://doi.org/10.1523/JNEUROSCI.2221-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15483125
https://doi.org/10.1016/j.tics.2005.08.011
http://www.ncbi.nlm.nih.gov/pubmed/16150631
https://doi.org/10.1016/j.neurobiolaging.2004.03.008
https://doi.org/10.1016/j.neurobiolaging.2004.03.008
http://www.ncbi.nlm.nih.gov/pubmed/15582746
https://doi.org/10.1016/j.cell.2012.02.046
https://doi.org/10.1016/j.cell.2012.02.046
http://www.ncbi.nlm.nih.gov/pubmed/22541439
https://doi.org/10.1016/j.neuron.2006.09.020
http://www.ncbi.nlm.nih.gov/pubmed/17015233
https://doi.org/10.1016/j.clinph.2003.12.029
http://www.ncbi.nlm.nih.gov/pubmed/15134700
https://doi.org/10.1016/j.neuron.2007.07.025
http://www.ncbi.nlm.nih.gov/pubmed/17785178
https://doi.org/10.1038/nature20587
https://doi.org/10.1038/nature20587
http://www.ncbi.nlm.nih.gov/pubmed/27929004
https://doi.org/10.1016/j.cell.2012.02.046
https://doi.org/10.1016/j.cell.2012.02.046
http://www.ncbi.nlm.nih.gov/pubmed/22541439
https://doi.org/10.1016/j.neuron.2016.04.009
http://www.ncbi.nlm.nih.gov/pubmed/27161522
https://doi.org/10.1038/nature20412
http://www.ncbi.nlm.nih.gov/pubmed/27830780
https://doi.org/10.1016/j.clinph.2019.07.016
http://www.ncbi.nlm.nih.gov/pubmed/31408790
https://doi.org/10.1371/journal.pone.0243535

