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Abstract

Type 1 Diabetes mellitus (T1DM) is associated with abnormal liver function, but the exact

mechanism is unclear. Cordycepin improves hepatic metabolic pathways leading to recov-

ery from liver damage. We investigated the effects of cordycepin in streptozotocin-induced

T1DM mice via the expression of liver proteins. Twenty-four mice were divided into four

equal groups: normal (N), normal mice treated with cordycepin (N+COR), diabetic mice

(DM), and diabetic mice treated with cordycepin (DM+COR). Mice in each treatment group

were intraperitoneally injection of cordycepin at dose 24 mg/kg for 14 consecutive days.

Body weight, blood glucose, and the tricarboxylic acid cycle intermediates were measured.

Liver tissue protein profiling was performed using shotgun proteomics, while protein function

and protein-protein interaction were predicted using PANTHER and STITCH v.5.0 software,

respectively. No significant difference was observed in fasting blood glucose levels between

DM and DM+COR for all time intervals. However, a significant decrease in final body weight,

food intake, and water intake in DM+COR was found. Hepatic oxaloacetate and citrate lev-

els were significantly increased in DM+COR compared to DM. Furthermore, 11 and 36 pro-

teins were only expressed by the N+COR and DM+COR groups, respectively. Three unique

proteins in DM+COR, namely, Nfat3, Flcn, and Psma3 were correlated with the production

of ATP, AMPK signaling pathway, and ubiquitin proteasome system (UPS), respectively.

Interestingly, a protein detected in N+COR and DM+COR (Gli3) was linked with the insulin

signaling pathway. In conclusion, cordycepin might help in preventing hepatic metabolism

by regulating the expression of energy-related protein and UPS to maintain cell survival.

Further work on predicting the performance of metabolic mechanisms regarding the thera-

peutic applications of cordycepin will be performed in future.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0256140 August 13, 2021 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Parunyakul K, Srisuksai K,

Charoenlappanit S, Phaonakrop N, Roytrakul S,

Fungfuang W (2021) Metabolic impacts of

cordycepin on hepatic proteomic expression in

streptozotocin-induced type 1 diabetic mice. PLoS

ONE 16(8): e0256140. https://doi.org/10.1371/

journal.pone.0256140

Editor: Vanessa Souza-Mello, State University of

Rio de Janeiro, BRAZIL

Received: May 12, 2021

Accepted: July 29, 2021

Published: August 13, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0256140

Copyright: © 2021 Parunyakul et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

https://orcid.org/0000-0001-6689-2804
https://doi.org/10.1371/journal.pone.0256140
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256140&domain=pdf&date_stamp=2021-08-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256140&domain=pdf&date_stamp=2021-08-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256140&domain=pdf&date_stamp=2021-08-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256140&domain=pdf&date_stamp=2021-08-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256140&domain=pdf&date_stamp=2021-08-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0256140&domain=pdf&date_stamp=2021-08-13
https://doi.org/10.1371/journal.pone.0256140
https://doi.org/10.1371/journal.pone.0256140
https://doi.org/10.1371/journal.pone.0256140
http://creativecommons.org/licenses/by/4.0/


Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder that has become an important public

health problem. In this disease, the body enters a hyperglycemic state where it is unable to cor-

rectly process glucose for cellular energy, owing to defects in insulin secretion or action [1].

DM has become a major cause of morbidity and mortality in humans and its world-wide inci-

dence is increasing rapidly [2]. Over time, complications develop in patients with type 1 DM

(T1DM), which are closely related to dysfunction in energy metabolism and insulin resistance

[3]. The liver is a key metabolic organ which regulates corporeal energy metabolism, with a

previous study indicating that T1DM reduces the hepatic energy metabolism activity [4].

Meanwhile, the hepatic AMP-activated protein kinase (AMPK) and insulin signaling pathway

are known to perform an integral role in maintaining the energy status [5, 6]. Moreover, it has

been shown that major energy production pathways, such as glycolysis, tricarboxylic acid

(TCA) cycle, and fatty acid oxidation are down-regulated in rats with DM [7]. Under insulin

resistance, pyruvate is used for gluconeogenesis and fatty acid synthesis rather than Adenosine

triphosphate (ATP)—which is promoted by the TCA cycle—resulting in hyperglycemia [8, 9].

The underlying mechanisms of energy homeostasis have been used to describe the metabolic

changes used in clinical practice to determine the disease severity and to generate predictive

information related to survival.

Medicinal mushrooms are valued as a natural source of bioactive agents. They have low tox-

icity and a high degree of specificity in activating the human immune system and controlling

metabolism, and have been proposed as potential hypoglycemic agents [10]. Many studies

have demonstrated that natural products possess antidiabetic activity with less adverse side-

effects and show great auxiliary therapeutic effects on complications [11–13]. Cordyceps spp., a

genus of ascomycete fungi and a traditional Chinese drug, is recommended by Chinese medi-

cal practitioners as a therapy for many ailments. Treatments involving Cordyceps and its

extracts primarily target the regulation of blood glucose metabolism, increasing ATP produc-

tion, and oxygen utilization [14]. Cordycepin, a nucleoside analog of 30-deoxyadenosine (Fig

1), was initially isolated from Cordyceps, has also shown significant antitumor and immuno-

modulatory effects [15, 16]. A previous study shows that treatment with cordycepin during

diabetes can improve some symptoms of metabolic syndrome by regulating the glucose

absorption [17]. Therefore, the aim of this research was to investigate the effect of cordycepin

on protein expression in streptozotocin-induced diabetic mice. We hypothesize that cordyce-

pin could be associated with alterations in protein expressions of energy homeostasis pathways

in murine livers. This information may help clarify the mechanism of action of cordycepin in

maintaining energy homeostasis in T1DM and may assist in the prediction of biomarkers of

this disease.

Materials and methods

Reagents

Cordycepin, streptozotocin (STZ), pentobarbital sodium, and TCA cycle standard samples

(oxaloacetate, alpha-ketoglutarate, and citrate) were purchased from Sigma (St. Louis, USA).

Animal care and experimental design

Twenty-four C57BL male mice (6 weeks old) were obtained from the National Laboratory

Animal Center, Mahidol University, Thailand. The animals were housed under controlled

environmental conditions (25±2˚C on a 12-h light/12-h dark cycle with lights off at 19:00 hrs)

and ad libitum feed. The research conducted adhered to the Guidelines for the Care and Use
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of Laboratory Animals. The ethics committee of Kasetsart University Research and Develop-

ment Institute, Kasetsart University, Thailand, approved this study (Approval No. ACK-

U60-SCI-014).

Diabetes was induced in 12 mice through a single intra-peritoneal injection of STZ. The

STZ was prepared by dissolving in a citrate buffer (0.1 M, pH 4.5) at a dosage of 200 mg per kg

of body weight. The normal mice received only the same volume of citrate buffer. After 36 h

under observation, plasma glucose level was detected and mice with plasma glucose levels that

exceed 250 mg/dl were considered as diabetes. Animals were randomly divided into four

groups. Group 1 included control nondiabetic animals, who received sterile water (N); Group

2 included nondiabetic animals, who received cordycepin (N+Cor); Group 3 included diabetic

animals, who received sterile water (DM); and Group 4 included diabetic animals, who

received cordycepin (DM+Cor). Mice in each treatment were intraperitoneally administrated

for 14 days once per day. Cordycepin was dissolved in sterile water at a dose of 24 mg/kg/day,

according to Ma et al. [17].

On the last day of experiment, Blood glucose level was monitored after a 12 h overnight

fast. Body weight and food consumption were monitored daily by weighing the animal at

11:00 hrs; the food intake of each animal was measured by weighing the remaining chow.

Tissue collection and TCA intermediates analysis

At the end of the experimental period, all animals were euthanized with 60 mg/ml of pentobar-

bital sodium. Liver was removed and then weighed to determine their index (organ weight/

body weight). Liver tissues were excised, homogenized with ice cold phosphate-buffered saline

(20% w/v) and centrifuged (2000 g for 20 min at 4˚C). The supernatants were stored at -80˚C

until further analysis was done. High-performance liquid chromatography (HPLC) was used

Fig 1. Chemical structure of cordycepin.

https://doi.org/10.1371/journal.pone.0256140.g001
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to determine the TCA cycle intermediates, according to the method described by Lillefosse

et al. [18].

The frozen supernatants were mixed with methanol in a ratio of 2:8 (v/v). After centrifuga-

tion (20 000 g for 20 min at 4˚C), the supernatants were taken out and evaporated using a

freeze dyer operating at -80˚C. The metabolites were then re-dissolved in 500 μl of HPLC

buffer. Each 5 μl sample was subjected to HPLC analysis. Chromatography was performed as

follows: the injection volume was set to 5 μl and the column was kept at 40˚C. A Shodex C18-

4D (150x4.6 mm) 5 μm was used to achieve a separation with a mobile phase consisting of 8%

1 N sulfuric acid. The gradient elution was 1 ml/min.

Liquid Chromatography-Mass Spectrometry (LC-MS) analysis and

identification of proteins

The liver supernatants were mixed with acetone at a 2:1 (v/v) ratio, and centrifuged at 10 000g

for 10 min. The pellet was suspended in a lysis buffer (0.25% (w/v) SDS, 50 mM Tris-HCl, pH

9.0) and the protein concentration was determined through Lowry’s method [19] using bovine

serum albumin (BSA) as the standard. Pooled samples of different groups were made by mix-

ing equal amounts of protein from individual tissue samples.

Disulfide bonds in 5 μg of protein samples were reduced using 5 mM dithiothreitol in 10

mM ammonium bicarbonate at 60˚C for 1 h, followed by the alkylation of sulfhydryl groups

by 15 mM iodoacetamide in 10 mM ammonium bicarbonate for 45 min in the dark and at

room temperature. Subsequently, the protein samples were mixed with sequencing-grade tryp-

sin (ratio of 1:20; Promega, Germany) and incubated at 37˚C overnight. The tryptic peptides

were dried and protonated with 0.1% formic acid before injecting into an Ultimate 3000

Nano/Capillary LC system (Dionex Ltd., UK) coupled to an HCTUltra (Bruker Daltonics, Bil-

lerica, MA, USA), in addition to an electrospray at a flow rate of 300 nL/min to a nanocolumn

(PepSwift monolithic column 100 mm with an internal diameter of 50 mm). A mobile phase

of solvent A (0.1% formic acid) and solvent B (80% acetonitrile and 0.1% formic acid) was

used to elute peptides using a linear gradient of 4%–70% of solvent B during minutes 0–20

(the time-point of retention) followed by 90% solvent B during minutes 20–25, to remove all

the peptides in the column. The final elution of 10% solvent B during minutes 25–40 was per-

formed to remove any remaining salt. Mass spectra of peptide fragments were acquired in a

data-dependent AutoMS (2) mode with a scanning range of 300–1500 m/z, three averages, and

up to five precursor ions were selected from the MS scan range of 50−3000 m/z.

DeCyder MS Differential Analysis software (DeCyderMS, GE Healthcare) was used to

quantify the proteins in individual samples while the Mascot search engine was used to corre-

late the MS/MS spectra to a Macaca protein database maintained by Uniprot [20, 21]. Mascot’s

standard settings were used: a maximum of three miss cleavages, peptide tolerance of 1.2 dal-

ton, an MS/MS tolerance of 0.6 dalton, trypsin as the digesting enzyme, carbamidomethylation

of cysteine as the fixed modification, oxidation of methionine as the variable modifications,

and peptide charge states (1+, 2+, and 3+). The level of proteins in each sample was expressed

as log2 value.

Data analysis and statistical methods

Venn diagrams were used for counting and comparing the lists of proteins in each group [22].

Jvenn software displays the data as Venn diagrams and two statistical charts were generated to

assess the homogeneity of list size and to compare the compactness of multiple Venn dia-

grams. Proteins were classified according to their function, which related the protein molecu-

lar junctions with biological processes at the level of an organism, using the Protein Analysis
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Through Evolutionary Relationships or PANTHER classification system (available at http://

www.pantherdb.org) [23]. The data were searched against the NCBI and Uniprot databases for

protein identification to understand the molecular function and biological processes. Lastly,

STITCH (v.5.0) was used to predict the chemical-protein and protein–protein interaction

network.

The data will be expressed as means ± SD in the results. Statistical analysis was performed

through the analysis of variance (one-way ANOVA), followed by Turkey’s post hoc test using

the R project statistical computing package (R core team, 2019). A P-value of< 0.05 was con-

sidered as being statistically significant.

Results

Effect of cordycepin on fasting blood glucose levels, body weight, food

intake, water intake and liver index

As shown in Fig 2A, the streptozotocin-induced diabetic mice (DM) mice showed significant

increase on fasting blood glucose levels at 0, 7 and 14 days. However, the cordycepin treatment

on DM mice did not show significant effect to fasting blood glucose level at all the time inter-

vals. The difference in body weights among all of the groups in the initial days was not signifi-

cant. After 7 days, the body weights of the DM and DM+COR were lower than that of the N

group (Fig 2B). As shown in Table 1, DM exhibited a low final body weight, an increased food

intake, and an increased water intake. Nevertheless, cordycepin treatment of the diabetic mice

(DM+COR) significantly decreased the body weight, food intake and water intake when com-

pared to DM. On the other hand, cordycepin treatment did not affect the blood glucose levels

and liver index when compared to the DM group.

Fig 2. The effect of cordycepin on (A) blood glucose levels and (B) body weight at different time intervals of administration.

Values are expressed as means ± SD. Different letters indicate statistically significant differences between groups (P< 0.05).

https://doi.org/10.1371/journal.pone.0256140.g002

Table 1. Effect of cordycepin on final body weight, food intake, water intake and liver index.

Group Final body weight (g) Food intake (g/day) Water intake (mL/day) Liver index

N 24.58±0.73a 2.70±0.20a 4.27 ± 1.08a 5.29 ± 0.25

N+COR 22.27±1.02b 2.49±0.16a 3.31 ± 0.82b 5.44 ± 0.34

DM 20.41±1.90b 4.02±0.55b 20.34 ± 2.98b 5.74 ± 0.87

DM+COR 18.10±0.51c 3.38±0.75c 16.96 ± 3.21c 5.31 ± 1.00

Values are expressed mean±SD. Different letters indicates statistically significant differences between groups (P<0.05).

https://doi.org/10.1371/journal.pone.0256140.t001
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Effect of cordycepin on hepatic TCA intermediate levels

Levels of hepatic TCA intermediates are presented in Fig 3. The DM+COR group showed sig-

nificantly increased oxaloacetic and citrate levels when compared with DM. However, the

hepatic alpha-ketoglutarate levels were not different between the groups.

Effect of cordycepin on liver tissue proteins

From the LC-MS/MS, a totally of 1455 different proteins were identified, out of which 585 pro-

teins were present in all groups. The Venn diagram in Fig 4 shows the number of differentially

expressed proteins between groups. Seven proteins were expressed in the N group. However,

11 were detected only in the N+COR group. In addition, 46 and 36 proteins were expressed in

DM and DM+COR group, respectively. The 36 and 11 proteins found only in DM+COR and

N+COR, respectively, were classified by PANTHER and were categorized based on the molec-

ular function and biological process, as shown in Fig 5. Following the classification of protein

fraction according to molecular function, most proteins isolated in the DM+COR were seen to

be involved in the catalytic activity (43%); and the same proteins were then further categorized

according to biological processes, which were classified as biological regulation (23%), cellular

process (23%), and signaling (18%). In addition, unique proteins from N+COR were also cate-

gorized according to the molecular function and biological process and were mainly classified

in binding (100%), response to stimulus (34%), and cellular process (33%).

Effects of cordycepin treatment on hepatic protein expression

To identify the effect of cordycepin on biomarkers and molecular mechanisms, 36 proteins

detected uniquely in DM+COR mice were considered. However, only 7 proteins could be

identified using the UniProt database. Their functions were related to the energy homeostasis,

proteasomal protein catabolic process, and beta cell receptor signaling pathway (Table 2).

Interestingly, the transcriptional activator GLI3, detected in N+COR mice and DM+COR

mice, was found to play a role in the smoothened signaling pathway (Table 3). UniProt

Fig 3. The level of (A) oxaloacetate, (B) citrate, and (C) alpha-ketoglutarate in liver tissues. Values are expressed as

means ± SD. Different letters indicate statistically significant differences between groups (P< 0.05).

https://doi.org/10.1371/journal.pone.0256140.g003

PLOS ONE Metabolic impacts of cordycepin on hepatic proteomic expression in streptozotocin-induced diabetic mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0256140 August 13, 2021 6 / 15

https://doi.org/10.1371/journal.pone.0256140.g003
https://doi.org/10.1371/journal.pone.0256140


accession was also used to reveal the association of unique proteins in N group, N+COR

group, and DM group with biological process as shown in S1 Table.

Protein interaction network analysis of differentially abundant proteins

As shown in Fig 6, the results indicate that the unique proteins detected in the DM+COR

(Psma3, Rftn1, Flcn, Nfatc3, and P33monox) were linked with the metabolic homeostasis path-

way in the liver. We observed a functional interaction between Flcn and proteins in the AMPK

signaling pathway (Prkaa, Prkaa2, Prkag1, and Prkag2), but Rftn1 and p33monox were not asso-

ciated with the metabolic homeostasis or AMPK signaling pathways. Moreover, Psma3 also indi-

cated to a functional interaction with proteins in the ubiquitin proteasome system (UPS; Psma1,

Psma5, Psma7, Psmb1, Psmb2, Psmb5, Psmb6, Psmb7, and Psmb9) linked with ATP metabolic

processes. Meanwhile, the protein common to the N+COR and DM+COR group, namely Gli3,

interacted with other proteins associated with the insulin signaling pathway (Akt1 and Akt2).

Discussion

DM is a metabolic disorder of multiple etiologies characterized by a chronic hyperglycemia

with disturbance of carbohydrate, fat, and protein metabolism resulting from issues with

Fig 4. Venn diagram of proteins differentially expressed in the normal control group (N), normal mice treated

with cordycepin (N+Cor), diabetic control group (DM), and diabetic mice treated with cordycepin (DM+Cor).

https://doi.org/10.1371/journal.pone.0256140.g004
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insulin secretion, insulin resistance, or both. T1DM results from primary loss of beta cell mass

in the pancreas due to complex autoimmune processes. Thereafter, simultaneous insulin defi-

ciency and chronic hyperglycemia are considered to be exclusive contributors to insulin resis-

tance in patients with long-standing, poorly controlled T1DM [1]. We used a single high dose

of STZ to induce pancreatic beta cell damage, resulting in hyperglycemia, hyperinsulinemia

[24], and hepatotoxicity [25]. Previous study indicated that cordycepin failed to reduce blood

glucose levels of 150 mg/kg during the first 3 days of treatment of STZ-treated mice [26]. Sun

et al. [27] reports that the high dose STZ treatment destroyed pancreatic islet beta-cells within

a short time, resulting in rapid β-cells necrosis, significant hyperglycemia in diabetic mice.

Our findings indicate that cordycepin failed to lower the blood glucose levels after 2 weeks,

Fig 5. Classification of expressed unique proteins using the PANTHER system. Unique protein classification of the DM+COR group according to

molecular function (A) and biological process (B). Unique protein classification of the N+COR group according to molecular function (C) and biological

process (D).

https://doi.org/10.1371/journal.pone.0256140.g005

Table 2. Protein identification and functional classification of unique proteins in diabetic mice treated with cordycepin (DM+COR).

Accession No. Gene name Protein name Peptide sequence Mass (Da) Biological process

gi|1040099603 A6R68_08622 Uncharacterized protein LFVQDTYSK 165,547 unknown

DGVPGQER

gi|880928831 Kiaa1191 Putative monooxygenase p33MONOX isoform X2 GAPKPSPM 30,601 unknown

ELIR

gi|524941487 Rftn1 Raftlin LSLGAVQNGP 60,647 B cell receptor signaling pathway

AGHHR

gi|261824000 Psma3 Proteasome subunit alpha type-3 HVGMAVAGLL 28,405 proteasomal protein catabolic process

ADARSLADIAR

gi|60360256 Nfatc3 MKIAA4144 protein GGGAAPR 81,441 unknown

gi|40786471 Flcn Bhd Folliculin PKEDTQK 64,122 energy homeostasis

gi|537104352 H671_21254 Serine/threonine-protein kinase MARK2 ASGLPPR 35,233 unknown

https://doi.org/10.1371/journal.pone.0256140.t002
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suggesting that a 14 days experiment duration was not enough to recover from inflammation

of the islets in the pancreas induced by a high dose of STZ.

The liver is the main organ involved in glucose metabolism and energy homeostasis, with

hepatic abnormality in glucose metabolism reported in diabetes. The liver plays a key role in

regulating the glucose uptake, gluconeogenesis, glycogenesis, and glycogenolysis. It is also

Table 3. Protein identification and functional classification of shared proteins in normal mice treated with cordycepin (N+COR) and diabetic mice treated with

cordycepin (DM+COR).

Accession No. Gene name Protein name Peptide Sequence Mass (Da) Biological process

gi|74146222 ENSMUSG000-00075293 Leprel1 Uncharacterized protein (Fragment) ASEPILP 15,905 unknown

gi|852797683 Gli3 transcriptional activator GLI3 PEGGPPR 161,731 Hedgehog signaling pathway

https://doi.org/10.1371/journal.pone.0256140.t003

Fig 6. The chemical-protein and protein-protein interaction network of cordycepin and unique proteins from DM+COR and shared protein

from N+COR and DM+COR in livers on the hepatic metabolism pathway, analyzed by STITCH v 5.0.

https://doi.org/10.1371/journal.pone.0256140.g006
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known that hepatic insulin resistance is one of the most common pathological conditions dur-

ing diabetes, along with body weight loss and hyperphagia [28, 29]. In the present study, we

found a statistically significant reduction in both the final body weight and average daily food

intake of diabetic mice treated with cordycepin. In contrast, a previous study from Ma et al.
[17] found that a cordycepin treatment of alloxan-induced diabetic mice remarkably reduced

the loss of body weight by normalizing the glucose metabolism. But a previous study reported

that cordycepin extracted from C. militaris can reduce gains in body weight of mice [30], and a

further study indicated that cordycepin modulates the body weight by reducing prolactin via

an adenosine A1 receptor [31]. These studies indicate that a reduction in body weight is associ-

ated with a lower food intake in DM-treated mice.

As a result of insulin-resistance in diabetes, pyruvate is used for gluconeogenesis and fatty

acid synthesis rather than the production of ATP, resulting in hyperglycemia. Energy-precur-

sor of metabolic processes is generated by the TCA cycle, which involves the aerobic oxidation

of glucose and is an important pathway for energy production [8, 9]. As such, the TCA cycle

and glycolytic activity is abnormal during the development of DM [32]. Our study demon-

strate that DM mice had lower hepatic oxaloacetate levels, which is the intermediate of the

TCA cycle, compared with the control group. Cordycepin treatment significantly increased

the TCA intermediates in the DM+COR group. A recent study demonstrated that the C. mili-
taris mycelia extract increases the activity of dehydrogenases in a TCA cycle and up-regulates

the respiratory chain complex activity and ATP levels [33], suggesting that an elevated dehy-

drogenase activity completely catalyzes the oxidation of oxaloacetate into citrate during the

TCA cycle.

At the cellular level of patients suffering from T1DM, dysfunction of insulin induction

inhibits the tyrosine kinase of insulin receptors, which decreases the activity of the insulin

receptor substrate (IRS). The main pathway involved in the action of insulin is phosphoryla-

tion followed by the activation of phosphatidylinositol-4,5-bisphosphate 3-kinase-protein

kinase B (PI3K-AKT). The PI3K/AKT signaling pathway is the primary pathway of insulin sig-

naling transduction to regulate glucose uptake and glycogen synthesis in liver [34]. Several

mechanisms can induce insulin resistance by interfering with the insulin signaling cascade,

i.e., elevated blood glucose, endoplasmic reticulum stress, cellular inflammation, and inherited

variations in the signaling molecules. In our study, we found that 13 out of 46 unique proteins

in the DM group were correlated with apoptotic processes, glucose homeostasis, and glycogen

catabolism. Glycogen primarily acts as an intracellular storage site for glucose under aerobic

conditions and nutrient deprivation. Activated glycogen phosphorylase in the liver is the main

driver behind the increase in blood glucose levels in diabetes [35]. It has been that the inhibi-

tion of glycogen phosphorylase was associated with the induction of the insulin signaling path-

way, beta cell proliferation, and glucose-induced insulin release [36].

The interaction network between the proteins isolated and other proteins or chemicals in

the STITCH database were used to understand the effects of cordycepin on the hepatic metab-

olism induced by T1DM. According to the STITCH interaction network (Fig 6), the proteins

unique to DM+COR group of mice (Flcn, Nfatc3, and Psma3 protein) were found to be associ-

ated with energy-sensing pathway, insulin signaling, and ubiquitin/proteasome system (UPS).

Flcn (folliculin) is involved in the energy homeostasis pathway through the upregulation of

Prkaa1 (Protein Kinase AMP-Activated Catalytic Subunit Alpha 1), Prkaa2 (Protein Kinase

AMP-Activated Catalytic Subunit Alpha 2), Prkab1 (Protein Kinase AMP-Activated Catalytic

Subunit beta 1), Prkab2 (Protein Kinase AMP-Activated Catalytic Subunit beta 2), Prkag1

(Protein Kinase AMP-Activated Catalytic Subunit gamma 1), and Prkag2 (Protein Kinase

AMP-Activated Catalytic Subunit gamma 2) [37]. The proteins encoded by these genes are cat-

alytic subunits of AMP-activated protein kinase (AMPK) [38–40]. AMPK is an important
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energy-sensing enzyme that monitors the cellular energy status, regulates the transcription of

several genes that are involved in the mitochondrial energy metabolism and the oxidation of

glucose and fatty acids [41]. Wu et al. [42] reported about the effects of cordycepin on lowering

the HepG2 cellular lipid accumulation, with the study indicating that cordycepin may inhibit

fat accumulation through AMPK activation via interaction with the Prkag1 subunit. A further

study observed that the Flcn expression might regulate cellular metabolism through its interac-

tion with AMPK activity [43]. AMPK also maintains adequate NADPH levels by regulating

the oxidation of fatty acid through phosphorylation induced metabolic stresses by increasing

the TCA cycle intermediates [44]. We suggest that cordycepin could prevent any dysfunction

during the metabolism of energy via indirect effects on liver tissue of the T1DM models. Simi-

larly, a previous study by Song et al. [45], focusing on the antifatigue effect of Cordyceps mili-
taris fruit body extract, reported that the fruit body extract enhanced the phosphorylation of

hepatic mTOR, AKT, and AMPK after 14 days of administration in mice. AMPK maintains an

ATP balance via inhibiting the synthesis of glycogen, cholesterol, fat, and promoting fatty acid

oxidation, glucose transportation [46], and activating the catabolic pathways to regulate the

generation of ATP [47]. Therefore, we suggest that cordycepin may regulate the failure of

intracellular energy metabolism through interaction of AMPK signaling with the Flcn protein

expression.

One of the overexpressed proteins, Proteasome subunit α type 3 (Psma3) was found only in

the DM+COR group. Sjakste et al. [48] provided evidence that the variations in Psma3 protea-

some gene may contribute to increasing the risk in T1DM patients. Several studies report that

binding with Psma3 results in protein degradation in a ubiquitin/proteasome system (UPS)

[49, 50]. UPS is one of the major degradation pathways for maintaining a protein homeostasis.

Indeed, UPS regulates the key proteins involved with the survival of beta cells such as IRS-2,

MafA, and CREB [51]. Previous studies indicate that high doses of proteasome inhibitors (PIs)

can completely block the UPS activity and induce severe apoptosis in beta cell lines [52, 53].

Our findings are also in accordance with another previous study [54] that shows a decreased

proteasome activity in the endothelial cells of diabetic mice cultured in a high-glucose

medium. The results clearly indicate that a lower proteasome activity implies an accumulation

of polyubiquitinated proteins observed in beta cells, leading to a hyperglycemic status [55]. In

conclusion, our work integrates UPS as a new essential factor involved with the glucotoxicity

of beta cells. We suggest that chronic T1DM can cause a reduction in proteasome activity in

beta cells, leading to UPS dysfunction; however, cordycepin treatment activates the protea-

some function which is important for the survival of pancreatic beta cells.

In this study, we also identified a protein-protein interaction between the Gli3 proteins

detected in N+COR and DM+COR groups and the energy-related proteins. These proteins are

involved with the insulin signaling pathway (Akt1 and Akt2). The Gli family proteins (Gli1,

Gli2, and Gli3) play an important role in the intracellular signaling cascade and act as terminal

effectors of hedgehog (HH) signaling [56]. The HH pathway is essential in decisions related to

the fate of a cell during the development and homeostasis of adult tissues. A previous study

reported on the first example of endogenous metabolic abnormality due to from DM, which is

associated with a functional inhibition of the HH signaling pathway [57]. Yu et al. [58] studied

the hypoglycemic effect through a combined treatment with the fruiting body and mycelia of

C. militaris in HFD-induced type 2 DM mice. They identified the expression of proteins

involved in the insulin-signaling pathway of muscles and adipose tissues. A previous research

also demonstrated that treatment with a crude powder of C. militaris leads to both increased

phosphorylation and enhanced expression of insulin receptor substrate 1 (IRS-1) and protein

kinase B (AKT), indicates that the activated mediators subsequently increase insulin sensitiv-

ity. Many other studies have already demonstrated the activation of AKT via phosphorylation

PLOS ONE Metabolic impacts of cordycepin on hepatic proteomic expression in streptozotocin-induced diabetic mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0256140 August 13, 2021 11 / 15

https://doi.org/10.1371/journal.pone.0256140


as indicators of insulin sensitivity [59–61]. We therefore suggest that cordycepin might

improve glucose metabolism via insulin signaling.

Conclusion

our results provide an analysis of chemical-protein and protein-protein interactions helping in

further understanding of the mechanism through which cordycepin alters the metabolic dys-

function in T1DM mice. Cordycepin treatments resulted in a lowered final body weight and

food intake and increased the hepatic TCA intermediates. Cordycepin also plays a significant

role in maintaining the energy metabolism by regulating the AMPK activity by Flcn protein,

Gli3-mediated hedgehog pathway, and recovering cell survival. Thus, our results support the

applied treatment and its effects on the expression of protein associated metabolic homeosta-

sis. These results indicated that cordycepin could potentially be an economical therapeutic

agent in the treatment of T1DM through its effect on metabolic activity.
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