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Identification of 12 immune‑related 
lncRNAs and molecular 
subtypes for the clear cell renal 
cell carcinoma based on RNA 
sequencing data
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Maoshu Zhu1, Miaoxuan Chen1, Ying Lin1, Yao Lin2* & Jiyi Huang1,3*

Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma (RCC). Despite 
the existing extensive research, the molecular and pathogenic mechanisms of ccRCC are elusive. 
We aimed to identify the immune‑related lncRNA signature and molecular subtypes associated with 
ccRCC. By integrating 4 microarray datasets from Gene Expression Omnibus database, we identified 
49 immune‑related genes. The corresponding immune‑related lncRNAs were further identified in the 
TCGA dataset. 12‑lncRNAs prognostic and independent signature was identified through survival 
analysis and survival difference between risk groups was further identified based on the risk score. 
Besides, we identified 3 molecular subtypes and survival analysis result showed that cluster 2 has a 
better survival outcome. Further, ssGSEA enrichment analysis for the immune‑associated gene sets 
revealed that cluster 1 corresponded to a high immune infiltration level. While cluster 2 and cluster 3 
corresponded to low and medium immune infiltration level, respectively. In addition, we validated the 
12‑lncRNA prognostic signature and molecular subtypes in an external validation dataset from the 
ICGC database. In summary, we identified a 12‑lncRNA prognostic signature which may provide new 
insights into the molecular mechanisms of ccRCC and the molecular subtypes provided a theoretical 
basis for personalized treatment by clinicians.

Renal cell carcinoma (RCC) accounts for over 90% of all kidney cancer cases among human  adults1. Clear cell 
renal cell carcinoma (ccRCC) is the most common RCC histological subtype which responsible for 70–80% of 
RCC  cases2. Recent studies estimate that 102,000 patients succumb to ccRCC and 202,000 new cases are diag-
nosed annually throughout the  globe3. Besides, ccRCC has no clear symptoms in its early stages therefore can 
only be diagnosed in advanced  stages4. Despite interventions through chemotherapy and radiotherapy, ccRCC 
is prone to distant metastasis. These metastases occur in lung, bone, liver, distant lymph nodes, and renal  vein5. 
A few effective biomarkers, particularly in both early and advanced stages of ccRCC, have been identified.

The recent version of the human genome annotation transcribes approximately 16,000 long non-coding 
RNAs (lncRNAs) responsible for 26.7% of the total genes (https ://www.genco degen es.org/human /)6. lncRNAs 
are non-coding RNAs composed of about 200 nucleotides in length. They include the antisense lncRNAs, intronic 
transcripts, large intergenic noncoding RNAs (lincRNAs), promoter-associated lncRNAs, and UTR associated 
 lncRNAs7. Previous studies have revealed that lncRNA plays an important role in regulating gene expression, epi-
genetics, cell differentiation, and  ontogeny8,9. Additionally, studies have shown that massive aberrantly expressed 
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lncRNAs are highly linked to tumor diagnosis and  metastasis10. However, little information has been pronounced 
on the possible effects of dysregulated lncRNAs on ccRCC. Therefore, more specific and reliable lncRNA-based 
biomarkers need to be uncovered. This will thereby improve the prognostic accuracy of ccRCC.

This study assessed the immune-related lncRNA by integrating the GEO dataset, TCGA dataset, and ICGA 
dataset. We identified 12 lncRNA prognostic signature associated with ccRCC survival. Also, 3 molecular sub-
types (cluster 1, cluster 2, and cluster 3) based on the immune lncRNA and gene expression profile were identi-
fied. The three molecular subtypes were highly correlated with immunity. The identification of immune-related 
lncRNA and molecular subtypes of ccRCC will advance the treatment of ccRCC patients, and provide a better 
understanding of the underlying molecular mechanisms of ccRCC.

Results
Identifying immune‑related DEGs in ccRCC microarray datasets. Four microarray datasets, 
including GSE46699, GSE36895, GSE15641, and GSE53757 were retrieved from the GEO database. Differen-
tially expressed analysis was conducted on these datasets. Results showed that the GSE46699 dataset had a total 
of 1,006 DEGs (484 up-regulated and 522 down-regulated DEGs). In the GSE36895 dataset, 725 up-regulated 
genes and 870 down-regulated genes were identified. Besides, in the GSE15641 dataset, there were 517 up-
regulated genes and 703 down-regulated genes were identified. In addition, 1,689 up-regulated genes and 1585 
down-regulated genes were identified in theGSE53757 dataset. The results DEGs from four datasets are shown in 
Fig. 1. A total of 326 DEGs were identified, including 145 up-regulated and 181 down-regulated DEGs through 
the integrating of the four datasets using the RRA algorithm (Supplementary Table 1). The top 20 up-regulated 
DEGs and top 20 down-regulated DEGs are highlighted in Supplementary Fig. 1.

Figure 1.  Volcano plots for the aberrantly expressed genes between ccRCC tissues and adjacent normal tissues 
in the four datasets. (A) GSE46699, (B) GSE36895, (C) GSE15642 and (D) GSE53757. The red dots represented 
up-regulated genes with the cut-off logFC > 1.0 and adjusted P < 0.05. The green dots represented down-
regulated genes based on the criterion: logFC < -1.0 and adjusted P < 0.05. Black dots represent the genes have no 
significance.
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Identifying immune‑associated lncRNAs. Among the 326 DEGs in the four datasets, 49 immune genes 
were identified and further extracted from the corresponding gene expression in the TCGA dataset. Accord-
ingly, all information on the expression of lncRNAs was extracted from the TCGA dataset. To obtain high-
quality lncRNA, we excluded the lowly expressed lncRNAs with the cut-off criteria that average expression in all 
samples need more than 0.5. The Pearson coefficient was adopted to estimate the correlation between lncRNA 
and immune genes. Finally, a total of 140 immune-related lncRNAs were identified based on the criterion: 
|cor|pearson > 0.5 and p-value < 0.001 (Supplementary Table 2).

Survival prediction for the lncRNAs and GSEA enrichment analysis. In total, 512 ccRCC patient 
samples with 140 immune-related lncRNAs were randomly divided into the testing dataset (N = 256) and train-
ing dataset (N = 256) respectively. The correlation of immune-related lncRNA with patients’ overall survival time 
was determined via univariate cox regression analysis in the training dataset. Further, we selected 56 immune-
related lncRNAs with p-value < 0.05 for Lasso-penalized multivariate Cox proportional hazards modeling 
analysis. After 1,000 iterations, 12 immune-related lncRNA expression signatures were identified. They include: 
AC005104.1, AC093278.2, AC098484.1, AL360181.2, EMX2OS, LINC01011, SPINT1-AS1, AP001372.2, 
AC007637.1, AL354733.3, AP001189.3 and LINC00886. Moreover, these selected signatures displayed optimal 
survival prediction in the training dataset for more than 50 times. Further, a calculation of the 12-lncRNA 
signature risk score for each patient in the training and testing datasets was conducted using the risk formula:

Thus, the patients were further classified into high-risk (N = 128) and low-risk groups (N = 128). This was done 
according to the median risk score in the training, testing, and entire datasets respectively. The patients in 
the training dataset with a high-risk score corresponding to more deceased cases whereas those with low-risk 
scores exhibited prolonged survival time (Fig. 2A). Similar results were reported in the testing and entire data-
sets respectively (Fig. 2B,C). The KM curves and log-rank test identified a significant difference between the 
high-risk group and low-risk group from all datasets (p-value < 0.001) (Fig. 3). ROC analysis revealed that the 
12-lncRNA prognostic model effectively predicted the survival of ccRCC patients in 1-year, 3-year, and 5-year 
period in the training dataset and testing dataset respectively (Fig. 4A,B). To further evaluate the reliability of 
the prognostic model, we used an external dataset from the ICGC database for verification. The risk score for 
each patient was calculated using the KM curve and the results which depicted a significant divergence between 
risk groups (Supplementary Fig. 2). Also, the ROC curve analysis showed a good performance for the risk model 
(Supplementary Fig. 3).  

In addition, through cox regression analysis the 12-lncRNA signature independently predicted the clinical 
traits (Fig. 5). To compare the accuracy of the survival prediction between 12-lncRNA signature risk models and 
clinical traits, we conducted a ROC analysis and observed that our risk model was optimal with an AUC value 
of up to 0.783 (Supplementary Fig. 4). Moreover, we investigate the association between 12 lncRNAs expression 
level and clinical trait (Stage and Grade), as highlighted in Supplementary Fig. 5A. The findings revealed that 

Risk score = 0.062557657 ∗ AC005104.1+ (−0.093367264) ∗ AC093278.2

+ (−0.263904071) ∗ AC098484.1+ 0.048384794 ∗ AL360181.2+ (−0.044967607)

∗ EMX2OS+ 0.23110957 ∗ LINC01011+ (−0.134140912) ∗ SPINT1− AS1

+ (−0.063359846) ∗ AP001372.2+ (−0.218305812) ∗ AC007637.1+ 0.178920045

∗ AL354733.3+ (−0.074645356) ∗ AP001189.3+ (−0.220170832) ∗ LINC00886.

Figure 2.  Risk plot for the ccRCC patients. (A) Entire dataset (B) Training dataset. (C) Testing dataset. Each 
panel consists of three rows: top rows showed a risk score distribution for the high risk score group and low risk 
score group; middle rows represent the ccRCC patients distribution and survival status; the bottom rows showed 
that the heatmap of 12 prognostic lncRNA expression.
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increased expression level of AC005104.1 and AL360181.2 from stage I to stage IV. On the other hand, the expres-
sion levels of AC093278.2, AC098484.1, and EMX2OS were decreased from stage I to stage IV. Moreover, based 
on the grade, expression levels of AC007637.1, AC093278.2, AC098484.1, AL354733.3, AP001189.3, AP001372.2, 
and EMX2OS decreased from grade 1 to grade 4 (Supplementary Fig. 5B).

Through GSEA enrichment analysis, we explored the potential underlying pathway in the ccRCC in the high-
risk group and low-risk group. Notably, 71 significant pathways were enriched in the low low-risk group follow-
ing the cut-off: FDR < 0.05 and nominal P < 0.05. Among them, the ERBB signaling pathway, MAPK signaling 
pathway, pathways of cancer, renal cell carcinoma, TCG beta signaling pathway, and WNT signaling pathway 

Figure 3.  Kaplan–Meier curves for the 12-lncRNA signature in the entire (A), training (B), and validation sets 
(C).

Figure 4.  Time ROC curves analysis for the 12-lncRNA signature in the training dataset (A) and validation 
dataset (B).
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were enriched in the low-risk group (Fig. 6). In contrast, there was no significantly enriched signal pathway in 
the high-risk group with a similar cut-off.

Identifying molecular subtypes of ccRCC . According to the expression profile of immune genes and 
immune-related lncRNAs, we employed a consensus clustering algorithm to categorize the ccRCC patients into 
de novo groups. As indicated in Fig. 7A,B, we performed a consensus clustering algorithm via the Cancersub-
type R package and revealed that the area under the cumulative distribution function (CDF) curve maintained 
a maximal consensus within clusters and a minimal ambiguity rate in cluster assignments when k = 3. There-
fore, the dataset was finally partitioned into three groups: cluster 1 (N = 182), cluster 2 (N = 179), and cluster 3 
(N = 152) (Fig. 7C). Then, the Principal Component Analysis (PCA) analysis was performed on the expression 
of immune genes and immune-related lncRNAs on the three clusters. A clear distinction across the three clusters 
was noted (Fig. 7D). survival analysis showed that cluster 2 had a better survival time compared to cluster 1 and 
cluster 3 (Fig. 8A). The three clusters with expression data and clinical traits were presented in Fig. 8B. Besides, 
a consensus clustering algorithm on the ICGC dataset was used to validate the feasibility and reliability of the 
three molecular subtypes. The area under the cumulative distribution function (CDF) curve was calculated to 
determine the optimal k value (Fig. 9). Notably, after a comprehensive consideration, k = 3 was selected as the 
optimal cluster number. Furthermore, PCA results indicated divergence in the three subgroups. However, due 
to the small sample size (N = 91), the survival outcome (p = 0.051) in the subgroups was insignificant (Supple-
mentary Fig. 6 ).  

Identification of Immunogenomic profiling. The 29 immune-related gene sets represented immune cell 
types, functions, and pathways that were fitted into the analysis (Supplementary Table 3). Of note, the ssGSEA 
score was used to quantify enrichment levels of the immune cells, function, and pathways in ccRCC samples. 
The immune scores were further classified into three clusters corresponding to the previously partitioned cluster 

Figure 5.  Univariate and multivariate Cox regression analysis for the 12 lncRNAs signature and clinical 
features.

Figure 6.  Gene Set Enrichment Analysis (GSEA) identified cancer-related pathway for the low risk group.
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groups. Interestingly, the high immune infiltration level corresponded to cluster 1, median immune infiltra-
tion level corresponded to cluster 3 whereas, low immune infiltration level corresponded to cluster 2 (Fig. 10). 
Also, the immune score and tumor purity were analyzed using the ESTIMATE R package. The immune scores 
were significantly higher in cluster 1 while the scores were significantly lower in cluster 2 (Kruskal–Wallis test, 
P < 0.001) (Fig.  11A). However, we noted a reverse trend on tumor purity which was significantly higher in 
cluster 2 but significantly lower in cluster 1 (Kruskal–Wallis test, P < 0.001) (Fig. 11B). Generally, these findings 
indicated that the cluster was highly associated with immunity. Of note, cluster 2 comprised more tumor cells 
whereas, cluster 1 had more immune cells.

Discussion
Unlike protein-coding genes, lncRNAs are involved in many important biological functions linked to human 
disease, epigenetic and post-transcription  regulation17. Current literature shows that the non-coding RNAs, spe-
cifically lncRNAs, are tightly associated with tumorigenesis and progression of tumors. Also, cumulative evidence 
reveals that dysregulated lncRNAs may serve as a critical biomarker for many types of cancers, in particular, 
esophageal squamous cell carcinoma and breast  cancer18,19. Numerical evidence pronounce that lncRNAs can 
associate with miRNA to weaken the effects of miRNA on in mediating mRNA  expression20. Some recent studies 
have suggested that aberrant lncRNA expression is associated with ccRCC, and many potential biomarkers have 
been uncovered in ccRCC 21–23. However, these results rely on a temporary TCGA database that lacks external 

Figure 7.  Consensus clustering for the ccRCC immune genes and immune related lncRNA expression in the 
TCGA dataset. (A) Consensus clustering cumulative distribution function (CDF) for k = 2 to 9. (B) The Relative 
change in area under CDF curve for k = 2 to 9. (C) Consensus matrix heatmap plots when k = 3. (D) Principal 
component analysis of the immune genes and lncRNAs expression when k = 3.
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validation sets, hence, it poses difficulty in assessing the accuracy of the model. Moreover, due to the complexity 
of ccRCC, there is an urgent need to identify a large number of lncRNA markers for the prognosis and diag-
nosis of ccRCC. Presently, immunotherapy is a commonly used tumor intervention. However, for tumors and 
ccRCC, it exhibits a remarkable immune infiltration and other immune-related  signatures24. Nevertheless, an 
increasing number of immunotherapy compounds such as PD-1/PD-L1 blocking agents have been approved in 
the treatment of ccRCC and have achieved noticeable  progress25. However, few patients are unresponsive due to 
tumor heterogeneity, and cases of drug resistance  occur6. Therefore, individualized immunotherapy treatment 
for patients is highly preferable.

In the present study, we included four GEO datasets (GSE46699, GSE36895, GSE15641, and GSE53757). 
Exactly 49 immune genes associated with ccRCC were screened from the GEO datasets using RRA methods. 
Through correlation analysis, 140 high confidence lncRNAs were identified in the TCGA dataset. Furthermore, 
a 12 immune-related lncRNA signature was developed and validated. This was performed through univariate 
cox regression and LASSO-penalized multivariate Cox proportional hazards modeling analyses in the TCGA 
and ICGC dataset. K–M curves analysis identified a significant divergence in patients classified in the high-risk 
group and low-risk group. Besides, GSEA enrichment analysis demonstrated that low-risk group patients exhibit 
significantly enriched pathways such as the ERBB signaling pathway, MAPK signaling pathway, pathways of 
cancer, renal cell carcinoma, TCG beta signaling pathway, and WNT signaling pathway. Thus, we suggest that 
the 12-lncRNA prognostic signature plays a crucial role in molecular pathogenesis, progression, and prognosis of 
ccRCC. Moreover, we compared our 12-lncRNA signature with clinical traits (Age, Gender, Stage, Grade, Smok-
ing, T, N, and M) through ROC analysis, whereby, we demonstrated that our risk model is optimal (AUC = 0.783). 
Using cox regression analysis (p < 0.001), it was revealed that the 12-lncRNA signature can independently predict 
clinical traits. Therefore, these results imply that the 12-lncRNA prognostic signature may provide a reliable prog-
nostic marker and a theoretical basis on the mechanism of ccRCC. To explore the potential molecular subtype of 
ccRCC, we exploited the immune gene expression profile. We further identified three subtypes (cluster 1, cluster 
2, and cluster 3) that are linked to the overall survival of ccRCC. Compared to cluster 1 and cluster 3, Log-rank 
test suggested that cluster 2 exhibited a better survival outcome (p < 0.05). Interestingly, we observed that cluster 
1 displayed a high immune infiltration level whereas cluster 2 showed a low immune infiltration level. Notably, 
cluster 3 correlated with the median immune infiltration level. Recent studies identified similar subgroup results 
through the ssGSEA methods based on the immune gene  sets27. In addition, 3 lncRNAs including, AC005104.1, 
AL360181.2, and LINC01011) showed a significantly high expression level in cluster 1 when compared to clus-
ter 2. This is an indication that the 3 lncRNAs are positively correlated with immunity (Supplementary Fig. 7).

We further identified 12 prognostic associated lncRNAs in ccRCC. including AC005104.1, AC093278.2, 
AC098484.1, AL360181.2, LINC01011, AP001372.2, AC007637.1, AL354733.3, and AP001189.3, which were 
the first time that served as markers in the current research. The lncRNA EMX2OS, which has been validated 
and identified to potentially induce proliferation and invasion, and promote sphere formation in ovarian cancer 
cells by regulating the miR-654-3p/AKT3/PD-L1  Axis28 Additionally, EMX2OS can be used as a biomarker in 
laryngeal cancer and papillary thyroid  cancer29,30. Furthermore, SPINT1-AS1 was identified as a potential marker 

Figure 8.  Prognostic significance of ccRCC immune subtypes. (A) Kaplan–Meier curves for the overall survival 
of different subtypes. The cluster 2 is associated with better outcomes compared to cluster 1 and cluster 3. (B) 
Heatmap of the immune genes and immune related lncRNAs expression profiles ordered by three subtypes, with 
clinical features associated with each cluster.
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in the prognosis of colorectal cancer. High expression levels of SPINT1-AS1 was reported to correspond with a 
worse survival  outcome31. There has been a high expectation on LINC00886 as a novel biomarker in laryngeal 
 carcinoma32. However, the lncRNA which is a potential biomarker should be subjected to further experimental 
validation in future studies.

In conclusion, we identified 12 immune-related lncRNAs that correlated with the survival of ccRCC. Further, 
we discovered three molecular subtypes that are associated with tumor immunity. Our study has important clini-
cal significance in understanding the underlying mechanism of ccRCC, therefore, can be used as a reference by 
clinicians for individualized treatment.

Methods
Data collection. The four microarray datasets (GSE46699, GSE36895, GSE15641, and GSE53757) were 
downloaded from the GEO database (www.ncbi.nlm.nih.gov/geo) as per the keyword ‘renal cell carcinoma’. Nota-
bly, the GPL570 version platform was adopted to obtain datasets (GSE46699, GSE36895, and GSE53757). Data-
set GSE46699 comprised 63 adjacent normal kidney specimens and 67 ccRCC samples whereas, the GSE36895 
dataset comprised 23 adjacent normal kidney samples and 29 ccRCC samples. Dataset GSE53757 composed of 
72 adjacent normal kidney samples and 72 ccRCC samples. The platform used to obtain the GSE15641 dataset 
was based on the GPL96 version which incorporated 23 normal kidney samples and 32 ccRCC samples. All the 
expression level data were standardized and log2 transformed. In addition, 539 and 91 ccRCC samples were 
downloaded with corresponding clinical information from the TCGA database and ICGC database respectively.

Figure 9.  Consensus clustering for the ccRCC immune genes and immune related lncRNA expression in the 
ICGC dataset. (A) Consensus clustering cumulative distribution function (CDF) for k = 2 to 9. (B) The Relative 
change in area under CDF curve for k = 2 to 9. (C) Consensus matrix heatmap plots when k = 3. (D) Principal 
component analysis of the immune genes and lncRNAs expression when k = 3.

http://www.ncbi.nlm.nih.gov/geo
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Integration of microarray data. The differentially expressed genes (DEGs) were identified for the four 
datasets through Limma  analysis11. Gene expression analysis of the four microarray datasets was conducted 
using the RRA R package. A comparison of the expression level of genes was conducted according to their 
ranks. Screening of the significantly expressed genes were based on the p-adjusted < 0.05. Besides, the immune-
related genes were downloaded from the IMMPORT database (https ://www.immpo rt.org/) and the significantly 
immune genes in our datasetwere obtained from the RRA  result12.

Correlation analysis. Data on the immune genes and lncRNAs expression of ccRCC were extracted from 
the TCGA dataset. The correlation of lncRNAs with immune genes was determined according to the Pearson 
coefficient, whereby, we performed cor function using the R package. The immune-related lncRNAs were identi-
fied with the criterion: Pearson coefficient > 0.5 and p-value < 0.0001.

Identification and validation of lncRNA prognostic signature. To perform survival analysis, 
we integrated the survival time and the corresponding lncRNA expression. The ccRCC patient samples with 
immune-related lncRNAs were equally categorized into training and testing datasets. Further, through univari-
ate Cox regression analysis, we selected significantly correlated lncRNAs. For a robust and reliable lncRNA, 
significantly correlated lncRNA with p-value < 0.05 were selected and fitted into Lasso-penalized multivariate 

Figure 10.  Hetamap of the immunity ordered by the three subtypes. The cluster 2 corresponding to low 
immunity, cluster 1 corresponding to high immunity and cluster 3 associated with median immunity. The 
Tumor_purity, Stromal_score, and Immune_score were estimated by ESTIMATE.

Figure 11.  Violin plot for the immune score (A) and tumor purity (B) in different subtypes.

https://www.immport.org/
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Cox proportional hazards modeling analysis. After 1,000 iterations using the LASSO analysis, the lncRNAs with 
frequency > 50 were selected and fitted into multivariate cox regression analysis. The risk score formula was 
established based on the regression coefficients as follows: Risk score = ∑CoeflncRNAs × ExplncRNAs. The  CoeflncRNA 
denoted the lncRNA regression coefficient, where Exp lncRNA denoted the expression level of the correspond-
ing lncRNA. Thereafter, the risk score for each patient was calculated and subsequently categorized into high-
risk group and low-risk group based on the median risk score in the training and testing datasets, respectively. 
Kaplan–Meier curve analysis was conducted via the R survival package (https ://cran.r-proje ct.org/web/packa 
ges/survi val) to estimate the survival divergence between high-risk and low-risk groups. ROC curve analysis 
was aided in evaluating the accuracy of the prognostic model via the survival ROC package (https ://cran.r-proje 
ct.org/web/packa ges/survi valRO C). Also, the lncRNA prognostic signature was validated in the ICGA dataset. 
The risk score for each patient in the ICGC dataset was calculated according to the risk model. The survival dif-
ference between risk groups was implemented using K–M curve analysis.

GSEA enrichment analysis. Gene set enrichment analysis was performed between the high-risk group 
and low-risk group. The significant pathways were enriched with the NOM p-value < 0.05 and FDR < 0.25. The 
c2.cp.kegg.v7.0.symbols.gmt was selected as the reference file.

Molecular subtype identification and validation. The potential molecular subtypes were identified 
using the “ExecuteCC” function from the Cancersubtypes R package"13 based on the expression of immune 
genes and lncRNAs. Principal components analysis (PCA) was performed to validate the subtypes of ccRCC. 
Further, the survival rate of different subtypes was conducted using K–M curve analysis. The molecular subtypes 
were further validated in the ICGA dataset based on the expression of immune lncRNA and gene expression 
using “Cancersubtypes” R package.

Gene signature obtained and ssGSEA analysis. The marker genes for immune cell types were reffered 
from a previous study by Bindea et al.14. Infiltration levels for each of the immune cell types were estimated by 
the ssGSEA method from GSVA R  package15. Then, we transformed each attribute (immune signature or gene 
set) value (ssGSEA score) xi into xi′ by the equation xi′ = (xi − xmin)/(xmax − xmin), where,. xmin and xmax 
denoted the minimum and maximum of the ssGSEA scores for the gene set across all ccRCC samples, respec-
tively.

Evaluation of the immune score, tumor purity, and stromal score in ccRCC . ESTIMATE algo-
rithm was used to calculating the fraction of immune and stromal cells in tumor tissues based on a gene expres-
sion signature. The R script of the ESTIMATE algorithm was downloaded from the public source website (https 
://sourc eforg e.net/proje cts/estim atepr oject /). This was followed by a calculation of the Immune scores, stromal 
scores, and ESTIMATE scores for each ccRCC  patient16.

Statistical analysis. All the computational and statistical analyses were conducted on the R software (ver-
sion3.6.2). Kruskal–Wallis test was used to compare the divergence between multiple groups. Chi-square test or 
Fisher exact test was used for statistics on clinical information. A Bonferroni test was used to correct the p-value. 
Kaplan–Meier curves analysis was used to assess survival differences of subtype.

Data availability
The dataset performed in this study are available from the corresponding author on reasonable requests.
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