
 

www.aging-us.com 9260 AGING 

INTRODUCTION 
 

Endometrial carcinomas (EC) are epithelial malignant 

tumors that occur in the endometrium, and account for  

 

20 to 30% of all tumors in the female reproductive 

system. The condition is one of the important causes of 

cancer-related deaths among women globally [1], ranked 

4th in female malignancies in developed countries, 7th in 

www.aging-us.com AGING 2020, Vol. 12, No. 10 

Research Paper 

Integrative analysis of genomic and epigenetic regulation of 
endometrial cancer 
 

Qihang Zhong1,4,*, Junpeng Fan5,*, Honglei Chu1, Mujia Pang1, Junsheng Li1,2,3, Yong Fan6, Ping 
Liu1,2,3, Congying Wu4, Jie Qiao1,2,3,7, Rong Li1,2,3, Jing Hang1,2,3 
 
1Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, 
Beijing 100191, China 
2Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing 100191, China 
3Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China  
4Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 
Peking University, Beijing 100191, China  
5Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of 
Science and Technology, Wuhan 430000, China 
6Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou 
Medical University, Guangzhou 510150, China  
7Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China 
*Equal contribution 
 

Correspondence to: Jing Hang, Rong Li; email: hang1124jing@163.com, roseli001@sina.com  
Keywords: proliferation, apoptosis, glycolysis, Wnt/β-catenin, gemcitabine 
Received: December 6, 2019 Accepted: April 17, 2020  Published: May 15, 2020 
 

Copyright: Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Endometrial carcinomas (EC) are characterized by high DNA copy numbers and DNA methylation aberrations. In 
this study, we sought to comprehensively explore the effect of these two factors on development and 
progression of EC by analyzing integrated genomic and epigenetic analysis to. We found high DNA copy number 
and DNA methylation abnormalities in EC, with 6308 copy-number variation genes (CNV-G) and 4376 
methylation genes (MET-G). We used these CNV-G and MET-G to subcategorize the samples for prognostic 
analysis, and identified three molecular subtypes (iC1, iC2, iC3). Moreover, the subtypes exhibited different 
tumor immune microenvironment characteristics. A further analysis of their molecular characteristics revealed 
three potential prognostic markers (KIAA1324, nonexpresser of pathogenesis-related genes1 (NPR1) and 
idiopathic hypogonadotropic hypogonadism (IHH)). Notably, all three markers showed distinct CNV, DNA 
methylation, and gene expression profiles. Analysis of mutations among the three subtypes revealed that iC2 
had fewer mutations than the other subtypes. Conversely, iC2 showed significantly higher CNV levels than 
other subtypes. This comprehensive analysis of genomic and epigenetic profiles identified three prognostic 
markers, therefore, provides new insights into the multi-layered pathology of EC. These can be utilized for 
accurate treatment of EC patients. 
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the developing world [2], and second most common 

cancer among women in China. Although the 5-year 

survival rate of patients with early EC exceeds 90%, this 

rate in patients with distant metastases is below 20% [2]. 

Additionally, the prognosis of advanced, poorly 

differentiated or specific types of EC, is extremely poor 

necessitating identification of highly sensitive prognostic 

biomarkers to guide clinical management of patients with 

the disease. 

 

Copy-number variations (CNVs), refers to DNA 

fragment copy number variations in the human genome, 

ranging from 1 KB to several Mb. These variations arise 

from single nucleotide polymorphisms (SNPs), 

deletions, insertions, replications of gene fragments, and 

variations of multiple sites [3]. Studies have reported 

that in a small number of patients with early EC, 

melatonin 2 (MSH2), MSH6, and PMS2, gene 

mismatch repair are correlated with high-risk germline 

mutations and have familial heritability. Some rare 

germline copy number deletions have been found in 

patients with EC, which interfere with genotypes, CpG 

islands, and sno/miRNAs, leading to deregulation of 

gene regulation and tumor development [4]. Studies 

have implicated glutathione thiol transferase T1 

(GSTT1) gene copy number amplification in elevating 

the risk of EC, but not glutathione thiol transferase M1 

(GSTM1) has been hypothesized to be a function of 

distinct substrate specificity of GSTT1 and GSTM1, 

since GSTT1 can generate subtypes of endometrial cells 

with genetic toxicity. Alterations in two or more 

numbers of CNVs, derived from GSTT1 genes, will 

increase the risk of EC [5]. In addition, inactivation or 

deletion of CCCTC-binding factor (CTCF) and zinc 

finger homeobox 3 gene (ZFHX3), encoded by tumor 

suppressor genes on chromosome 16q22 can also affect 

the occurrence of EC [6]. The risk of EC can, therefore, 

be effectively monitored using CNVs, and this enables 

early detection of specific genetic abnormalities. 

 

Studies have shown that genetics and epigenetics overlap, 

and jointly regulate the occurrence and evolution of 

tumors. Due to abnormal methylation of promoters, the 

transcriptional level of tumor-related genes is increased in 

proliferating tumor cells and during tumor infiltration [7, 

8]. Many tumor suppressor genes are mutated in type I 

EC. For example, O6-methylguanine DNA 

methyltransferase (MGMT) and adenomatous polyposis 

coli (APC) are inactivated by hypermethylation, resulting 

in tumorigenesis [9]. Studies have also shown that the 

RASSF1A promoter hypermethylation and KRAS 

mutation-activated RAS pathways play an important role 

in the pathogenesis of EC [10]. 

 

In this study, we analyzed DNA copy numbers, and 

methylation as well as mRNA expression levels in a 

group of EC patients. We identified genes whose 

expression levels are regulated in genomic or epigenetic 

layers, and analyzed correlations among their expression. 

In addition, we used a multi-omics integration analysis to 

identify different molecular subtypes that are significantly 

associated with prognostic outcomes of EC. Furthermore, 

we performed a systematic analysis and identified new 

mutations that can be used as targets for precise treatment 

or biomarkers for subtype differentiation. Overall, our 

findings provide a basis for better understanding of the 

molecular pathogenesis of EC.  

 

RESULTS 
 

We identified a total of 6308 copy-number variation genes 

(CNV-G) and 4376 methylation genes (MET-G). Analysis 

of the z-value distribution, indicated that the correlation 

between CNV-G and the corresponding gene expression 

profiles clearly shifted to the right, while that between 

MET-G and the corresponding gene expression profiles 

significantly shifted to the left (CNV-G skewness = 

0.83226, MET-G skewness = -0.79108) (Figure 1A). A 

further analysis, using the Fisher's z-transformation at 95% 

confidence interval, revealed a positive correlation gene in 

signature for DNA copy numbers (CNV-G, n=521) and a 

negative correlation gene signature for DNA methylation 

(MET-G, n=437). CNV-G and MET-G showed an overlap 

of only 229 genes, which suggested that dysregulation of 

CNV-G and MET-G transcription was mutually exclusive 

(ratio: 43.9/52.4%) (Figure1B). CNV-G and MET-G genes 

showed regional genomic preferences and were mostly 

located on chromosome 19 (Figure 1C, 1D). Additionally, 

we found MET-G, which are mainly a protein-coding gene 

(Figure 1E), and MET sites were mostly in the CpG island, 

N, and S Shore intervals (Figure 1F).  

 

Molecular subtypes based on CNV-G and MET-G 

genes 
 

Next, we determined whether the expression profiles of 

CNV-G and MET-G genes could predict prognosis. 

Cluster analysis showed an optimal clustering number of 

4 for both CNV-G and MET-G (Figure 2A and 2B). 

Kaplan-Meier (KM) plots, for overall survival (OS), 

revealed significant differences in prognostic outcomes 

between the groups (Figure 2C), with marked differences 

observed in the MET-G subclass (Figure 2D). In addition, 

there was a significant overlap among the four subclasses 

of both CNV-G and MET-G (Figure 2E, 2F). 

 

CNV, MET, and EXP datasets were integrated for 

cluster analysis 

 

We repeated the clustering 20 times in K=2 (class 3) and 

K=3 (class 4) in order to optimize clusters created by 

iCluster. The results indicated a more stable clustering in 
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Figure 1. Profiles of CNV-G and MET-G features. (A) z-value distribution of CNV-G and MET-G. (B) The overlap between CNV-G and 
MET-G. (C) Chromosome distribution (top panel) and correlation (bottom panel) of CNV-G. (D) Chromosome distribution of MET-G. (E) MET-G 
gene type. (F) The proportion of MET sites. 

 

 
 

Figure 2. Molecular subtypes based on CNV-G and MET-G genes. (A) NMF-based clustering of CNV-G. (B) NMF-based clustering of 
MET-G. (C) KM survival curve of CNV-G subtype. (D) KM survival curve of MET-G subtype. (E) The overlap between the CNV-G subtype and 
the MET-G subtype. (F) The overlap between the CNV-G subtype, the MET-G subtype and the histological subtype. 
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rank=2 (class 3) than rank=3 (class 4). We finally 

concluded that the iCluster was aggregated into three 

subclasses: iC1 (95 samples), iC2 (128 samples), and iC3 

(198 samples). Based on the CNV level distribution of 

iCluster, we found a higher CNV in iC2 compared to iC1 

and iC3 (Figure 3A), although their methylation levels 

were comparable between the groups (Figure 3B). A 

further comparison of iCluster and existing EC subtypes 

revealed that iC2 mainly corresponded to CNV high 

subtypes, whereas CNV low and MSI subtype samples 

were mainly concentrated in iC3 (Figure 3A). KM 

survival analysis indicated significant differences in OS 

between the three groups (Figure 3C). Further 

comparisons among the three groups revealed 

significantly different prognosis among iC1, iC3 and iC2 

subtypes (Figure 3D, 3E). However, there was no 

significant difference in prognosis between iC1 and iC3 

subtypes (Figure 3F). Moreover, progression-free 

 

 

 
 

Figure 3. (A) CNV levels of subtype CNV-G identified by iCluster. (B) Methylation levels of MET-G subtype identified by iCluster. (C) KM curve 
for the subtypes identified by iCluster. (D) KM curve for iC1 and iC2 subtypes. (E) KM curve for iC2 and iC3 subtypes. (F) KM curve for the iC1 
and iC3 subtypes. 
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survival (PFS) was significantly different among the 

three subtypes (Supplementary Figure 1). 

 

Abnormality in DNA copy number is consistent with 

methylation abnormality 

 

To study the relationship between CNV and MET 

abnormalities, we defined the β value of CNV > 0.3 as 

CNV Gain; β value < -0.3 as Loss; β value of MET > 0.8 

as MetHyper (hypermethylation); and β value < 0.2 

denoted as MetHypo (demethylation). We counted the 

numbers of CNV Gain, Loss, MetHyper and MetHypo for 

each sample and found a significant correlation between 

Gain, Loss and MetHypo (Figure 4A, 4C), not with 

MetHyper (Figure 4B). Additionally, we did not record a 

significant correlation between Loss and MetHyper 

(Figure 4D), although both were significantly correlated 

with MetHypo (Figure 4E). MetHyper and MetHypo 

showed a strong negative correlation (Figure 4F). 

 

Characteristics of the tumor microenvironment 

among the molecular subtypes 

 

We categorized EC into three subgroups according to 

multi-group data, then compared the differences in 

clinical characteristics of iC subtypes in stage, grade, age, 

and BMI (body mass index). Results revealed significant 

differences in the distribution of iC subtypes among 

samples with different clinical characteristics (Table 1). 

High-grade and advanced samples were more likely to be 

distributed in the worst prognostic iC2 subtype 

(Supplementary Figure 2). We used tumor immune 

estimation resource (TIMER) to compare immune scores 

across the three subtypes, and found that six immune cell 

scores were lower in iC2 subtype and had the worst 

prognosis compared to the other subtypes (Figure 5A, 

5B), indicating that the iC2 subtype may represent an 

immunosuppressive state. Comparative analysis further 

showed a significantly lower macrophage regulation and 

lymphocyte infiltration score in the iC2 subtype relative to 

the other subtypes, whereas the wound healing and 

inflammation (IFN-gamma response)-related score was 

significantly higher in iC2 than other subtypes (Figure 

5C). This further suggested that immune status may affect 

the prognosis of EC. 

 

Molecular characteristics of the subtypes 

 

Based on the results from iCluster, we compared the 

differentially expressed genes (DEGs) between iC1/iC3 

 

 
 

Figure 4. (A) Frequency distribution of CNV Gain and Loss. (B) Frequency distribution of CNV Gain and MetHyper. (C) Frequency distribution 
of CNV Gain and MetHypo. (D) Frequency distribution of CNV Loss and MetHyper. (E) Frequency distribution of CNV Loss and MetHypo. (F) 
Frequency distribution of MetHyper and MetHypo. 
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Table 1. Comparison of clinical features between EC subtypes. 

Clinical Features Total iC1 iC2 iC3 p value 

Event 

    

0.00076 

Alive 351 84 92 175 

 Dead 68 10 35 23 

 NA 2 1 1 0 

 Stage 

    

<0.001 

I 255 65 49 141 

 II 42 7 16 19 

 III 100 18 49 33 

 IV 24 5 14 5 

 Grade 

    

<0.001 

G1 60 7 2 51 

 G2 87 10 9 68 

 G3 263 75 109 79 

 G4 11 3 8 

  New Event Type 

    

0.0011 

Distant Metastasis 12 3 3 6 

 Locoregional Recurrence 25 2 15 8 

 New Primary Tumor 5 4 1 0 

 Primary 361 83 99 179 

 Un 18 3 10 5 

 Age 

    

<0.001 

31~50 37 16 0 21 

 50~60 100 21 17 62 

 60~70 153 33 56 64 

 70~80 92 18 37 37 

 80~90 39 7 18 14 

 Body Mass Index 

    

0.00036 

0~26.22 118 37 45 36 

 26.22~32.24 106 22 34 50 

 32.24~38.69 94 13 29 52 

 38.69~214 103 23 20 60 

  

and iC2. We identified a total of 207 DEGs in the three 

groups, after removing the low expression levels. Gene 

ontology (GO) analysis indicated a significant enrichment 

of terms related to immune regulation, such as leukocyte 

migration and adaptive immune response. The CNV 

frequency of 207 DEGs in iC2 was significantly higher 

than that in iC1 and iC3, suggesting that CNV influenced 

the prognosis of EC (mean CNV: 8005/28579/5899) 

(Figure 6A). However, no significant differences were 

observed in methylation levels between the molecular 

subtypes (mean methylation: 134682/143148/140185) 

(Figure 6B). A correlation between expression level, 

methylation and CNV, revealed a high expression of 

DEGs in demethylated samples (Figure 6C), but this was 

not observed in CNV. This indicated that the effect of 

methylation on the expression of DEGs was stronger than 

the effect of CNV on the expression of DEGs. Univariate 

survival analysis identified 24 genes that were 

significantly associated with prognosis. We also analyzed 

expression of three genes: KIAA1324, nonexpresser of 

pathogenesis-related genes1 (NPR1) and idiopathic 

hypogonadotropic hypogonadism (IHH), and the 

relationship between methylation and CNV. We also 

found a significant negative correlation between 

expression of these genes and their methylation status, but 

not in the CNV (Figure 7). Studies have shown that 

KIAA1324 is activated by estrogenase, which suggests 

that estrogenase may play a role in the occurrence of EC. 

 

Mutation spectrum of molecular subtypes 
 

We further mapped the mutation spectrum of various 

molecular subtypes to identify differentially expressed 

genes in iC subtypes. Using the Fisher’s test (with FDR 

< 0.001), we obtained a total of 48 genes. Mutation 

spectrum analysis showed a significantly lower 

mutation frequency of PTEN, ARID1A, CTNNB1 in 

the iC1/iC3 subtype with better prognosis than that in 

the iC2 subtype (FDR < 0.0001). Moreover, the 

mutation frequency was significantly higher in subtype 

iC2 than in iC1/iC3 (Figure 8A). Overall, there were 

fewer silent/nonsilent mutations and neoantigens in iC2
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Figure 5. (A) Immune cell scores obtained from all samples. (B) A comparison of all immune cell scores among the three subtypes of iCluster. 
(C) A comparison of 5 immune signatures scores. 

 

 
 

Figure 6. (A) Distribution pattern for CNV in iCluster. (B) Distribution for methylation level in iCluster. (C) Heatmap of differentially expressed 
genes in iCluster subtypes. 
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 than in iC1/iC3 (Figure 8B). However, the number of 

CNVs in iC2 was significantly higher than that of 

iC1/iC3 (Figure 8C), suggesting that the effect of gene 

copy number variation on prognosis was stronger than 

that of genomic mutations. Additionally, methylated 

MetHyper/MetHypo levels varied significantly among 

the molecular subtypes (Figure 8D). 

 

DISCUSSION 
 

In the present study, we defined the genome and 

epigenome of CNV-G and MET-G genes by 

integrating multiple sets of genomic and epigenetic 

data. Our results revealed genes that successfully 

identified EC subtypes and exhibited good prognostic 

value. The results further indicated that ECs with 

higher CNV-G aberrations harbored corresponding 

high MET-G aberrations, suggesting that patients with 

frequent DNA copy number aberrations are more 

prone to DNA methylation aberrations. Notably, 

analysis of the classification based on CNV-G and 

MET-G, revealed novel molecular features that have 

potential to be biomarkers for identifying EC. 

Comparison of mutant profiles among the molecular 

subtypes revealed distinct mutation rates of BAP1 and 

CTNNB1.  

 

 
 

Figure 7. (A–C) A correlation of methylation of KIAA1324 gene with its expression, expression of iC subtypes, and the KM curve of the 
high/low expression groups. (D–F) A correlation of methylation of NPR1 gene with its expression, expression of iC subtypes, and the KM curve 
of the high/low expression groups. (G–I) The relationship between methylation of IHH gene with its expression, expression of iC subtypes, 
and the KM curve of the high/low expression group. 
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Figure 8. (A) Profiles of significant mutations in 48 genes across iC subtypes. (B) Distribution pattern of mutation number of the 48 genes 
with significant mutations. (C) Distribution of silent/nonsilent and neoantigens among iC subtypes. (D) Distribution of CNV Gain/Loss and 
methylated MetHyper/MetHypo among iC subtypes. 
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Tumor-infiltrating lymphocytes are activated via 

diverse mechanisms and cytokines, all of which elicit 

multiple immune responses, directly or indirectly 

affecting other components in the tumor 

microenvironment thereby modulating development of 

tumors. Numerous studies have implicated TILs in 

clinical prognosis of cancer patients. For instance, Shia 

et al. [11] reported that high levels of TILs and 

peritumoral lymphocyte infiltration could predict 

microsatellite instability (MSI) in EC with 85 and 46% 

sensitivity and specificity, respectively. Similarly, 

Asaka et al. [12] reported that EC patients with 

mismatch repair deficiency show higher levels of CD8+ 

T cells, Tregs, and PD-1+ immune cells, while Workel 

et al. [13] found a correlation between elevated CD8+ 

PD-1+ lymphocytes and better EC prognosis. Other 

studies have shown that high numbers of Treg cells 

correlate with poor prognosis of patients with EC [14]. 

T.Bosse et al. identified and studied four molecular 

subgroups, including POLE ultramutated (POLEmut), 

mismatch repair-deficient (MMRd), p53 mutant 

(p53abn) and NSMP (non-specific molecular profile) 

for EC [15]. However, a comprehensive analysis of 

larger data sets is required to confirm the prognostic 

value of TILs in EC. In the current study, the immune 

cell score of iC2 subtype was significantly lower than 

that of other subtypes. Moreover, macrophage 

regulation and lymphocyte infiltration scores of iC2 

subtype were significantly lower than those of other 

subtypes, while the wound healing and IFN-gamma 

response scores were significantly higher in iC2 

compared to the other subtypes. This indicated that 

activity of the immune system has a profound 

prognostic role in EC. 

 

Furthermore, we found a significant association 

between three genes (KIAA1324, NPR1, and IHH) with 

prognosis of EC. The KIAA1324 gene is a new 

estrogen-inducing gene that is differentially regulated in 

endometrial and non-EC [16]. Additionally, expression 

of NRP1 protein is significantly up-regulated in gastric 

cancer tissues and cell lines [17]. However, the role of 

this protein in regulation of EC is not known. Wang 

[18] reported a six-gene signature with prognostic value 

for patients with EC, which included IHH. The results 

of the present study show a strong negative correlation 

between these genes and methylation processes, 

suggesting that their expression may be affected by 

epigenetic regulation. These genes are, therefore, 

potential prognostic markers for patients with EC. 

 

Although the relationship between epigenetic and 

genomic variation was successfully established using 

bioinformatics tools, this study had some limitations: 

1) the data lacked some clinical follow-up information, 

thus other factors such as health status of the patient 

were not considered in the prediction of clinical 

outcomes; 2) the data analyzed here was obtained via 

bioinformatics analysis, and hence may be inadequate. 

3) This study is based on multidimensional omics data. 

In the process of processing, the reproducibility of data 

tends to decrease due to the different processing 

methods of omics data of samples. Therefore, further 

genetic experimental studies involving larger sample 

sizes are needed to validate our findings. 

 

In summary, this study successfully evaluated the 

possible pathogenesis of EC through multi-omics data 

analysis of genomics, epigenetics and transcriptomics, 

and demonstrated that CNV and methylation play an 

important role in EC. In addition, three clinically-

relevant molecular EC subtypes and three critical 

biomarkers of the disease were identified. These novel 

mechanisms and clinical classifications will be vital in 

development of accurate and targeted therapies for 

patients with EC. 

 

MATERIALS AND METHODS 
 

Data collection 
 

We downloaded recent clinical follow-up information 

from The Cancer Genome Atlas (TCGA) 

(https://portal.gdc.cancer.gov/) using the TCGA GDC 

API (https://gdc.cancer.gov/developers/gdc-application-

programming-interface-api) at 2019.01.24. CNV, 

Methylation, RNA-seq data and the SNP data processed 

by the mutect software were also downloaded. The 

RNA-seq data also includes the UCEC count for 

subsequent group differential expression analysis. A 

total of 161 samples of all three sets of data used in 

subsequent analyses.  

 

Data preprocessing 
 

The following processing procedures were performed 

on the CNV, Methylation, RNA-seq, and SNV datasets 

in the EC samples from the TCGA database: 

 

CNV data preprocessing 
The CNV intervals were merged using the criteria 

shown below: 

 

1) 50% regional overlap between two intervals was 

considered as the same interval. 

2) The number of coverage probes <5 intervals were 

removed. 

3) The CNV interval was mapped to the corresponding 

gene using the GRh38 version of 22. 

4) Multiple CNV regions in one gene region were 

combined into one, and the combined CNV value 

was averaged. 

https://portal.gdc.cancer.gov/
https://gdc.cancer.gov/developers/gdc-application-programming-interface-api
https://gdc.cancer.gov/developers/gdc-application-programming-interface-api
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Preprocessing of methylation data 
1) Missing sites in more than 70% of the samples were 

removed. 

2) KNN (k-nearest Neighbour) algorithm was applied to 

fill in missing values. 

3) Probes 2 kb upstream and 200 bp downstream of the 

TSS intervals were retained by the annotated version 

of gencode.v22 and mapped to the corresponding 

genes. 

 

Preprocessing RNA-seq data 
1) Lowly expressed genes (samples with FPKM of 0 

accounting for <0.5 of all samples) were removed. 

 

SNV data preprocessing  

1) Mutations in the intron interval were removed. 

2) Mutations annotated as silence were removed. 

 

Identification of CNV-G and MET-G 
 

We calculated Spearman correlation coefficients for 

each gene corresponding to CNV and expression 

profile (RNA-seq) and methylation and expression 

profile, respectively. These coefficients were then 

converted into z-value using the formula ln(1+r)/(1-r). 

Genes with p < 1e-5, which were tested for correlation 

coefficients, constituted a CNV-G and a MET-G. 

 

Identification of molecular subtypes of CNV-G and 

the MET-G 
 

Nonnegative matrix factorization (NMF) is an 

unsupervised clustering method widely used to 

identify molecular subtypes of tumors based on 

genomics [19, 20]. To further explore the association 

between CNV-G and MET-G expressions with 

clinical phenotypes, samples were clustered using the 

NMF method based on the expression profiles of the 

CNV-G and MET-G gene sets. Briefly, we selected 

the standard "brunet", using the NMF method 50 

iterations. The number of clusters k was set between 2 

to 10, and the average profile width of the common 

member matrix calculated using the NMF package 

implemented in R [21], with the minimum member of 

each subclass was set to 10. 

 

Identification of molecular subtypes 
 

We employed the R package ‘iCluster’ [13], to 

perform multi-group data integration cluster analyses 

and integrate the copy number variation (CNV) data 

of the CNV-G gene, methylation data (MET) of the 

MET-G gene, as well as the expression profile data 

(EXP) of the genes in CNV-G and MET-G. 

Subsequently, 20 iterations and10 lambda sample 

points between 0-1 were used for optimal lambda 

value screening to identity optimal CNV, MET, and 

EXP data weight values (lambda values). Considering 

the number of molecular subtypes identified by CNV-

G and MET-G, we chose 2-4 as the number of 

clustering K. 

 

Relationship between molecular subtypes and tumor 

microenvironment 
 

Tumor immune estimation resource (TIMER) is a 

platform used for systematic assessment of the clinical 

impact of different immune cells in various types of 

cancer [22]. This method was used to estimate the 

abundance of six immune cell types, namely: B, CD4 T, 

CD8 T, and neutral cells, macrophages and dendritic 

cells. The abundance of those cells in the tumor 

microenvironments were analyzed in different 

molecular subtypes. 

 

Analysis of genetic differences in molecular subtypes 

 

To examine differences in gene expression among the 

molecular subtypes, we employed DESeq2 [23] tool 

using 2-fold differences and FDR < 0.05 as thresholds 

for identifying differentially expressed genes between 

molecular subtypes. 

 

Relationship between molecular subtypes and tumor 

genomic variation 
 

To assess the differences in genomic variation between 

molecular subtypes, we downloaded SNP data from 

TCGA, then removed introns and silent mutations. We 

then used the Fisher's exact test to compare differences 

in mutations between the two samples. A threshold of 

p<0.05 was used to identify mutated genes. 

 

Functional enrichment analysis 

 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses 

were performed using the R package cluster profiler 28 

for genes. We then identified over-represented GO 

terms in three categories namely; biological process, 

molecular function, and cellular component. For these 

analyses, a FDR < 0.05 was considered for the 

determination of statistical significance. 

 

Statistical analysis 
 

Kaplan-Meier was used to visualize the differences in 

subtype prognosis, while univariate survival analysis 

was performed to estimate overall survival. The log-

rank test was used to test prognostic differences at a 

significance of p < 0.05. All the analyses were 

performed in R software version 3.4.3. 
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Supplementary Figure 1. (A) Progression-free survival among CNVCorC1, CNVCorC2, CNVCorC3 and CNVCorC4. (B) Progression-free 
survival among METCorC1, METCorC2, METCorC3 and METCorC4. (C) Progression-free survival among iC1, iC2 and iC3. 
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Supplementary Figure 2. (A) The distribution of Event in three iC types. (B) The distribution of Stage in three iC types. (C) The distribution 
of Grade in three iC types. (D) The distribution of NewEventType in three iC types. (E) The distribution of Age in three iC types. (F) The 
distribution of BodyMassIdex in three iC types. 

 

 

 


