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a b s t r a c t   

Periodontitis is characterized by irreversible destruction of periodontal tissue. At present, the accepted 
etiology of periodontitis is based on a three-factor theory including pathogenic bacteria, host factors, and 
acquired factors. Periodontitis development usually takes a decade or longer and is therefore called chronic 
periodontitis (CP). To search for genetic factors associated with CP, several genome-wide association study 
(GWAS) analyses were conducted; however, polymorphisms associated with CP have not been identified. 
Epigenetics, on the other hand, involves acquired transcriptional regulatory mechanisms due to reversibly 
altered chromatin accessibility. Epigenetic status is a condition specific to each tissue and cell, mostly 
determined by the responses of host cells to stimulations by local factors, like bacterial inflammation, and 
systemic factors such as nutrition status, metabolic diseases, and health conditions. Significantly, epigenetic 
status has been linked with the onset and progression of several acquired diseases. Thus, epigenetic factors 
in periodontal tissues are attractive targets for periodontitis diagnosis and treatments. In this review, we 
introduce accumulating evidence to reveal the epigenetic background effects related to periodontitis caused 
by genetic factors, systemic diseases, and local environmental factors, such as smoking, and clarify the 
underlying mechanisms by which epigenetic alteration influences the susceptibility of periodontitis. 
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1. Introduction 

Epigenetic status involves the reversibly altered chromatin accessi-
bility brought about by chemical modifications of histone, DNA, and 
higher-order chromatin structure, and regulates transcriptional events 
without changing the genomic DNA sequence [1] (Fig. 1). The epigen-
etically modified chromatin structure is called the epigenome. Local 
active chromatin exhibits a stretched chromatin structure with active 
marks such as acetylation of histone H3 lysine 9 (H3K9ac), acetylation 
of histone H3 lysine 27 (H3K27ac), trimethylation of histone H3 lysine 4 
(H3K4me3), and demethylated DNA. The stretched chromatin structure 
is convenient for transcriptional complexes to associate local genomic 
DNA and transcript RNAs. Conversely, local suppressive chromatin ex-
hibits a compressed chromatin structure with suppressive marks, such 
as trimethylation of histone H3 lysine 27 (H3K27me3) and methylated 
DNA, and the compressed chromatin structure prevents binding of 
transcriptional complexes to genomic DNA [1]. Epigenetic status is 
presumed to be constructed by reflecting on various environmental 
cues [2]. The epigenetic statuses of each tissue and cell are generated 
due to additive or synergistic responses to various local and systemic 
factors [1,3]. Several in vitro studies demonstrated that most epigenetic 
patterns were passed to daughter cells after cell division and the epi-
genetic status would be fixed [4]. The existence of epigenetic memory in 
vivo has been recently disclosed [5]. PPARα is a key transcriptional factor 
of hepatic lipid metabolism by regulating transcription of the genes 
coding for the proteins working in energy metabolism pathways [5–8]. 
Mice received a synthetic PPARα ligand during the perinatal period 
through maternal administration, which resulted in diminished diet- 
induced obesity in adulthood. Moreover, PPARα administration induced 
demethylation of the FGF-21 gene locus in the postnatal period and 
demethylation status persisted in adulthood. Since demethylation of the 
FGF-21 gene locus increased FGF-21 transcription, FGF-21 secretion from 
the liver occurred to ameliorate adiposity in the epididymal white 
adipose tissue [5]. Therefore, epigenetic status is potentially more stable 
than previously thought. 

Periodontitis is a common disease accompanied by irreversible de-
struction of periodontal tissue such as alveolar bone, cementum, peri-
odontal ligament (PDL), and gingival tissue. The disease is developed by 
local pathogenic bacterial infections and involves the host’s protective 
inflammatory reactions, which release cytokines and enzymes that in-
duce the breakdown of periodontal connective tissue and bone [9]. 
Periodontitis is pathophysiologically diverse because various acquired 
local factors, such as oral hygiene, odontoparallaxis, and occlusal 
trauma, and systemic factors, such as nutrition, metabolic diseases, and 
diabetes, intricately influence the status of the disease. Development of 
periodontitis usually takes a decade or longer, so the age of onset is 
usually over 40, and this major type of periodontitis is called chronic 
periodontitis (CP). A small portion of periodontitis patients possesses 
severe phenotypes from prepubertal or adolescent age, and this type of 
periodontitis is called aggressive periodontitis (AP) or early-onset per-
iodontitis; however, CP and AP phenotypes are currently characterized 
by the same indicators, using a multi-dimensional staging and grading 
system [10,11]. Periodontal diseases also develop as one of the mani-
festations of systemic genetic disorders, such as immunologic disorders, 
which include Papillon-Lefèvre syndrome, Chediak-Higashi syndrome, 
Cohen syndrome, and Ehlers-Danlos syndrome, and bone metabolism 
disorders such as hypophosphatasia [12]. These clinical observations 
suggest that genetic and epigenetic factors have predominant roles for 
the development of periodontitis. In this review, we introduce accu-
mulating evidence to reveal the involvement of genetic and epigenetic 

backgrounds on CP and AP, and we introduce mechanistic analyses to 
clarify underlying mechanisms by which epigenetic alteration influ-
ences susceptibility of periodontitis. 

2. Genetic factors of periodontitis 

2.1. Genetic factors of CP 

Studies on the IL-1 gene cluster associated with CP found that the IL- 
1β (3953/4) C/T polymorphism (rs1143634) was positively associated 
with the severity of CP in Caucasians [13], and a meta-analysis of case- 
control studies concluded that the association was not significant in 
Asians [14]. Thus far, several genome-wide association study (GWAS) 
analyses of CP have been conducted, and none of the single-nucleotide 
polymorphisms that meet the criteria of significant threshold 
(P  <  5 ×10-8) were identified [15–19]. Single nucleotide polymorphisms 
in gene loci of KCNQ5 and GPR141-NME8 were identified as potential loci 
for clinical periodontitis in a Japanese population [15]. Single nucleotide 
polymorphisms in gene loci of NIN, NPY, and WNT5a were identified as 
potential loci for severe CP, and gene loci of NCR2 and EMR1, and the 
genomic region on chromosome 10p15 were identified as potential loci 
for moderate CP [16]. A GWAS report identified potential single nu-
cleotide polymorphisms in gene loci of LAMA2, HAS2, CDH2, and ESR1, 
and in the genomic regions on chromosome 14q21–22 between SOS2 
and NIN, chromosome 3q22 near OSBPL10, chromosome 4p15 near 
HSP90AB2P, chromosome 11p15 near GVINP1, chromosome 14q31 near 
SEL1L, and chromosome 18q12 in FHOD3 [17]. No genome-wide sig-
nificant gene loci in CP, regardless of severity, race, gender, or age, in-
dicates that genetic background is not influential on CP, and potential 
effects of genetic background may be dominated by multiple environ-
mental factors. 

2.2. Genetic factors of AP 

In contrast to CP, single nucleotide polymorphisms in gene loci of 
GLT6D1, SIGLEC5, and DEFA1A3 were significantly enriched in AP pa-
tients investigated by GWAS analyses of German and Dutch case-control 
samples [20–22]. GATA-3 potentially associates to the gene loci of 
GLT6D1, and a rare mutation identified in AP patients resulted in de-
creased binding ability of GATA-3, examined by in vitro study [21]. Thus, 
GATA-3 mediated signaling is possibly a key factor for developing AP. 
GWAS analysis of AP patients in a Japanese population identified pu-
tative polymorphism in the GPR126 gene locus, and in vitro analysis 
implied that this polymorphism influenced the functions of GPR126 for 
osteogenic differentiation of PDL cells [22,23]. Furthermore, 2 studies 
conducting whole exome sequencing of AP families and sporadic pa-
tients from different groups identified 8 mutation points in NOD2  
[24,25]. Among these, p.Arg311Trp mutations were commonly identi-
fied in both studies [24,25]. NOD2 is an intracellular sensor of bacterial 
peptidoglycan and participates in innate immunity. The polymorphisms 
in NOD2 were linked with increased risk of Crohn’s disease, which is an 
inflammatory bowel disease [26,27]. NOD2 possesses 3 functional do-
mains including caspase activation and recruitment domains, nucleo-
tide-binding domains, and leucine-rich repeat domains. Significantly, 
the mutations associated with AP were detected in all three domains  
[24]. So far, functional alteration of NOD2 caused by each mutation has 
not been revealed. Most recently, exosome sequencing of children who 
developed stage IV, grade C periodontitis identified mutations in gene 
loci of CTSC, TUT7, PADI1, FLG, ABCA1, GLT6D1, and SIGLEC5 [28]. Thus, 
the genetic background responsible for AP has mostly been clarified. 
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3. Epigenetic factors of periodontitis 

3.1. Studies focusing on DNA methylation status in pre-selected 
gene loci 

Methylated DNA constructs compressed chromatin structure, 
and the degree of local DNA methylation, particularly in CpG islands, 
is inversely correlated with gene expression. Before high-throughput 
techniques became accessible, characteristic DNA methylation 
changes in CP were investigated by looking in pre-selected genomic 
positions. Methylation of six CpG sites in IFNγ promoter was sig-
nificantly lower, and the IFNγ expression level was significantly 

higher (1.96-fold) in periodontitis gingival biopsy samples compared 
with healthy biopsy samples [29] (Table 1). The differences seemed 
to originate from infiltration of CD4+ T cells, CD11C+ cells, and CD56+ 

NK cells expressing IFNγ in periodontitis tissues. Similarly, compar-
ison of DNA methylation between CP and healthy gingival biopsy 
samples showed hyper-methylation of the TLR2 gene locus and a low 
expression of the TLR2 gene [30], no difference in methylation pat-
tern of the IL6 promoter despite increased IL6 expression in peri-
odontitis samples [31], and the methylation level of the TNFα 
promoter, at − 163 bp, was significantly increased despite higher 
TNFα expression in periodontitis samples [32]. The pilot case-control 
study to evaluate the changes of DNA methylation in inflammatory 

Fig. 1. Epigenetic regulation of gene expression, (A) Modification of higher-order chromatin structure by lncRNAs. (B) Modification of local chromatin accessibility by histone 
modification. Accessible chromatin is marked with active chromatin marks such as H3K27ac, H3K9ac, and H3K4me3. Inaccessible chromatin is marked with suppressive 
chromatin marks such as H3K27me3. (C) DNA methylation. Cytosine methylation suppresses gene expression. (D) Guidance of transcriptional complex. ncRNAs guide the 
transcriptional complex to the promoter region to induce gene expression. (E) Post-translational regulation of mRNA stability (ceRNA). lncRNAs bind to miRNA to inhibit miRNA- 
induced mRNA degradation. 
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gene loci before and after the periodontal treatment of CP revealed 
that COX2 gene loci were hypo-methylated after the periodontal 
treatment. However, methylation of LINE-1, IFNγ, and TNFα gene loci 
was sustained [33]. Studies focusing on AP patients showed that CpG 
methylation in CCL25 and IL17C gene loci was significantly sup-
pressed in the gingival tissue of AP patients compared with healthy 
control samples by methylation detection PCR array comprised of 22 
inflammatory candidate genes [34]. 

3.2. Studies conducting high-throughput analyses 

High-throughput DNA analysis focusing on genomic positions 
ranging from − 2000 to + 2000 bp from the transcriptional start site 
showed that DNA methylation of the genes related to immune 
processes and inflammatory responses was lower in periodontitis 
gingival samples compared with healthy gingival samples, and the 
trend was negatively correlated with previously published gene 
expression array data [35,36] (Table 1). These results suggested that 
epigenetic modulation by DNA methylation impacted the prognosis 
of periodontitis. DNA methylation detection panels comprised of T- 
cell and B-cell function regulators, transcriptional and translational 
regulators, and cytokine pathway-related genes found that hypo- 
methylation of the STAT5 gene locus occurred in gingival samples of 
CP, in contrast with that of healthy control samples [37]. More re-
cently, combination analysis of mRNA transcription by RNA-seq of 
poly-A-tailed RNAs and differential DNA methylation by a genome 
wide-coverage DNA methylation microarray panel, including the 
spots of CpG islands, gene bodies, and enhancers, found that 43 631 
and 536 differentially methylated positions occurred in periodontitis 
and gingivitis samples, respectively, compared with healthy samples  
[38]. These data suggested drastic epigenetic changes in period-
ontitis gingival tissues. Among the neighboring genes of differen-
tially methylated positions in periodontitis samples, 11 genes, 
including KCNA3, KCNA2, RIMS2, HOXB7, PNOC, IRX1, JSRP1, TBX1, 
OPCML, CECR1, and SCN4B, were differentially expressed. Genome- 
wide DNA methylation analysis of peripheral leukocytes revealed 
that hyper-methylation in ZNF718 and HOXA4 gene loci and hypo- 
methylation in the ZFP57 gene locus were differentially identified in 
periodontitis patients compared with healthy controls [39]. These 
results indicated that systemic and local epigenetic patterns seem to 
be independent, and the differences were at least partially brought 
about by the cell type because gingival samples contain hetero-
geneous cell populations. Particularly, immune cell proportions in 
inflamed gingival tissue, non-inflamed gingival tissue adjacent to 
periodontitis region, and healthy gingival tissue were 52%, 28%, and 
16%, respectively [40]. Higher proportions of TET2-positive cells 
were observed in the periodontitis lesion, which indicated that a 
higher demethylation activity might also be responsible for identi-
fying different outcomes for the epigenetic panel between periph-
eral leukocytes and periodontitis gingival tissue [41]. 

3.3. Current research analyzing epigenetics and epigenetic modulators 
in periodontitis other than DNA methylation 

Epigenetics encompasses DNA methylation, histone methylation, 
histone acetylation, and modification of non-coding RNAs (ncRNAs), 
including short RNAs, such as miRNAs and long ncRNAs (lncRNAs) 
(Fig. 1). As previously discussed, most clinical studies investigating 
the involvement of epigenetic action for periodontitis have focused 
on DNA methylation, presumably because it’s easier to prepare many 
samples for high-throughput analysis [42–45]. One most recent 
study revealed that H3K27me3, a suppressive mark, was strongly 
enriched, and that enrichment of H3K27me3 was closer to tran-
scriptional start sites in periodontitis samples compared with 
healthy control samples, which implied closed chromatin construc-
tion in extracellular matrix (ECM)-related gene loci [46]. The oral 

pathogens dysregulated chromatin-modifying enzymes such as 
histone deacetylases (HDACs) by changing their expression level and 
induced whole genomic alteration of histone modifications [47]. 
Mechanistic analysis revealed that specific inhibition of HDAC3 ef-
ficiently reduced inflammatory responses in Prophyromonas gingi-
balis (P.g.) stimulated gingival fibroblasts [48]. ncRNAs are defined as 
molecules without apparent protein-coding potential that regulate 
complex cellular behaviors, and they are classified into small RNAs 
such as miRNAs and lncRNAs by length [49,50]. Meta-analysis of 
miRNA expression in periodontitis and peri-implantitis concluded 
that miRNA-146a and miRNA-142–3p were statistically significant in 
periodontitis patients [51], and miRNA-146a is one of the well- 
analyzed miRNAs in periodontitis [52]. Notably, miR-146a was re-
ported as negatively regulating the innate immune system, and the 
concentrations were significantly higher in CP patients, and miRNA- 
146a expression was inversely correlated with TNFα and IL6 ex-
pression [53]. lncRNAs participate in various aspects of cellular 
events such as modification of higher-order chromatin structure and 
transactivation of transcriptional factor complex [54,55]. In addition, 
lncRNAs is known to act as a competing endogenous RNA (ceRNA) by 
directly binding to target miRNAs. As miRNA captured by lncRNA 
loses its ability to degrade miRNA-targeted mRNA, lncRNA expres-
sion facilitates miRNA-targeted mRNA stabilization and protein 
synthesis [56]. Thus, regarding the regulatory network (i.e., lncRNAs- 
miRNAs-mRNAs) for periodontitis, lncRNAs (e.g., MALAT1, TUG1, 
FGD5-AS1, LINC00687, LBX-AS1, LINC01566) were listed as key mo-
lecules to bridge genetic (e.g., mRNA) and epigenetic (e.g., miRNA 
and lncRNA) mechanisms for ceRNA networks [57,58]. 

4. Epigenetic association between periodontitis and systemic 
diseases/conditions 

Periodontitis is deeply linked with systemic chronic in-
flammatory diseases and conditions such as nutritional status, me-
tabolic diseases, obesity, and diabetes mellitus [59–62]. The 
epigenetic status of periodontal tissues is influenced by the local 
environment and systemic conditions. Whole-genome DNA methy-
lation analyses of gingival tissue from minipigs with streptozotocin- 
evoked experimental diabetes revealed distinct patterns of hyper- 
and hypo-methylation compared with minipigs that didn’t have 
diabetes [63]. Since hypo-methylation was significantly identified in 
pro-inflammatory gene loci, such as TNFα and IL6, the systemic 
diabetes condition may epigenetically promote inflammation in 
physiologically normal gingival tissue and increase the susceptibility 
of periodontitis. Investigation of the clinical relationship between 
periodontitis and systemic diseases has been conducted by ana-
lyzing genomic DNA methylation of peripheral blood. By focusing on 
CpG motifs in the TNFα gene locus, 1 motif in CP patients and 7 
motifs in rheumatoid arthritis patients were identified as having 
significantly higher methylation frequencies compared with healthy 
controls [64]. The motif identified in the CP patient, at − 72 bp, was 
identical to 1 of the 7 motifs in rheumatoid arthritis patients; 
however, its effect on TNFα expression was not examined. Recently, 
the incidence of coronary heart disease was found to have significant 
association with severe periodontitis [65]. The relationship between 
periodontitis and cardiovascular disease events, such as coronary 
heart disease, has been revealed from the view of epigenetic re-
ciprocal interaction [66]; however, none of the experimental ap-
proaches can currently prove or clarify it. Since hyper-methylation of 
the CpG island was identified in CDH1 (E-cadherin coding gene) gene 
loci for 25% of CP patients and in COX2 gene loci for 19% of CP pa-
tients, which is often seen in breast cancer patients, expression le-
vels of CDH1 and COX2 in periodontal tissue and the degree of 
methylation of the CpG islands in CDH1 and COX2 gene loci may be 
useful diagnosis markers of periodontitis [67]. 
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Prenatal, postnatal, and immature psychological stress (i.e., 
early-life stress) are known to become health risk factors and cause 
the onset of lifestyle diseases in adulthood. Maternal deprivation, 
also known as maternal separation, is a representative method to 
evoke early-life stress in animal models [68]. Adult rats that have 
experienced maternal deprivation, showed severe bone loss in a li-
gature-induced rat periodontitis model [69]. Glucocorticoid receptor 
expression in the hippocampus of adult rats that have experienced 
maternal deprivation was upregulated concomitantly with de-
creased DNA methylation in the CpG site of the glucocorticoid re-
ceptor gene locus. The time-separated relation between 
psychological stress in early-life and periodontitis progression in 
adulthood suggests that early-life stress stores epigenetic memory in 
periodontal tissue. In the murine systemic P.g. challenging period-
ontitis model, oral gavage of P.g. increased the expression of 
DNMT3B, a de novo methyltransferase, on the surface of the alveolar 
bone and gut epithelial tissue. In contrast, the murine ligature-in-
duced periodontitis model showed that expression of DNMT3B was 
increased only on the surface of the alveolar bone and not on the gut 
tissue [70]. Thus, systemic bacterial challenge is the more suitable 
model to analyze epigenetic influences on communication between 
the gut and periodontal tissues. 

5. Epigenetic alteration in gingival tissue by local risk factors 

Smoking increases the susceptibility and severity of CP. 
Combination analysis of transcriptomics and methylomics in human 
gingival tissue of smokers and non-smokers revealed that the genes 
encoding for the proteins associated with ECM organization and 
extracellular structure organization were selectively decreased 
concomitantly with increased DNA methylation in the smoker group 
compared with the non-smoker group [71]. Another combination 
analysis identified 9 hypomethylated CpG sites with significant as-
sociation to current smokers compared with non-smokers and 3 of 
the 9 CpG sites were in the CYP1B1 gene locus, and CYP1B1 expres-
sion concomitantly increased in smokers compared with non-smo-
kers [72]. CYP1B1, a member of the CYP superfamily, is involved in 
xenobiotic metabolism and endogenous metabolic pathways [73]; 
however, the roles of CYP1B1 in periodontitis progression have not 
been evaluated. SOCS1 was previously shown to regulate alveolar 
bone loss [74], and SOCS1 promoter methylation analysis was con-
ducted to examine whether smoking habits epigenetically altered 
SOCS1 expression in oral epithelial cells [75]. SOCS1 promoter me-
thylation was observed in 33.3% of smoker samples and only ap-
peared in 4.76% of non-smoker samples. Comprehensive analysis of 
changes in miRNA expression by nicotine treatment in PDL cells 
showed that the miRNA regulated Toll-like receptor signaling 
pathway, nicotine addiction, the transforming growth factor-β sig-
naling pathway, and the hypoxia inducible factor-1 pathway were 
selectively detected compared with non-treated PDL cells [76]. These 
results suggest that smoking affects the local epigenetic status in 
periodontal tissue; however, only one pilot study (sample number = 
5 per group) [71] and one epigenome-wide association study 
(sample number = 18 current smoker) [72] have been reported so far. 

Acetylation of histone 3 was clearly detected in oral epithelial 
cells when periodontitis was investigated by the ligature-induced 
murine periodontitis model, which also detected lipopoly-
saccharide-treated human keratinocytes [77]. Lipopolysaccharide 
(LPS) suppressed the expression of DNMT1, a DNA methyl-
transferase, and induced the acetylation of histone 3, especially 
H3K9ac, and the recruitment of p300/CBP, a transcriptional co-ac-
tivator, into the NF-κB gene locus. Furthermore, in vitro analysis of 
epithelial cell barrier formation showed that P.g.-mediated barrier 
destruction was blocked by several DNA methyltransferase in-
hibitors such as RG108, (-) epigallocatechin-3-gallate, and curcumin  
[78]. These results indicated that epigenetic alteration in epithelial 

cells by pathogens, or pathobionts exposure, is involved in the de-
velopment of periodontitis, and administration of epigenetic drugs 
into oral epithelia should be an attractive method for preventing 
periodontitis. 

6. Molecular mechanisms of epigenetic alteration in 
periodontitis 

6.1. The functions of PDL cells and mesenchymal stem cells controlled 
by epigenetic mechanisms 

Energy metabolism is strongly linked with epigenetic status [79]. 
The tricarboxylic acid cycle, fatty acid β-oxidation, and respiratory 
chain involve intermediate products of the biochemical reactions for 
metabolic pathways and regulate cellular differentiation through the 
control of histone modifications [80]. Acetyl-CoA and α-ketogluta-
rate levels have been shown to reflect metabolic activities [81]. Fu-
marate has inhibited KDM5, one of the histone Lys-specific 
demethylases proteins, and consequently induced active chromatin 
markers such as H3K27ac and H3K4me3 [82]. Comprehensive epi-
genetic transcriptional regulation of ECM-related genes associated 
with H3K27ac and H3K4me3 status has been reported in PDL cells 
and odontoblasts [83,84]. Exogenously supplied sodium acetate is 
incorporated and immediately converted to acetyl-CoA by ACSS2 
and used as an acetyl group for acetylation by histone acetyl-
transferases (HATs) [85–87]. PPARγ is a key modulator of energy 
metabolism, such as lipid and glucose metabolism [88], and PPARγ 
positively regulates osteogenic differentiation and expression of the 
extracellular matrix by altering H3K27ac in PDL fibroblasts [83]. 

Histone acetylation markers, especially H3K9ac, H3K14ac, and 
H3K27ac, are positively linked with osteogenic capacities of PDL 
cells and the degree of histone acetylation is increased during os-
teogenic differentiation of PDL cells in vitro [44]. Histone is acety-
lated by HATs and de-acetylated by HDACs. So far, chemicals that 
efficiently enhance HAT activity have not been realized, but chemical 
inhibition of HDAC activity is a more developed strategy [44]. Tri-
chostatin A, an HDAC inhibitor, accelerated osteogenic differentia-
tion of PDL cells through enhancement of H3K9ac and H3K14ac [89]. 
p-65 is potent inhibitor of osteogenic differentiation, and BMP2- 
mediated ectopic bone formation [90,91]. Trichostatin A restored p- 
65-induced suppressive functions in MSCs and periodontal re-
generation in a ligature-induced rat periodontitis model [92]. Ost-
hole, an inducer of H3K9ac and H3K14ac, restored the inflammation- 
dependent regenerative capacity of PDL cells [93]. XPO5 is a key 
protein for nuclear export of miRNAs and pre-miRNAs processing to 
generate active miRNAs [94–97]. XPO5 is decreased during osteo-
genic differentiation of PDL cells, and the decrease of XPO5 limited 
the ability of miRNAs targeting RUNX2, which resulted in induction 
of osteogenesis for PDL cells [98]. miRNA-153–3p inhibited osteo-
genic differentiation of PDL cells by down-regulating the expression 
of KDM6A, a demethylase of H3K27 [99]. lncRNA SNHG1 inhibited 
osteogenic differentiation of PDL cells by guiding H3K27me3 into the 
KLF2 promoter to suppress the expression of KLF2, an inducer of the 
RUNX2 transcriptional ability [100,101]. 

Epigenetic alteration also involves the response of PDL cells 
under bacterial pathogen exposure. LPS was delivered from P.g. 
hyper-methylated RUNX2 gene locus to suppress RUNX2 expression  
[102] and decrease DNMT1, a DNA methyltransferase of CpG, and 
increase acetyltransferase p300 and NF-κB [103]. Moreover, ascorbic 
acid inhibited LPS-P.g.-dependent p300 and NF-κB expression and 
increased miR-210, which is known to inhibit NF-κB signaling [104]. 
Considering histone modification during LPS stimulation of PDL cells  
[105], LPS increased the enrichment of H3K4me3, an active chro-
matin mark, in inflammatory gene loci and increased the enrichment 
of H3K27me3, a suppressive chromatin mark, in ECM and osteogenic 
gene loci. Jmid3, a H3K27me3 demethylase, was upregulated in PDL 
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cells by LPS stimulation and increased the number of Jmid3-posi-
teive cells in rat apical periodontitis [106]. Jmid3 demethylated IL6 
and IL12 promoter in the presence of LPS to promote the expression 
of IL6 and IL12. Curcumin, a yellow polyphenol that contains lipo-
some, has suppressed the LPS-P.g.-induced inflammation and ROS 
production in stem cells, while restoring the LPS-P.g.-suppressed 
p300 and DMNT1 expression, and therefore demonstrated useful-
ness as an epigenetic modulator for future clinical application [107]. 

6.2. Epigenetics associated with osteoclastogenesis 

Active osteoclast formation induces alveolar bone loss in peri-
odontitis, and epigenetic mechanisms take part in osteoclastogen-
esis in periodontal tissue. KDM3C, one of the histone Lys-specific 
demethylases, is expressed in macrophages and expression was 
decreased by LPS-P.g. treatment [108]. Loss of KDM3C has promoted 
NF-κB signaling, osteoclastogenesis, and alveolar bone loss in the 
ligature-induced murine periodontitis model [108]. KDM4B, another 
histone Lys-specific demethylase proteins, was increased in the 
epithelium of periodontal diseases and in murine calvarial sections 
treated with Aggregatibacter actinomycetemcomitans LPS [109]. In 
contrast to KDM3C, KDM4B positively regulated inflammation and 
osteoclastogenesis by suppressing KDM1B-dependent hetero-
chromatin construction in pro-inflammatory gene loci. Histone 
deacetylases were classified into 4 subgroups including Class I, Class 
IIa, Class IIb, and Class IV [44,110]. HDAC1 and HDAC2 belong to Class 
I. The inhibition of deacetylase activity of HDAC1 and HDAC2 with 
their selective inhibitors, BRD0302 and BRD6688, respectively, re-
duced cytokines and chemokines secretion from TNFα-primed 
monocytes and suppressed RANKL-induced TNFα-primed monocyte 
differentiation into osteoclasts, and the effects were more pro-
nounced if HDAC1 and HDAC2 were collectively inhibited [111]. 
Thus, the demethylase ability of KDM4B and deacetylase activities of 
HDAC1 and HDAC2 may be useful targets to suppress periodontal 
tissue destruction. 

7. Promising approaches for epigenetic diagnosis and treatments 
of periodontitis 

7.1. Epigenetic reprogramming of periodontal tissue residential cells 
into osteogenic cells 

Sequential treatment of gingival fibroblasts with 5-aza-2`-deox-
ycytidine, an inhibitor of DNA methylation, and BMP2 in the pre-
sence of osteogenic-inducing medium has induced trans- 
differentiation into osteoblasts [112]. First, 5-aza-2`-deoxycytidine 
de-methylated hyper-methylated osteogenic gene loci such as 
RUNX2 and ALP in fibroblasts to evoke osteogenic potential. Then, 
subsequent BMP2 treatment promoted osteogenic differentiation of 
the de-methylated cells. Co-stimulation of epithelial cell rests of 
Malassez with 5-aza-2`-deoxycytidine and valproic, a histone dea-
cetylase inhibitor, was sufficient to induce the trans-differentiation 
into osteogenic mesenchymal-like cells [113]. These results showed 
that enforced epigenetic alteration is an attractive strategy to effi-
ciently generate osteogenic cells ex vivo for regenerative medicine. 

7.2. Promising approaches for epigenetic diagnosis of periodontitis 

N6-methyladenosine (m6A) is a common modification in eu-
karyotic mRNAs and lncRNAs and plays pivotal roles for various 
biological processes such as RNA stability, RNA translation, and RNA 
export [114]. There are a total of 23 regulators for m6A post-trans-
lational modification of RNA molecules that include 8 writer, 2 
eraser, and 13 reader subtypes [114]. After analyzing the gene ex-
pression level of the 23 m6A regulators in periodontitis samples 
obtained from periodontal surgery, 241 periodontitis samples were 

successfully divided into the 3 subtypes [114]. Periodontitis asso-
ciated with mild phenotypes were accumulated in suptype-1, and 
periodontitis with active inflammation were accumulated in sub-
type-2 and − 3. ELAVL1, one of the m6A erasers, was positively cor-
related with expression of the TNFα receptor family, and CBLL1, one 
of the m6A writers, was negatively correlated with cytokine activity. 
These results indicated that m6A modification was involved in in-
flammatory control in periodontitis and classification by m6A reg-
ulators might be useful for evaluating periodontitis severity. Small 
extracellular vesicles (sEV) in saliva, which contain extracellular 
vesicles from the host and outer membrane vesicles from bacteria, 
are being developed for diagnosis of periodontitis [115,116]. Mea-
surement of the 5-methylcytocine (5mC) level in salivary sEV was 
more precise for the assessment of periodontitis progression com-
pared with the 5mC level in whole saliva [116]. Circular RNAs (cir-
RNAs) may also be promising candidate molecules for periodontitis 
diagnosis because the secretion of cirRNAs from periodontal tissues 
has been reported [117–122]. Mechanistically, cirRNAs may act as an 
RNA sponge, like lncRNA, that generates the cirRNAs-miRNAs- 
mRNAs regulatory network. 

8. Conclusions 

Recent advances in next-generation sequencing technologies 
enabled periodontal researchers to precisely explore whole-genome 
epigenetic changes in local periodontal tissues and peripheral blood 
samples of periodontitis patients. Epigenetics and epigenetic al-
teration have been utilized for evaluating susceptibility, diagnosis, 
and progressive assessment of periodontitis. However, whole- 
genome high-throughput screening that highlights DNA methylation 
and ncRNAs has only been applied for a small number of studies  
[35–40,71,72]. Assay for transposase-accessible chromatin sequen-
cing (ATAC-seq) will contribute to whole-genomic high-throughput 
analysis in periodontitis. ATAC-seq can be used to identify whole- 
genomic chromatin accessibility, key histone modifications, tran-
scriptional factors, and distal enhancer elements, which compre-
hensively regulate functionally related genes. 

Finally, since various chemical epigenetic modulators show po-
sitive effects for protecting alveolar bone loss in vivo and osteogenic 
ability of PDL cells in vitro [44,46,110,123], the epigenetic status of 
periodontal tissue will strongly influence the responsiveness of 
periodontal tissue regeneration therapy. Significantly, assessment 
and modulation of the epigenetic status of PDL cells make it possible 
to evaluate and accelerate their regenerative-tropism to predict 
more accurate prognoses of periodontal regeneration therapy and 
develop precision-medicine in periodontal regeneration therapy. 
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