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Why re-annotate?
Over the past ten years, we have witnessed the publication of

several chromosomes or complete genome sequences from a

variety of bacterial, archaeal and eukaryotic species. The

trend towards genome sequencing is expected to continue or

even accelerate in the foreseeable future. The wealth of

sequence information being produced has generated the

need for rapid annotation and subsequent biological inter-

pretation of genome sequences. Annotation can be defined

as a process by which structural or functional information is

inferred for genes or proteins, usually on the basis of similar-

ity to previously characterized sequences in public data-

bases. The annotation process associates genome sequences

with functional information and guides experimentation by

relating genotypes to phenotypic properties.

Once a genome-sequencing project is completed and the

information is released into the public domain, it is common

practice for certain groups of researchers to take a ‘second

look’ at the original annotation, for various reasons. We

define the process of annotating a previously annotated

genome sequence as ‘re-annotation’. Motivations for

re-annotation include discovery of more genes and protein

functions, testing and performance-comparison of existing

or newly developed annotation methods, and assessment of

annotation reproducibility. Re-annotation also provides up-

to-date information for end-users, using the latest resources

- such as new or improved algorithms and richer databases.

Clearly, the drive for re-annotation goes back in time, arising

even before the availability of entire genome sequences. For

example, in an attempt to assign function to a number of

uncharacterized, hypothetical genes from archaeal species,

one of the earliest large-scale re-annotation studies pro-

duced a number of novel predictions [1]. What sets whole-

genome re-annotation apart from other analyses, however, is

its distinctly discontinuous and comparative nature: inde-

pendent groups of researchers systematically generate novel

predictions and compare them with an original set of gene-

function predictions in an incremental and stepwise

manner. We believe that this mode of annotation provides

valuable insights into the process of protein-function assign-

ment. It is different from the continuous mode of annotation

adopted by the groups who originally annotate genome

sequences having completed them, as they may not always

document their annotation methods, or improvements to

annotations, in the published record. 

Genome-wide re-annotation is characterized by a number of

distinct elements. The groups who perform re-annotation

usually have no access to the original primary sequencing

data (such as fluorescence traces from genome-sequencing

machines), making the detection of certain features - such as

It is perhaps hard to make firm statements on such
questions without having examined them many times
Aristotle, Categories, 8b21 (translated by J.L. Ackrill,
Clarendon Press, Oxford 1963)
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frameshift errors - quite cumbersome. The process is labor-

intensive, because it considers the entire genome and

involves a significant number of manual operations, includ-

ing the correction of misleading original annotations. Finally,

the lack of ‘gold standards’ by which to judge annotations

represents a challenge and raises a serious, but by no means

unique, reproducibility issue: because there is no ‘right’

answer for annotation, how can we assess its success? Quality

control of annotation is probably the most important techni-

cal aspect, because it provides critical information on the per-

formance of various approaches, by correcting various errors

(higher precision) or generating more predictions (higher

coverage); these issues are considered further below. Re-

annotation has not attracted sufficient attention as a distinct

and specialized subject, possibly because of the highly

charged and competitive nature of genome bioinformatics

[2]. Here, we examine as objectively as possible the strengths

and weaknesses of current re-annotation approaches and

suggest a number of possible improvements. 

Re-annotated genomes
Despite progress in the field of computational genomics, the

process of annotation is still a largely manual, labor-inten-

sive endeavor [3]. Because of the large number of genome

sequence entries currently available (over 300,000 genes), no

single group has ever been able to generate manual annota-

tions for all proteins. Yet there is a great need for up-to-date,

exhaustively annotated genome sequences. Thus, systems

such as GENEQUIZ [4], which infers sequence annotations

automatically, provide valuable information resources; for

instance, we have recently been able to generate 73,500 gene

annotations for 31 sequenced genomes [5]. During the year

2001, another 30 genomes have been re-analyzed

(P.J. Janssen and C.A.O., unpublished observations), and

their annotations can be accessed online [6].

Re-annotation projects for individual species have been

reported in the literature by a handful of groups. The species

re-annotated include (with strain names omitted for brevity):

Haemophilus influenzae [7-10], Mycoplasma genitalium

[10-12], Methanococcus jannaschii [13-16], various archaeal

species [17], Mycoplasma pneumoniae [18], Chlamydia tra-

chomatis [15], Thermotoga maritima [19], Saccharomyces

cerevisiae [20-24], Plasmodium falciparum (chromosome

II) [25], Aeropyrum pernix [26], and isolated cases of single

genes [27] (Table 1). One interesting, and encouraging,

pattern to emerge from these studies is that the level of

improvement provided by re-annotation, calculated by

expressing the number of genes for which new functions are

predicted as a percentage of the total number of genes in the

genome, is on average 7% (Table 1). This indicates that, for

the most part, various groups using different methods gener-

ate sets of predictions that are generally quite similar. These

percentages can also be considered to represent the level of

disagreement between the various groups (as a function of

genome size). Proteins can be classified into two broad cate-

gories: assigned to a predicted function or unassigned

(sometimes referred to as ‘hypothetical’); the improvement

rate usually refers to the re-assignment of hypothetical pro-

teins to proteins of predicted function. 

Measures of annotation accuracy
The above mentioned re-annotation reports usually claim

that there has been an improvement over the original (or

previous) attempts for genome annotation. But in all these

predictions it is not certain whether this improvement repre-

sents more accurate identification of a gene or a protein

function that escaped detection from the previous analysis.

Indeed, improvements over previous under-predictions (or

false negatives) may correspond to current over-predictions

(or false positives). There is always pressure when re-anno-

tating a genome to produce a ‘better’ result, which can easily

be obtained by loosening the criteria for function prediction -

for example by using a weaker threshold for sequence-

similarity comparisons. A cautionary note is therefore

appropriate here: when researchers embark on a re-annota-

tion project, the expectation is that they will be able to assign

more functions to a set of sequences using computational

methods. This natural tendency is usually supported either

by looser thresholds in the analysis or by more up-to-date

(but not necessarily richer) supporting databases. Thus, the

‘better’ results may be questionable, because of the subjec-

tivity associated with any manual analysis. We believe the

real challenge is therefore to procure and implement objec-

tive standards for genome annotation quality. 

Given a gold standard - a completely correct set of annota-

tions - two measures of accuracy can be defined. First, cover-

age is defined as the ratio of true positives over the sum of

true positives plus false negatives - so, if there are no false

negatives, coverage is 100%. Second, precision is defined as

the ratio of true positives over the sum of true positives plus

false positives - so, if there are no false positives, precision is

100%. In any analysis, there is a trade-off between coverage

and precision. A combined measure of these two numbers is

accuracy, which is defined as the ratio of true (positive plus

negative) cases over the total number of cases (where ‘cases’

are, for example, the number of genes or proteins). Although

these measures have not always been used explicitly in

genome-annotation projects, they are usually implied in

arguments about prediction accuracy.

The problem is that even if we agree on measures of cover-

age, precision and accuracy, we do not currently have a

single gold standard for genome-wide annotation. There is

no complete genome for which all the gene structures (start

sites, exons, introns, and so on) and the encoded protein

functions have been experimentally determined. Thus, all

annotation attempts remain tentative - especially in the case

of protein function assignments and descriptions. To assess
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Table 1

Re-annotation projects

What How Why New/Total % Who When Reference

Yeast chromosome III The very first re-annotation; C, E 17/182 9.3 Bork et al. 1992 [20,21]
17 new predictions compared 
to the original 57 (74 total 
assignments)

Yeast chromosome III Subsequent re-annotation; C 19/171 11.1 Koonin et al. 1994 [22]
19 predictions over the 74 
above (93 total assignments)

Various archaeal species One of the first large-scale E 30/95 31.6* Ouzounis et al. 1995 [1]
analyses, but not genome-wide

Yeast chromosome VIII Re-annotation C 24/269 8.9 Ouzounis et al. 1995 [24]

Haemophilus influenzae Automated genome annotation; C, E 148/1,743 8.5 Casari et al. 1995 [9]
148 new assignments over previous
1,007 (1,155 total assignments)

Haemophilus influenzae Additional gene findings A 17/1,743 0.1 Robison et al. 1996 [10]

Haemophilus influenzae Re-annotation and metabolic E 253/1,703 14.9 Tatusov et al. 1996 [8]
reconstruction; 1,408 total 
assignments (cf. 1,155 above)

Haemophilus influenzae Metabolic reconstruction E Individual cases N/A Karp et al. 1996 [7]

Mycoplasma genitalium Additional gene findings A 3/470 0.6 Robison et al. 1996 [10]

Mycoplasma genitalium Re-annotation C 21/470 4.5 Ouzounis et al. 1996 [11]

Methanococcus jannaschii Manual re-annotation C 214/1,738 12.3 Kyrpides et al. 1996 [14]

Methanococcus jannaschii Re-annotation; reproducibility C, F 23/1,682 1.4 Andrade et al. 1997 [13]
study

Saccharomyces cerevisiae Short open reading frame A 10/6,357 0.2 Andrade et al. 1997 [23]
identification

Various species Cautionary statement B Individual cases N/A Smith and Zhang 1997 [3]

Methanococcus jannaschii Cautionary statement B Individual cases N/A Kyrpides and Ouzounis 1998 [34]

Methanococcus jannaschii Cautionary statement B, D 20/1,738 1.2 Kyrpides and Ouzounis 1999 [15]

Chlamydia trachomatis Cautionary statement B, D 10/893 1.1 Kyrpides and Ouzounis 1999 [15]

Campylobacter jejuni Cautionary statement B Individual cases N/A Pallen et al. 1999 [27]

Methanococcus jannaschii Additional gene findings A 31/1,773 1.8* Raghavan and Ouzounis 1999 [17]

Methanobacterium Additional gene findings A 13/1,871 0.7* Raghavan and Ouzounis 1999 [17]
thermoautotrophicum

Archaeoglobus fulgidus Additional gene findings A 27/2,409 1.1* Raghavan and Ouzounis 1999 [17]

Pyrococcus horikoshii Additional gene findings A 42/2,061 2.0* Raghavan and Ouzounis 1999 [17]

Plasmodium falciparum Re-annotation; reproducibility F 21/210 10.0 Tsoka et al. 1999 [25]
chromosome II study

Mycoplasma genitalium Comparison of other annotations, F Individual cases N/A Brenner 1999 [33]
reproducibility study

Aeropyrum pernix COGs matching E 315/2,694 11.7 Natale et al. 2000 [26]

Pyrococcus abyssii COGs matching E Individual cases N/A Natale et al. 2000 [26]

Mycoplasma genitalium Contextual analysis E 21/480 4.4 Huynen et al. 2000 [12]

Mycoplasma pneumoniae Contextual analysis plus experiments E 109/688 15.8 Dandekar et al. 2000 [18]

Thermotoga maritima Contextual analysis E 193/1,877 10.3 Kyrpides et al. 2000 [19]

In total: 10+ species Key result: Approximately Nine 23 
7 ± 5% ten groups years papers
(*excluded)

Column names and explanations: What, species or chromosome; How, comments or methods; Why, the reasons for re-annotation - A, to find more
genes; B, a cautionary statement; C, to find more functions; D, to achieve fewer errors; E, using new methods; F, to assess reproducibility; % , the
improvement - in terms of additional genes predicted - over previous annotations, as a percentage of the total number of genes in the genome; Who,
authors; When, publication year; Reference, citation. N/A denotes not applicable. * Denotes percentages that have not been taken into account for the
calculation.



the reproducibility of sequence-similarity-based annotation,

some studies have focused on the set of known enzymes and

used the Enzyme Commission (EC) classification number to

measure performance: it has been shown in this way that

function prediction by homology never reaches 100% accu-

racy [28,29]. Comparison of genome annotations with pro-

teins of known structure also suggests that 100% accuracy is

unattainable, although this result may also be influenced by

the smaller number of structures than sequences in the

public databases [30].

In short, what we have learned in the past few years can be

of only relative, not absolute, value. We have been able to

compare various different approaches to genome annota-

tion, but we are ultimately not aware of the absolute accu-

racy of these predictions. Only experimental verification of

gene and protein assignments will conclusively address the

performance of computationally based function assignments

on a genome-wide scale. This prospect may be within reach

in the near future, thanks to the initiatives of structural and

functional genomics, but at present we should be seeking a

working definition of annotation accuracy for comparison

purposes. The absolute ‘truth’ for annotation quality could

be defined as the maximum amount of information a panel

of experts can generate on the basis of computational analy-

sis, which extends beyond standard homology-based predic-

tion and takes into account metabolic pathway analysis [31],

contextual function prediction [12] and whole-genome

analysis and comparison [32]. This level of annotation

should reflect the maximum amount of information that can

currently be generated for a given genome sequence, without

the inclusion of errors that may propagate [33,34].

Quantifying annotation quality
Unfortunately, the above definition of annotation accuracy

still contains a subjective factor, which corresponds to the

‘panel of experts’. Obviously, this can be very controversial,

because it strongly depends on the composition of such a

hypothetical panel and the opinions of the panel members.

Indeed, one interesting experiment would be to assess the

degree to which different expert predictions agree by using a

set of blind predictions over identical genome datasets,

similar in scope and spirit to the CASP competition for pre-

dicting protein structures [35]. One important issue here is

the need for continuous tracking of experimentally verified

gene or protein functions. No matter how accurate computa-

tional predictions become, all annotations should in princi-

ple be traceable to biochemical or genetic experiments that

derived a function for a gene product in the first place. This

is an issue that has not been sufficiently addressed in the

current databases, and there is an acute lack of annotation

source and history for a large number of protein database

entries, making this task exceedingly difficult. Moreover,

there is no good mechanism in place for automatically moni-

toring biological experiments that are pertinent to a particu-

lar system under consideration and integrating this

information with computational analysis, for example by

using databases of published literature [36]. 

In our own re-annotation projects, we have recently come up

with a qualitative scale of genome annotation quality, called

the transitive annotation-based score, or TABS (Table 2).

This score is based on a number of criteria, as follows. First,

it represents a distance scale between two annotation

attempts. For example, if during re-annotation a particular

annotation is considered to have been a false positive, a high

penalty is assigned. This does not necessarily imply that the

previous annotation was an error but rather that the dis-

tance between the two attempts is very high. Second, penalty

scores are ranked according to their potential damaging

effects when propagated in the databases. For example, an

over-prediction is potentially more detrimental than an

under-prediction, because all homologs are in danger of

4 Genome Biology Vol 3 No 2 Ouzounis and Karp

Table 2

Transitive annotation-based scale (TABS): a qualitative distance scale for the assessment of annotation reproducibility in 
genome projects

Score Description Comment

7 False positive Original annotation predicts function without any supporting evidence

6 Over-prediction Original annotation predicts a specific biochemical function without sufficient supporting evidence 

5 Domain error Original annotation overlooks different domain structure of query and reference proteins 

4 False negative Original annotation does not provide predicted function although there is sufficient evidence to characterize the query protein

3 Under-prediction Original annotation predicts a nonspecific biochemical function although a more detailed prediction could have been made

2 Undefined source Original annotation contains undefined terms, non-homology based predictions, and so on

1 Typographical error Original annotation contains typographical errors that may be propagated in the database

0 Total agreement Original annotation is correct, but annotations may be only semantically (but not computationally) identical

Column names and explanations: Score, the score between two assignments; Description, a description of the potential disagreement between two
projects; Comment, explanatory comments for ranking/scores. We consider scores of 0-3 as relatively benign compared to scores of 4-7, as the latter
have a much more significant impact on genome sequence and database quality. 



inheriting this assignment, usually without a trace. Third, we

opted for a mutually exclusive sum of penalties. For

instance, if we detect both a domain error and a typographi-

cal error, we penalize the case as having a domain error,

because we consider it much more important (Table 2). The

TABS scale for annotation quality departs from the tradi-

tional ‘percentage’ notion of successful assignment and, we

believe, provides a first step towards more quantifiable com-

parisons; the cumulative sum of assignments may be consid-

ered as a function of the error-propagation potential of the

individual assignments. In the future, more complex

schemes may be devised that would also weigh individual

assignments according to the confidence of the prediction.

For example, given two equivalent annotation schemes and

assuming no mistakes, the one with the higher confidence

should score higher - but errors in high-confidence predic-

tions should result in high penalties.

Best practice, and open questions
It is fortunate that institutions such as The Institute for

Genomic Research (TIGR) [37], which has sequenced so

many genomes to date, have opted for a high-precision

approach. The fact remains, however, that many portions of

available genome sequences have yet to be annotated,

because researchers hold back from inferring functions with

low certainty. Occasionally, people who work with particular

species have found new homologies that are informative of

function, but these results have not been incorporated into

any existing database. Clearly, there needs to be a robust

mechanism by which this occurs - and in the meantime we

can only urge all researchers to make their results available

in central databases. There are serious attempts to build

consensus genome annotations for a number of model

organisms; these projects are community-based initiatives to

keep annotations current and of high quality [38]. Unfortu-

nately, this is not the case for less well-studied organisms

with smaller research communities. We would argue that

one obvious way is to provide annotations for all genomes

that have been sequenced using automatic, reproducible

protocols. Such protocols have been developed in projects

such as GENEQUIZ [4] and PEDANT [39]. We have recently

analyzed all genomes available up to year 2001 using

GENEQUIZ - these can be accessed online [6]. Automatically

generated annotations may not be carefully curated but they

do provide a solid basis, upon which the community can

build. Frequently, such annotations may be imported into

curated databases, such as, for example, SWISS-PROT [40].

Another, more complex, issue is the peer-reviewing process

for genome-sequencing articles. Results in the published

papers that result from sequenced genomes are thoroughly

reviewed by expert referees - but the only experimental result

of these papers is the genome sequence of the species under

consideration. All annotations represent hypotheses that

need to be verified, yet these annotations are accepted by

databases and are included in the description line of the cor-

responding database entries. Obviously, referees cannot pos-

sibly review every single annotation provided by the authors,

and this is where the classical peer-review system collapses,

as indeed it does for most high-throughput, large-scale bio-

logical experiments. Alternative solutions must be sought.

Many open questions remain in our attempts to understand

the science and art of genome re-annotation. To what degree

can improved function predictions after genome re-annota-

tion be assigned to growth in the public sequence databases,

as opposed to the use of improved sequence-analysis algo-

rithms, or simply to the use of different sequence-analysis

algorithms (an algorithm such as BLAST is heuristic and will

miss some similarities - use of a different heuristic algorithm

may find other similarities), or to different human expertise?

Can researchers in the genome-annotation field develop a

gold-standard set of proteins to permit more objective evalu-

ation of new automated analysis systems? How much vari-

ability is there in the annotations made by expert scientists?

How much (if any) better are expert scientists than purely

automated programs for genome annotation?

We have not discussed here various issues related to gene

structure prediction, the differences between a variety of

semi- and fully-automatic protocols for genome annotation,

exchange formats and tools for the dissemination of infor-

mation and the process of incorporating genome annota-

tions in public databases. Undoubtedly, technological

developments will assist towards our continually improving

capacity for detecting functions encoded in genome

sequences. These will, however, always have to be endorsed

by the scientific community in order to have a real impact in

the quality and scope of properly curated genome informa-

tion resources of the twenty-first century.
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