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Introduction
Noninvasive cardiorespiratory gas exchange during exercise 
has been a commonly used clinical test to help guide clinical 
judgment regarding exercise intolerance (typically fatigue or 
dyspnea) and assess functional capacity, general clinical sta-
tus, and response to therapy for a number of disease patholo-
gies.1 However, many of the currently available commercial 
systems produce a large array of breath-by-breath measures 
over the course of a test leaving interpretation to a relatively 
complicated review by individuals with significant expertise. 
In addition, the testing is typically performed by pushing 
individuals to their maximum, requiring significant safety 
measures and available trained personnel in case of emergent 
issues.2,3 However, for most disease pathologies, many cardi-
orespiratory abnormalities and symptoms become evident 
with submaximal exercise, and for simple screening purposes, 
tracking of clinical health status or response to therapy, maxi-
mal testing is not necessary.4

Thus, we have proposed a simplified approach to testing 
using a submaximal step test and more recently have devel-
oped an automated algorithmic approach to differentiate 
patients into various disease likelihood bins or silos. Our 
hypothesis was that this automated algorithm would differ-
entiate patients according to their primary disease pathology 
with only submaximal exercise. An advantage, as well, of this 
type of algorithm was that most patients have associated 
comorbidities with multiple pathologies influencing their 
respiratory gas exchange, and thus, the ranking algorithm 
weighted not only the primary limitation or abnormality but 
also the comorbidities as well.

Methods
For this study, patients with known primary pathologies in 
heart failure (HF, n = 12), pulmonary arterial hypertension 
(PAH, n = 11), chronic obstructive lung disease (OLD, n = 16), 
and restrictive lung disease (RLD, n = 12) and a healthy cohort 
(n = 19) were recruited. Table 1 illustrates the subject character-
istics. Subjects were recruited from our outpatient cardiology 
practice over the course of approximately 6 months.

Prior to participating in the study, the subjects were 
informed about the sequence of the study protocol and com-
pleted informed consent. Thereafter, they underwent simpli-
fied spirometry (pulmonary function tests) at rest and 
underwent an incremental submaximal exercise test. The exer-
cise mode was a 6-minute test and it consisted of 2-minute 
rest, 3-minute submaximal exercise using a 5.75-inch step 
with a metronome used to guide the step frequency followed 
by1-minute recovery. During submaximal exercise, the step 
frequency was increased every minute targeting 60, 80, and 
100 steps or foot movements per minute (equal to 15, 20, and 
25 actual steps up per minute). During exercise, heart rate 
(HR) and SpO2 were assessed via pulse oximetry, and breath-
ing pattern and respiratory gas exchange were obtained via 
breath-by-breath respiratory analysis system (Shape Medical 
Systems Inc., St. Paul, MN, USA). This study was approved by 
Mayo Clinic Institutional Review Board.

For this study, we present our primary metrics for the algo-
rithm used and display how these variables compare for each of 
the disease silos of interest, including cardiac disease, pulmo-
nary vascular disease, OLD, and RLD. This includes essentially 
incorporating previously published cardiorespiratory normative 
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values and abnormalities obtained during exercise from the lit-
erature, creating normative and disease severity ranges and 
ranking disease likelihood accordingly. From the literature and 
our previous work, key variables were selected for each disease 
category and illustrated as disease silos. For the HF silo, ventila-
tory efficiency (VE/VCO2) slope,5,6 oxygen pulse to oxygen 
consumption (O2p/VO2) slope,7 oxygen uptake efficiency slope 
(OUES),8,9 circulatory equivalent VO2 (CircEqVO2),10 and 
HR recovery11 were selected, whereas VE/VCO2 slope, a non-
invasive measure of pulmonary capacitance (GxCap),12 a previ-
ously reported multiparameter index for pulmonary 
hypertension (MPIph)13–15 and oxygen saturation (SpO2) at 
peak16 were selected for the PAH silo. In addition, oxygen 
desaturation, forced expiratory volume in the first second of 
expiration (FEV1),17,18 breathing reserve (where minute ventila-
tion near peak relative of the FEV1*35 − index of the maximal 
voluntary ventilation),16 and mixed expired pressure of CO2 to 
end tidal CO2 (PECO2/PETCO2)19 were selected for the OLD 
silo, and SpO2, forced vital capacity (FVC),18 maximal tidal vol-
ume to tidal volume at rest (VTmax/rest),20 and lung stiffness (the 
linear slope of breathing frequency to VCO2)21 were chosen for 
the RLD silo. Table 2 illustrates the selective key variables fol-
lowing each disease category.

Table 3 is an example of the scoring technique for the algo-
rithm explaining how a score was derived. Each disease cate-
gory has 3 Limits (risk cutoff values) based on the severity of 
abnormality or how far a value deviated from normal. The 
outcome which is less or greater (depending on variables) than 
the value of Limit 1 was the normal range, and thereafter as 
the Limit increased, the score increased (Normal: 0 point, 
Limit 1: 1 point, Limit 2: 2 points, and Limit 3: 3 points). 
After obtaining all points from each variable, all points were 
averaged to obtain the final score. In the results, a higher score 
was associated with a more severe pathology or as we refer to 
as the likelihood for more severe pathology. To determine the 
capability of key variables for differentiating disease pathology 
and the sensitivity of silos, nonparametric analyses of variance 
(ANOVAs) were conducted. Subsequently, post hoc analysis 
was performed to demonstrate the differences between disease 
groups. The significance was set at .05.

Results
When compared with the healthy group, the HF group dem-
onstrated significantly impaired VE/VCO2, OUES, 
CircEqVO2, and HR recovery (P < .05); however, the O2p/
VO2 ratio was not different (P > .05). For the PAH group, they 
demonstrated significantly impaired VE/VCO2, GxCap, and 
MPIph (P < .05) and greater desaturation at peak exercise 
(P < .05), but SpO2 was not statistically different from the 
healthy group (P > .05). The OLD group demonstrated an 
impaired FEV1, breathing reserve, and a PECO2/PETCO2 
ratio (P < .05) when comparing with the healthy group; how-
ever, desaturation at peak level was not different (P > .05). 
Finally, the RLD showed a significantly lower FVC and 
greater desaturation than the healthy group (P < .05) but no 
significant difference in VTmax/rest or in our exercise index of 
lung stiffness (P > .05). Table 4 illustrates the comparison of 
variables between disease groups and the healthy subjects.

In the HF silo (Figure 1), HF demonstrated the highest 
score and was significantly different from OLD, RLD, and 
healthy groups (P < .05) except PAH (P > .05). In the PAH silo 
(Figure 1B), PAH showed the highest score and was signifi-
cantly different from HF, OLD, and healthy groups (P < .05) 
but not RLD (P > .05). In addition, in the RLD silo, RLD 
demonstrated the highest score and was significantly different 
from PAH, OLD, and healthy groups (P < .05; Figure 1D) but 
not different from HF (P > .05). Based on ANOVA, there was 
no significant difference across groups in the OLD silo 
(P > .05), despite the higher score in the OLD group relative to 
the other primary disease entities. However, if we compared 
one group at a time with the OLD silo, we do note that when 
performing independent t tests, the OLD group was different 
from PAH and RLD, but not HF.

Discussion
We recruited patients based on clinical diagnoses in each of the 
4 primary disease categories to determine how well a simple, 
novel algorithm tracked these disease entities with cardiorespi-
ratory measures from a simplified submaximal exercise test. A 
challenge of such a test is the fact that rarely does a single 
chronic disease entity exists without comorbidities, but in 

Table 1.  Subject characteristics.

HF (n = 12) PAH (n = 11) OLD (n = 16) RLD (n = 12) Healthy (n = 19)

Gender, female/
male

8/4 8/3 10/6 2/10 2/17

Age, y 61 ± 13 58 ± 12 55 ± 12 68 ± 10 52 ± 11

Height, cm 169.2 ± 9.5 165.6 ± 8.5 169.1 ± 7.4 175.6 ± 6.6 176.3 ± 5.4

Weight, kg 84.4 ± 15.9 85.9 ± 11.1 85.0 ± 14.4 91.7 ± 14.7 83.6 ± 12.3

BMI, kg/m2 29.6 ± 6.0 31.6 ± 5.1 29.7 ± 4.0 29.8 ± 4.9 26.9 ± 3.8

Abbreviations: BMI, body mass index; HF, heart failure; OLD, obstructive lung disease; PAH, pulmonary arterial hypertension; RLD, restrictive lung disease.
All values are reported by mean and standard deviation.
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Table 2.  Algorithm following disease categories and cutoff values based on disease severity.

Variable name Limit 1 Limit 2 Limit 3

HF

  VE/VCO2 slope 30 36 45

  O2p/VO2 slope 3.5 3 1.8

  OUES 1.5 1.22 1.05

  CircEqVO2 % pred. 90 80 60

  HR recovery, bpm 18 12 8

PAH

  VE/VCO2 slope 40 56 65

  MPIph −1 1 3

  Peak GxCap 500 400 300

  Rest SpO2, % 94 90 86

  Desaturation at peak, % 3 5 7

OLD

  FEV1 % pred. 80 69 30

  Breathing reserve % 30 20 5

  Desaturation at peak, % 5 7 10

  PECO2/PETCO2 rest/ex. 0.85 0.75 0.6

RLD

  FVC % pred. 79 65 50

  Desaturation at peak, % 5 7 10

  VTmax/rest 2 1.5 1

  Lung stiffness slope 8.5 15 30

Abbreviations: CircEqVO2 % pred., circulatory equivalent oxygen consumption; FEV1, forced expiratory volume in the first second of expiration; FVC % pred., % predicted 
of forced vital capacity; GxCap, pulmonary capacitance: oxygen pulse × the partial pressure of end tidal CO2; HF, heart failure; HR, heart rate; MPIph, multiparameter 
index for pulmonary hypertension; O2p, oxygen pulse: oxygen consumption/heart rate; OLD, obstructive lung disease; OUES, oxygen uptake efficiency slope; PAH, 
pulmonary arterial hypertension; PECO2, the partial pressure of mean expired CO2; PETCO2, the partial pressure of end tidal CO2; RLD, restrictive lung disease; SpO2, 
oxygen saturation; VE/VCO2, ventilatory efficiency; VO2, oxygen consumption.

Table 3.  An example of scoring process in algorithm.

Variable name Limit 1 Limit 2 Limit 3 Outcome value Score

HF

VE/VCO2 slope 30 36 45 33 1.5

O2p/O2 slope 3.5 3 1.8 5.7 0

OUES 1.5 1.2 1.05 1.17 2

CircEqVO2 % pred. 90 80 60 116 0

HR recovery, bpm 18 12 8 71 0

Total score 3.5

Abbreviations: CircEqVO2 % pred., circulatory equivalent oxygen consumption; HF, heart failure; HR, heart rate; O2p, oxygen pulse: oxygen consumption/heart rate; OLD, 
obstructive lung disease; OUES, oxygen uptake efficiency slope; PAH, pulmonary arterial hypertension; RLD, restrictive lung disease; VE/VCO2, ventilatory efficiency; 
VO2, oxygen consumption.
This is an example of scoring technique. Each variable has 3 Limits based on severity of abnormalities. The total score was obtained from sum of each variable. If 
outcome of VE/VCO2 slope is 33 (between Limits 1 and 2), the score is 1.5 (the outcome if is in middle of Limits 1 and 2, so add 0.5 point to lower Limit score and thus 
the score would be 1.5). The outcome of O2p/O2 slope is 5.7 (>Limit 1) and thus the score is 0. The outcome of OUES is 1.17 (between Limits 2 and 3) and thus the score 
is 2. The outcome of CircEqVO2 % pred. is 116 (>Limit 1) and thus the score is 0. The outcome of HR recovery is 71 (>Limit 1) and thus the score is 0. Therefore, the sum 
of the score is 3.5.
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general, we have found that the disease likelihood algorithm 
score ranked the primary disease pathology the highest in most 
categories. However, it is clear that chronic cardiorespiratory 
disease has pathology that typically affects both the heart and 
lungs, and although this makes it challenging to identify a pri-
mary disease pathology or exercise limitation, the algorithm 

developed allows a method to weight and display multiple dis-
ease entities and therefore better visualize and understand con-
tributors to exercise intolerance.

In clinical practice, noninvasive measures of respiratory gas 
exchange, breathing pattern, and other variables (eg, SpO2) dur-
ing exercise have been used to determine disease severity for 

Table 4.  Each disease patient vs healthy subjects.

VE/VCO2
a O2p/VO2 slopea OUESa CirEqvo2

a HR recoverya

HF silo

  HF 30.2 ± 9.9 9.7 ± 1.4 1.5 ± 0.4 76.0 ± 16.0 −20.9 ± 7.5

  PAH 30.9 ± 6.3 8.2 ± 1.3b 1.8 ± 0.5 71.1 ± 12.2 −21.5 ± 11.1

  OLD 21.6 ± 3.8b 8.1 ± 1.4b 2.1 ± 0.6b 80.4 ± 12.3 −30.7 ± 13.3b

  RLD 24.8 ± 3.6b 8.7 ± 0.9 1.9 ± 0.6 67.1 ± 18.3 −23.2 ± 12.2

  Healthy 20.3 ± 7.0b 8.8 ± 1.2 2.8 ± 0.7b 100.5 ± 16.1b −38.7 ± 11.6b

  VE/VCO2
a GxCapa MPIpha Rest Sp2

a Desaturationa

PAH silo

  HF 30.2 ± 9.9 523 ± 133 −0.89 ± 2.03 96.0 ± 2.2 3.0 ± 2.2b

  PAH 30.9 ± 6.3 457 ± 182 −0.26 ± 1.60 95.6 ± 3.0 6.1 ± 5.1

  OLD 21.6 ± 3.8b 638 ± 166b −3.49 ± 1.08b 94.2 ± 3.4 3.4 ± 2.3b

  RLD 24.8 ± 3.6b 554 ± 175 −1.93 ± 1.51b 94.6 ± 2.2 6.4 ± 3.5

  Healthy 20.3 ± 7.0b 941 ± 193b −3.60 ± 2.00b 97.1 ± 1.4 2.9 ± 1.6b

  Desaturationa FEV1
a Breathing 

reservea

PECO2/
PETCO2

a

 

OLD silo

  HF 3.0 ± 2.2 75.2 ± 19.0 49.6 ± 20.1 1.01 ± 0.07  

  PAH 6.1 ± 5.1b 48.6 ± 40.5b 27.7 ± 24.6b 0.96 ± 0.06  

  OLD 3.4 ± 2.3 77.9 ± 21.1 56.2 ± 20.8 0.99 ± 0.05  

  RLD 6.4 ± 3.5b 76.0 ± 12.6 53.7 ± 13.0 0.91 ± 0.06b  

  Healthy 2.9 ± 1.6 97.0 ± 14.7b 73.0 ± 7.2b 0.94 ± 0.08b  

  FVCa Desaturationa VTmax/rest
a Lung 

stiffnessa

 

RLD silo

  HF 73.9 ± 18.1 3.0 ± 2.2b 1.91 ± 0.45 19.0 ± 14.0b  

  PAH 48.1 ± 38.9b 6.1 ± 5.1 2.08 ± 0.52 11.3 ± 7.5  

  OLD 82.2 ± 12.6b 3.4 ± 2.3b 1.87 ± 0.28 10.0 ± 6.1  

  RLD 65.6 ± 10.7 6.4 ± 3.5 2.15 ± 0.50 7.6 ± 7.5  

  Healthy 94.9 ± 11.3b 2.9 ± 1.6b 2.16 ± 0.58 6.3 ± 7.0  

Abbreviations: CircEqVO2 % pred., circulatory equivalent oxygen consumption; GxCap, pulmonary capacitance: oxygen pulse × the partial pressure of end tidal CO2; 
FEV1, forced expiratory volume in the first second of expiration; FVC, forced vital capacity; HF, heart failure; HR, heart rate; MPIph, multiparameter index for pulmonary 
hypertension; O2p, oxygen pulse: oxygen consumption/heart rate; OLD, obstructive lung disease; OUES, oxygen uptake efficiency slope; PAH, pulmonary arterial 
hypertension; RLD, restrictive lung disease; VE/VCO2, ventilatory efficiency; VO2, oxygen consumption.
Bold values denote significant difference from healthy group. All values are reported by mean and standard deviation.
aSignificant difference between groups.
bSignificantly different values when comparing with each disease silo.
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specific populations. However, interpreting the data is relatively 
complicated due to the large array of breath-by-breath measures 
and variability in disease pathology. Hence, there is need for 
systematic monitoring with appropriate criteria for implying or 
guiding the primary disease pathophysiology. The algorithm 
developed in this study used different key variables following 
disease silos (HF, PAH, OLD, and RLD) that were selected 
intuitively from our previous work and published literature. 
Oxygen uptake efficiency slope, the change in oxygen consump-
tion over the log of VE or ventilation during submaximal exer-
cise, is an objective indicator of general cardiopulmonary 
performance and disease severity so that it has been used to 
essentially replace maximal oxygen consumption.8,9,22 Heart 
rate recovery is commonly associated with cardiac disease or 
more severe deconditioning.11 These variables are clearly 
impaired in HF when compared with healthy subjects, but 
clearly, deconditioning may become an important part of the 
pathophysiology of most chronic diseases. Breathing efficiency 
(VE/VCO2), typically linked to high dead space ventilation 
caused mainly by a rapid shallow breathing pattern and/or 
hyperventilation,5,23–25 was more elevated in HF and PAH than 
other diseases or relative to healthy subjects. A poor breathing 
efficiency is often associated with changes in PETCO2, and 

thus, our other more complex measures, GxCap and MPIph, 
which have been associated with primarily elevated pulmonary 
vascular pressures were also more impaired in PAH than the 
other groups.12,26 Oxygen saturation at peak exercise was also 
decreased more in PAH and RLD than the other groups. When 
considering these results, it is challenging to track disease sever-
ity and/or differing pathophysiology of diseases with single 
variables. Therefore, the comprehensive and categorized algo-
rithm with multiple variables is helpful to improve the disease 
likelihood capture and to reduce potential for errors of single 
measures. Previously, we have developed scoring systems to 
interpret comprehensively multiple respiratory gas exchange 
variables, breathing pattern, and other variables for different 
disease pathophysiology,26,27 and these previous works provided 
a potential utilization of noninvasive respiratory gas exchange in 
evaluating pathophysiology and severity.

In this study, the disease likelihood scoring per primary dis-
ease entity ranked the primary referral disease the highest in 
most silos, and this may suggest that the algorithm was capa-
ble of differentiating disease. However, each disease silo dem-
onstrated coexistent disease pathologies. Given the intimate 
relationship of the heart and lungs, it is no surprise that when 
evaluating these seemingly diverse groups, multiple silos also 

Figure 1.  Silo score distribution. (A) Heart failure (HF) silo: * denotes a significant difference from HF. (B) Pulmonary arterial hypertension (PAH): * 

denotes a significant difference from PAH. (C) Obstructive lung disease (OLD): * denotes a significant difference from OLD. (D) Restrictive lung disease 

(RLD): * denotes a significant difference from RLD.
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register or “light up” other than the primary one. For example, 
it is well known that many patients with HF develop pulmo-
nary hypertension, obstructive, and restrictive pulmonary dis-
orders, and subjects are often overweight, further contributing 
to their restrictive lung presentation. Furthermore, patients 
with PAH may be cardiac limited due to the high pulmonary 
vascular resistance and also often develop restrictive lung 
changes. Obstructive lung disease is also a complex disease 
that includes not only airway obstruction but also degradation 
of the pulmonary vasculature, areas of hypoxic pulmonary 
vasoconstriction, and mixed or a restrictive component to their 
disease. In our own data, it was clear that these comorbidities 
exist together, and even with our attempts to find subjects with 
a “primary” disease entity, it was clear that these rarely exist on 
their own. Thus, although an attempt was made to develop an 
algorithm to weight a particular disease state, it is clear in real-
ity that many of these patients have coexistent issues that con-
tribute to gas exchange abnormalities as well as to exercise 
intolerance.

Although this study demonstrated the capability of a sim-
plified automated algorithm to identify primary disease pathol-
ogy, a relatively smaller sample size limits the ability to address 
the findings. A larger number of subjects per group would have 
strengthened the study and help confirm the preliminary 
outcomes.

Conclusions
We have attempted to create an approach to clinical exercise 
testing that could greatly simplify testing and reduce complexi-
ties around interpretation. To do this, we developed an auto-
mated algorithm based on classic measures of breathing 
pattern, respiratory gas exchange, pulse oximetry, as well as use 
of simplified spirometry. This algorithm, for the most part, 
appeared to isolate patient groups relative to their primary 
pathology. In addition, it demonstrated that chronic cardiores-
piratory disease does not typically exist alone but rather tends 
to coexist with other pathologies of the heart and lungs. Future 
studies will need to determine the utility of this type of sub-
maximal testing and algorithm relative to traditional clinical 
expert test interpretation.
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