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Abstract: The influence of the nature of carbon materials used as a support for Ru/C catalysts on
levulinic acid hydrogenation with formic acid as a hydrogen source toward gamma-valerolactone
was investigated. It has been shown that the physicochemical properties of carbon strongly affect
the catalytic activity of Ru catalysts. The relationship between the hydrogen mobility, strength of
hydrogen adsorption, and catalytic performance was established. The catalyst possessing the highest
number of defects, stimulating metal support interaction, exhibited the highest activity. The effect of
the catalyst grain size was also studied. It was shown that the decrease in the grain size resulted in
the formation of smaller Ru crystallites on the catalyst surface, which facilitates the activity.
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1. Introduction

Biomass is a source of a wide range of chemicals, called platform molecules, which are
used as intermediates in a variety of industrial processes [1,2]. One of the most important
compounds directly obtained from lignocellulosic biomass is levulinic acid (LA), being a product
of acid hydrolysis of carbohydrates [3]. Levulinic acid can be converted into various important
derivatives, e.g., γ-valerolactone (GVL). GVL is synthesized in the hydrogenation of levulinic
acid (Equation (1)) [4]. Thanks to its properties, it can be used as a green solvent, fuel additive,
polymer monomer, or intermediate of further compounds such as valeric acid (VA), 1,4-pentanediol
(1,4-PDO), and 2-methyltetrahydrofuran (2-MTHF) [5–7].

Levulinic acid + H2→ GVL + H2O ∆Hgas = −47.73 kJ·mol−1, ∆Hliq = −74.5 kJ·mol−1 (1)

Formic acid (FA) that is formed in the equimolar amount with levulinic acid can be used as an
internal hydrogen source in the synthesis of γ-valerolactone [8,9]. The hydrogenation of LA to GVL
requires the application of a suitable catalyst. The catalyst for the hydrogenation reaction must contain
active centers for the selective formic acid decomposition and subsequent hydrogenation of LA [10].
The decomposition of formic acid takes place in two ways via dehydrogenation and dehydration,
whereby the first reaction is preferred [11]. The products of the dehydrogenation reaction of FA are
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hydrogen and carbon dioxide (Equation (2)), while the dehydration reaction leads to the formation of
carbon monoxide and water (Equation (3)) [12].

HCOOH→ H2 + CO2 ∆G◦ = −32 kJ·mol−1, ∆H◦ = 31 kJ·mol−1, ∆S◦ = 216 J·mol−1
·K−1 (2)

HCOOH→ CO + H2O ∆G◦ = −12.4 kJ·mol−1, ∆H◦ = 29.2 kJ·mol−1, ∆S◦ = 139 J·mol−1
·K−1 (3)

It is obvious that the dehydration reaction reduces the selectivity to the desired hydrogen.
Furthermore, carbon monoxide can poison metallic centers due to its strong adsorption ability on
metals that may decrease their activity [13–15].

Ruthenium-based systems are the most active heterogeneous catalysts for the hydrogenation of
levulinic acid with an external hydrogen source for reactions conducted in the water phase [16–18].
However, the activity of ruthenium catalysts in the hydrogenation of LA to GVL strongly depends
on the nature of the support [19–22]. Due to the high acidity of supports and optimal size of metal
crystallites, ruthenium catalysts based on H-β and H-USY zeolites proved to be efficient in the
hydrogenation reaction of LA to GVL [23]. On the other hand, Luo et al. have shown that although the
high acidity of H-β and H-ZSM-5 zeolite materials accelerates the hydrogenation reaction of LA to
GVL, it also pushes the reaction forward toward pentanoic acid [24].

It was found that Ru dispersion depends on the crystalline phase of TiO2. The rutile phase
of titanium oxide facilitates the formation of small metal crystallites, whereas anatase favors the
formation of large aggregates [25]. The optimum size of Ru crystallites for Ru/TiO2 giving the highest
activity in the LA hydrogenation was also established [26]. However, the strong metal–support
interaction observed in the case of Ru-TiO2 catalyst leads to its partial deactivation in subsequent
reaction cycles due to the partial covering of metal crystallites with a support that is induced by the
reaction conditions [27]. A comparison of ruthenium catalysts based on Al2O3, SiO2, or active carbon
in the hydrogenation reaction of levulinic esters showed that the metal strongly interacts with the silica
and alumina, which reduces the yield to GVL. In turn, the weaker interaction of the metal with the
carbon surface increases the number of active centers that are more active in the hydrogenation of
LA [28].

Ru/C, which is typically considered as a benchmark industrial catalyst, was used in the LA
hydrogenation mainly for the optimization of process conditions [29], establishment of reaction
kinetics [30,31], or understanding of the reaction mechanism [32]. However, the potential of carbon
modification was often hindered. Despite this, carbon materials are known for their high stability and
large surface area [33]. However, there are very interesting studies showing that modification of the
carbon nature can have a strong influence on LA hydrogenation. The application of graphene-supported
catalyst leads to the formation of electron-enriched ruthenium crystallites with enhanced activity
in LA hydrogenation [34]. In addition, graphene used as a support prevents the migration and
aggregation of Ru crystallites, which allows maintaining high activity and selectivity in LA conversion
to GVL [19]. Moreover, Wei et al. showed that the interaction of ruthenium with nitrogen-modified
ordered mesoporous carbon (OMC) materials leads to higher stability and better metal dispersion in
LA hydrogenation [35]. On the other hand, Gallegos-Suarez et al. [36,37] found that the modification
of active carbon used as a support can lead to a decrease in ruthenium dispersion due to the higher
content of oxygen functional groups on the surface, which can result in an increase of the activity in
the glycerol hydrogenolysis reaction [38].

As it was shown, the activity of the Ru/C catalyst depends strongly on the nature of the carbon
materials. However, the information concerning the influence of the structural and chemical properties
of carbon supports on the activity of ruthenium catalysts in the LA hydrogenation is limited. Taking this
into account, we focused on the investigation of the influence of physicochemical properties of carbon
materials on the selectivity and activity of Ru/C catalysts in the hydrogenation of levulinic acid with
formic acid used as a hydrogen source. We paid special attention to the relationship between the
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metal–support interaction, hydrogen mobility (related with the surface structure of carbon materials),
and catalytic performance.

2. Results

2.1. Textural Properties of Carbon Supports

Commercially available carbon materials Norit, AG, CWZ, and AC with a grain size below 0.10 mm
were used as supports. Moreover, additional fractions of AC material with a grain size in the range of
0.25–0.50 mm and 0.75–1.00 mm were investigated. The textural properties of carbon materials are
shown in Table 1 (additionally, nitrogen adsorption–desorption isotherms are presented in Figure S1).
All supports are characterized by a mesoporous structure with specific surface area in the range of
649–973 m2/g, pore volume 0.090–0.652 cm3/g, and an average pore diameter of 3.4–5.7 nm. AG is
characterized by the highest specific surface area 973 m2/g and the highest pore volume 0.652 cm3/g
among studied carbon materials. In contrast, Norit reveals the lowest specific surface area 649 m2/g and
the pore volume 0.421 cm3/g and the highest average diameter of pores 5.7 nm. In turn, CWZ exhibits
a smaller specific surface area of 789 m2/g and total pore volume of 0.211 cm3/g than AG but a larger
average pore diameter: 4.7 nm.

Table 1. Textural properties of carbon materials.

Carbon Support Grain Size (mm) Surface Area
(m2 g−1)

Total Pore Volume
(cm3 g−1)

Average Pore
Diameter (nm)

Norit <0.10 649 0.421 5.7
CWZ <0.10 789 0.211 4.7
AG <0.10 973 0.652 4.6
AC1 <0.10 691 0.092 3.6
AC2 0.25–0.50 724 0.090 3.4
AC3 0.75–1.00 882 0.116 3.4

In the case of different fractions of AC, a decrease in the specific surface area from 882 to 691 m2/g
was observed together with the decrease of the fraction range. This is accompanied by the decrease of
the total pore volume.

2.2. Scanning Electron Microscopy

In the case of all carbon materials, the SEM images (Figure 1) showed a uniform surface with fine
grain size, only for AC1, larger grains were visible. In addition, higher magnification images showed
that some of the grains of the CWZ sample have a pillar shape structure, whereas other materials
possessed irregular grains. The SEM images of AC-based samples demonstrates the decrease in grain
size due to gridding. In addition, SEM images of the AC3 sample at higher magnification reveal
its expanded porous structure. The structure of AC2, as a result of grinding, is partially destroyed.
Furthermore, the AC1 sample shows only small grains. The observed partial degradation of the
porous structure of the AC is consistent with the results of the specific surface area of carbon materials,
which showed its decrease with a simultaneous reduction in the size of the support grains.
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Figure 1. SEM images of ruthenium catalysts. 

  

Figure 1. SEM images of ruthenium catalysts.
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2.3. Raman Spectroscopy

Raman spectra of supports and catalysts were collected to determine the changes in the structure
of carbon materials caused by metal impregnation (Figures 2 and 3).

Molecules 2020, 25, x FOR PEER REVIEW 5 of 17 

 

2.3. Raman Spectroscopy 

Raman spectra of supports and catalysts were collected to determine the changes in the structure 

of carbon materials caused by metal impregnation (Figures 2 and 3). 

 

Figure 2. Raman spectra of carbon materials. 

 

Figure 3. Raman spectra of ruthenium catalysts. 

All spectra show two characteristic bands at around 1355 and 1590 cm−1. The band at higher 

frequency called the G band is attributed to plane vibrations of sp2-bonded carbon atoms of the 

ordered structure with a high degree of symmetry. In turn, the band at lower frequency described as 

the D band is characteristic for the defected and disordered structure of carbon materials [39–41]. The 

800 1000 1200 1400 1600 1800

ID/IG = 1.75

ID/IG = 1.76

ID/IG = 1.89

AG

Norit

CWZ

In
te

n
s
it
y
 [
a
.u

.]

Raman frequency [cm-1]

AC1

ID/IG = 1.41

D G

800 1000 1200 1400 1600 1800

Ru/AG

Ru/Norit

Ru/CWZ

Ru/AC1

ID/IG = 1.47

ID/IG = 1.33

ID/IG = 1.61

ID/IG = 1.62

In
te

n
s
it
y
 [
a
.u

.]

Raman frequency [cm-1]

D G

Figure 2. Raman spectra of carbon materials.
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Figure 3. Raman spectra of ruthenium catalysts.

All spectra show two characteristic bands at around 1355 and 1590 cm−1. The band at higher
frequency called the G band is attributed to plane vibrations of sp2-bonded carbon atoms of the ordered
structure with a high degree of symmetry. In turn, the band at lower frequency described as the D band
is characteristic for the defected and disordered structure of carbon materials [39–41]. The ID/IG ratio
was calculated for each sample, and the results are included in Figures 2 and 3 [42]. Differences in the
contribution of disordered and ordered phases were observed in the case of the structure of bare carbon
materials, and final catalysts were evidenced. The ID/IG ratio for supports decreases in the following
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order: AC1 > CWZ ≈ Norit > AG (from 1.89 for AC1 to 1.41 for AG, respectively). It means that
the structure of the AC1 has the largest number of defects in contrast to the AG sample in which the
contribution of disordered phase in the structure is the lowest. An impregnation of carbon materials
by ruthenium slightly changes the content of both phases in the structure of catalysts. The ID/IG ratio
of the Ru/AC1, Ru/CWZ, and Ru/Norit catalyst is lower in comparison to bare supports. This suggests
that the introduction of Ru increases the contribution of the ordered phase in the structure of carbon
materials [43]. On the contrary, in the case of Ru/AG, there are no significant changes in the ID/IG ratio
of the support and catalyst.

2.4. Phase Analysis of Catalysts

XRD analysis was performed to characterize the phase composition of ruthenium catalysts
supported on different carbon materials (Figure 4).
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Figure 4. XRD pattern of AC1 support and ruthenium catalysts.

The diffractograms show broad characteristic signals at 25◦ and 44◦ assigned to the (002) and (101)
planes of the amorphous structure of the carbon (ICDD:13-0148), while signals at 21◦, 26◦, and 36◦ are
ascribed to the (100), (011), and (110) diffraction of the silica (ICDD:01-070-7345), which is a typical
impurity of carbon materials [44,45]. It is worth noting that the signal at 26◦ can be assigned both to
the silica and (002) plane of the graphite (ICDD:00-041-1487). The signals that originate from silica
or graphite are not present in the case of Ru/CWZ. In addition, the broad signals at 38◦ and 44◦ are
assigned to the (100) and (101) diffraction of metallic ruthenium (ICDD: 00-006-0663). The shift of the
signal in the case of the Ru/AG sample might be related with the change of the size of the ruthenium
unit cell [46].

2.5. Temperature-Programmed Desorption of NH3 and CO2

Temperature-programmed desorption of ammonia and carbon dioxide were performed to assess
the acid–base properties of supports and catalysts (Table 2).
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Table 2. Acid–base properties of selected carbon materials and ruthenium catalysts.

Carbon Support Acidity
(µmol/g)

Basicity
(µmol/g) Catalyst Acidity

(µmol/g)
Basicity
(µmol/g)

Norit 32 18 Ru/Norit 329 113
CWZ 154 86 Ru/CWZ 513 226
AG 58 28 Ru/AG 419 117
AC1 118 60 Ru/AC1 525 153

The oxygen-containing functional groups such as carboxyl, anhydride, lactone, lactol, or hydroxyl
possessing acidic character and pyrone-like and chromene groups having basic character were identified
on the surface of carbon materials [47]. Acid centers predominate on the surface of supports and
catalysts. The acidity of CWZ and AC1 (118 and 154 µmol/g, respectively) is much higher than the
acidity of Norit and AG (32 and 58 µmol/g, respectively). The same trend has been observed for the
basicity of studied carbon materials. Ruthenium impregnation increases both the acidity and basicity
of catalysts compared to bare supports. This is related with the type of the used preparation method.
Namely, the metal was introduced from acidic aqueous solution of ruthenium chloride. This treatment
resulted in the shift of the acid–base balance of the surface toward the acid side [48]. Chen et al. showed
that treatment with non-oxidizing acid increases the number of weak acid groups on the surface of
activated carbon due to transformation of double-bonded oxygen groups to single-bonded oxygen
groups and an increase in the oxygen content. The latter phenomenon is a result of chemisorption of
the water molecule by delocalized π electrons in the carbon planes [49]. In addition, the higher acidity
and basicity of catalyst compared to bare support can be related to the presence of chloride ions on
its surface. Perez-Cadenas et al. reported that due to their electron properties, chloride ions on the
surface of carbon materials weaken Brönsted acidity while increasing Lewis acidity as a result of the
resonance effect [50].

2.6. Chemisorption of CO

Dispersion and the average size of ruthenium crystallites on the surface of the catalysts were
determined based on the amount of adsorbed carbon monoxide, using the formula given by
Newman et al. [51]. The results are presented in Table 3. The metal dispersion on the surface
of CWZ, AG, Norit, and AC1 is comparable and in the range of 14.9–16.2%, as well as the average size
of ruthenium crystallites, which is in the range of 2.7–2.8 nm. The results are surprising considering
the differences in the specific surface area and acidity of the surface of the AC1, Norit, CWZ, and AG
samples and especially that the oxygenated groups of carbon materials can play a significant role in
the dispersion of ruthenium [37,52]. The surface groups improve the hydrophilicity of the carbon
surface, which may increase the interaction of the metal precursor with the support improving the
dispersion of metal [53]. However, the specific surface area or acidity of AC1, CWZ, Norit, or AG do
not affect noticeably the dispersion and size of ruthenium crystallites. In contrast, chemisorption data
for Ru/AC3, Ru/AC2, and Ru/AC1 catalysts showed that the metal dispersion increases from 5.4% to
15.1% with a decrease in the grain size and specific surface area of the AC support.

Table 3. Carbon monoxide chemisorption data, dispersion, and particle size of metal.

Catalyst Volume of CO
Adsorbed (cm3 g−1)

Dispersion of Ru from
CO Chemisorption (%)

Particle Size of Ru from
CO Chemisorption (nm)

Ru/Norit 1.797 16.2 2.6
Ru/CWZ 1.705 15.4 2.7
Ru/AG 1.651 14.9 2.8
Ru/AC1 1.663 15.1 2.8
Ru/AC2 0.702 6.4 6.7
Ru/AC3 0.595 5.4 7.9
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2.7. Temperature-Programmed Reduction

A temperature-programmed reduction of hydrogen was performed to assess the reducibility of
the catalysts (Figure 5); for comparison, the temperature-programmed reduction (TPR) of bare supports
is also shown (Figure S2). The TPR profiles of catalysts show two ranges of hydrogen consumption at
low temperature (from 100 to 300 ◦C) and at high temperature (above 400 ◦C) regardless of the type
of support used. Low temperature effect, in the range of 100–300 ◦C, corresponds to the reduction
of electron-deficient ruthenium species to metallic ruthenium. It is worth noting that in this case,
the reduction of ruthenium species proceeds in two stages, as indicated by two visible maxima in TPR
profiles slightly below and above 200 ◦C. It has been shown that two kinds of ruthenium species such
as RuCl3 and RuO2 were evidenced in the case of catalyst obtained by the wet impregnation method
with RuCl3 as a metal precursor [51]. Moreover, the reduction of ruthenium oxide occurs at a higher
temperature compared to ruthenium chloride [54,55]. Wang et al. showed that a decreasing amount of
chlorine in the ruthenium catalyst promotes the formation of metal oxide and at the same time shifts
the reduction toward higher temperature [56]. Thus, the hydrogen consumption peak located below
200 ◦C is related to the reduction of RuCl3, while the peak observed above 200 ◦C is attributed to a
reduction of ruthenium oxide. The amount of hydrogen consumed in each step depends on the type
of support. In case of ruthenium supported on AG, Norit, and CWZ, the peaks below 200 ◦C have a
higher intensity than the peaks above 200 ◦C. An inverse relationship can be observed in the profile of
AC1 catalysts where the peaks above 200 ◦C are more intense than those below 200 ◦C. This implies
that the surface of AC carbon promotes the formation of ruthenium oxide during drying, while the
Norit, CWZ, and AG5 surfaces rather stabilize adsorbed RuClx during catalyst preparation. This can
be a result of differences in the metal support interaction. Raman spectra revealed that the structure
of carbon materials characterizes both ordered and disordered phases. The AC1 material has the
largest proportion of disordered phase in the structure among the tested materials. These defective
sites are excellent centers for anchoring ruthenium crystallites [57]. In addition, the TPR profiles
of the Ru/AC1 catalysts show the highest content of ruthenium oxide. Thus, the surface defects of
the AC1 material probably are responsible for the strong interaction of the support with the metal
precursor, which promotes the oxidation of ruthenium chloride to the oxide during drying. In addition,
for AC-based samples, a peak shift above 200 ◦C toward lower temperatures can be observed as the
support grain size increases. This phenomenon is associated with smaller dispersion and larger metal
crystallites that can be easily reduced, since unsupported RuO2 crystallites with larger diameter are
reduced at about 100 ◦C [58].Molecules 2020, 25, x FOR PEER REVIEW 9 of 17 
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The hydrogen consumption at high temperature above 400 ◦C is attributed to the reduction of
support near ruthenium crystallites. It can be also observed in the TPR-H2 profiles of bare supports,
but it started at higher temperatures than in the case of catalysts. Metal on carbon materials catalyzes
the gasification of the carbon materials probably due to the higher hydrogen activity on the surface of
the metal crystallites [59].

2.8. Temperature-Programmed Desorption of H2

The temperature-programmed hydrogen desorption was performed in order to check the strength
of metal interactions with hydrogen. The TPD-H2 curves collected for the catalysts are shown in
Figure 6. The desorption of hydrogen from the surface of all catalysts begins at 300 ◦C; however,
the maximum desorption peak depends on the type of support. In the case of the Ru/AC1 catalyst,
the maximum H2 desorption was observed at 419 ◦C, while for catalysts based on CWZ and Norit
supports, the maximum desorption peak is visible at 460 ◦C and 441 ◦C, respectively. In turn, for the
Ru/AG system, the maximum hydrogen desorption was recorded at 490 ◦C. Li et al. showed that
the desorption of hydrogen from the surface of ruthenium catalysts can be related to the presence of
chemisorbed hydrogen and a spillover hydrogen [60]. Decrease of the temperature of the hydrogen
desorption indicates a weaker adsorption of H2 and its greater mobility on the catalyst surface.
Hydrogen desorption from the surface of the Ru/AC1 catalyst takes place at lower temperature than
for other catalysts. In general, based on TPD-H2, the mobility of hydrogen on the surface of catalysts
can be ordered in the following sequence: Ru/AC1 > Ru/Norit > Ru/CWZ > Ru/AG.Molecules 2020, 25, x FOR PEER REVIEW 10 of 17 
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2.9. Catalytic Activity

Formic acid decomposition and subsequent hydrogenation of LA (FALA reaction) with Ru
supported on different carbon materials was performed. In order to understand the catalytic
performance, the independent reactions were carried out as well. The results are presented in
Tables 4 and 5.
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Table 4. Activity of ruthenium catalysts in formic acid decomposition and levulinic acid hydrogenation
with external hydrogen source.

Catalyst

FA Decomposition LA Hydrogenation

FA Conversion
(%)

Gaseous Products (% vol) LA Conversion
(%)

GVL
Yield (%)H2 CO CH4 CO2

Ru/Norit 84 47 3 0 50 82 71
Ru/CWZ 80 47 5 0 48 80 64
Ru/AG 77 49 1 0 50 81 70
Ru/AC1 97 47 7 0 46 95 78
Ru/AC2 89 46 8 0 46 76 63
Ru/AC3 74 46 9 0 45 75 63

Reaction conditions: FA decomposition: 190 ◦C; 1 h; 0.03 g of catalyst; LA hydrogenation: 190 ◦C; 30 mL H2O; 1 h;
10 bar H2; 0.3 g of catalyst; 1 g of LA.

Table 5. Activity of ruthenium catalysts in simultaneous formic acid decomposition and levulinic acid
hydrogenation (FALA).

Catalyst
FALA Reaction

FA Conversion (%) LA Conversion (%) GVL Yield (%)

Ru/Norit 100 58 38
Ru/CWZ 100 58 35
Ru/AG 100 38 18
Ru/AC1 100 75 59
Ru/AC2 100 46 25
Ru/AC3 100 48 27

Reaction conditions: 190 ◦C; 30 mL H2O; 2 h; 0.4 mL of FA; 0.6 g of catalyst; 1 g of LA.

In the formic acid decomposition, the highest activity was obtained for Ru/AC1 catalyst
(97% conversion). The Ru/Norit, Ru/CWZ, and Ru/AG catalysts showed 84%, 80%, and 77% conversion
of formic acid, respectively. All catalysts showed high selectivity to hydrogen. The selectivity to
carbon monoxide for the latter catalysts did not exceed 5%. In turn, Ru/AC1 catalyst had a bit higher
selectivity to carbon monoxide 7%. In the case of Ru/AC2 and Ru/AC3 catalysts, the conversion of
formic acid was lower and the selectivity to carbon monoxide of both catalysts was slightly higher
than for the Ru/AC1 catalyst.

In the case of hydrogenation of levulinic acid to gamma-valerolactone with an external hydrogen
source, the highest substrate conversion (95%) and yield to product (78%) were noted for the Ru/AC1
catalyst. The conversion of levulinic acid with Ru/Norit Ru/CWZ and Ru/AG catalysts was similar and
reached 80%. In addition, these catalysts showed similar yield to the reaction product (in the range
64–71%). The most active catalyst shows also high stability under the reaction conditions (Figure S4).

The results of the simultaneous decomposition of formic acid and hydrogenation of levulinic
acid are presented in Table 5. It is worth noting that all catalysts in the FALA reaction showed 100%
conversion of formic acid. The differences in catalyst activity are only visible in LA conversion and in
the yield to GVL. Ru/Norit and Ru/CWZ catalysts showed 38% and 35% yield for GVL, respectively.
In turn, the lowest activity of only 18% GVL in the FALA reaction was revealed by the Ru/AG.
The highest yield to GVL of 59% was obtained for the Ru/AC1 catalyst, whereas catalyst supported on
other AC fractions showed lower activity.

3. Discussion

Levulinic acid hydrogenation with formic acid used as a hydrogen source requires that the catalyst
is both selective toward hydrogen production and active in the hydrogenation process. Activity tests
with Ru/C materials show that there are several factors responsible for catalytic performance in the
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studied reaction with metal–support interaction and the strength of hydrogen adsorption being the
most important. Those factors are directly related with the nature of the carbon material.

The influence of the size of Ru crystallites although known as the important factor [26] could be
excluded in our case due to the uniform dispersion of Ru on the supports among tested catalysts.

There are two factors contributing to the strength of metal–support interaction: the presence of
defects on the surface of carbon material and the type of Ru species. The most active Ru/AC1 showed
the highest number of defects, which stimulate the strong interaction of metal with the support [57].
Moreover, in the case of this catalyst, the highest contribution of RuOx, which is less prone to be
reduced, was identified. On the other hand, lower number of defects in the case of Norit, CWZ, and AG
materials rather stabilize ruthenium chloride on their surface.

The strength of hydrogen adsorption is considered equally important. The hydrogen desorption
temperature revealed from TPD studies correlates with the results of catalyst activity. The lowest
hydrogen desorption temperature is observed for Ru/AC1, so the highest mobility of hydrogen
enhances the activity of this catalyst to the highest extend, while Ru/AG exhibiting the highest
hydrogen desorption temperature shows the lowest activity in the reactions.

In the case of the decomposition of formic acid, a strong adsorption of hydrogen can poison
the catalyst [61]. Higher hydrogen mobility on the catalyst surface reduces certainly the effect of
catalyst poisoning and simultaneously increases its activity in the FA decomposition reaction. It is
worth noting that both the decomposition of FA and LA hydrogenation occur at the same centers [32].
Thus, the higher mobility of the hydrogen molecules on the surface of the catalyst, due to the strong
interaction of ruthenium with the AC surface, limits the poisoning of active sites of catalysts in the
formic acid decomposition reaction and at the same time results in higher activity in the FALA reaction.

In addition, considering Ru/AC1, Ru/AC2, and Ru/AC3 systems, there is a close relationship
between the activity and the grain size of the support. Ru supported on the grains below 0.1 mm (AC1)
showed higher activity in all investigated reactions than catalysts with larger grain sizes (Ru/AC2 and
Ru/AC3). Chemisorption studies have shown that a smaller grain size of the support increases the
dispersion of ruthenium. Moreover, a smaller grain size decreases the possible diffusion limitations
and increases the availability of active centers for substrates.

4. Materials and Methods

4.1. Catalysts Preparation

Four types of commercially available carbon materials were used as catalyst supports. The AC was
supplied by Windsor Laboratories, Ltd., Slough-Berkshire, UK. The Norit (grain size < 0.1 mm) and CWZ
(grain size < 0.1 mm) were purchased by ChemPur, Piekary Śląskie, Poland. AG (grain size < 0.1 mm)
was delivered by Gryfskand, Gryfino, Poland. In order to determine the effect of grain size of
the support, starting carbon AC has been crushed in mortar and sieved to obtain the following
fractions < 0.1; 0.25–0.5; 0.75–1.00 mm (AC1, AC2, and AC3, respectively). Catalysts were prepared by
the wet impregnation method using water solution of RuCl3 (100% pure, Merck, Darmstadt, Germany)
to obtain 5 wt % of metal on the support surface. After 24 h impregnation, an excess of solution was
evaporated, and catalyst was dried at 120 ◦C for 2 h and reduced at 500 ◦C for 1 h under hydrogen
flow before the activity tests.

4.2. Catalytic Activity Tests

The catalytic activity was tested in the levulinic acid hydrogenation with external and internal
source of hydrogen. Reactions were carried out in a stainless-steel autoclave (Berghof, Eningen,
Germany) equipped with teflon insert, allowing a reaction volume of 45 mL. In the case of the
application of an external source of hydrogen, the reaction was performed under the pressure of 10 bar
of hydrogen. In the second case, formic acid was used as an internal hydrogen source. In typical
levulinic acid hydrogenation, 1 g of LA, 0.3 g of catalyst, and 30 mL of distilled water were used. In turn,
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in a combined levulinic acid hydrogenation with formic acid as a source of hydrogen (FALA reaction)
1 g of LA, 0.4 mL of FA, 0.6 g of catalyst, and 30 mL of distilled water were used. The temperature of
reaction was maintained at 190 ◦C for 2 h for FALA reaction or 1 h for levulinic acid hydrogenation.
After the reaction, the reactor was cooled down to room temperature, the remaining pressure was
released, and the mixture was centrifuged to separate the catalyst from the solution. The liquid
products were analyzed by high-performance liquid chromatograph (Agilent Technologies 1260
Infinity, Perlan Technologies, Santa Clara, CA, USA) equipped with refractive index detector and Rezex
ROA column, using 0.0025 mol·dm−3 H2SO4 as an eluent.

Formic acid decomposition was carried out in a homemade flow reactor at atmospheric pressure.
Prior to the reaction, the catalyst (0.03 g) was reduced under hydrogen flow at 500 ◦C for 1 h. Next,
the reactor was cooled down to reaction temperature under Ar flow. Formic acid was continuously
introduced into the catalyst bed together with the flow of Argon. The gas line was heated to avoid the
condensation of gas samples. The reaction products were analyzed on a gas chromatograph Hewlett
Packard 5890 (Palo Alto, CA, USA) equipped with a TCD (Thermal Conductivity Detector) detector
and a 6 m Porapak Q column.

4.3. Materials Characterization

The specific surface area measurements of carbon materials were carried out on ASAP 2010
Micromeritics (Micromeritics Instrument Corporation, Norcros, GA, USA) with nitrogen as the
adsorbate. Before nitrogen adsorption, the sample was outgassed at 200 ◦C for 3 h to remove
water and impurities from its surface. The specific surface area was determined based on the BET
(Brunauer–Emmett–Teller) adsorption isotherm and the pore distribution was calculated based on the
BJH (Barrett-Joyner-Halenda) nitrogen desorption isotherm.

Temperature-Programmed Reduction (TPR) was performed on an AMI1 system from Altamira
Instruments (Pittsburgh, PA, USA) equipped with a thermal conductivity detector. The reducibility of
carbon supports and catalyst was examined with the use of the mixture of 5 vol.% H2 and 95 vol.% Ar
at a space velocity of 3.1 × 10−9 g s−1 cm−3 and a linear temperature ramp of 10 ◦C min−1.

CO chemisorption studies were carried out with the use of a homemade PEAK-4 apparatus [62].
Dried catalyst was placed in a quartz tube reactor and was in situ reduced at 650 ◦C for 1 h in H2

stream with a flow rate of 40 cm3 min−1. Then, the flow of H2 was switched to argon, and the reactor
was cooled to room temperature. Carbon monoxide was introduced into the reactor by pulses using
a six-way valve. An infrared gas analyzer (Fuji type ZRJ-4, Fuji Electric, Tokyo, Japan) was used to
monitor changes in CO concentration.

The temperature-programmed desorption of NH3 and CO2 (TPD-NH3 and TPD-CO2) was used
to study the acid–base properties of supports and catalysts. In the typical TPD of ammonia or carbon
dioxide protocol, a dried sample was placed in a quartz flow reactor and reduced in situ at 500 ◦C
under hydrogen flow for 1 h. After the change of hydrogen to helium, the temperature was decreased
to 100 ◦C and adsorption of NH3 or CO2 was carried out for 15 min. Next, physically adsorbed probe
molecules were removed from the sample surface by treating the sample with He for 15 min and
subsequently cooled down to room temperature. The TPD experiments were carried out from room
temperature to 500 ◦C using a linear temperature ramp (25 ◦C min−1) and TCD detector.

The temperature-programmed desorption of hydrogen (TPD-H2) was carried out according to the
following procedure. The dried catalyst was placed in a homemade oven and then reduced under
hydrogen atmosphere to 500 ◦C. After switching to argon, the catalyst was maintained for another
hour at this temperature. Then, the catalyst was cooled to 100 ◦C under argon flow. Measurements
were recorded from 100 to 550 ◦C with a constant rate of temperature growth (10 ◦C/min) in the argon
flow, and the amount of desorbed hydrogen was analyzed using a TCD detector.

X-ray diffraction (XRD) measurements were collected using a PANalytical X’Pert Pro MPD
diffractometer (Malvern PANalytical, Malvern, UK). The X-ray source was a copper long fine focus
X-ray diffraction tube operating at 40 kV and 30 mA. Data were collected in the 5–90◦ 2θ range with
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0.0167◦ step. Crystalline phases were identified by references to the ICDD PDF-2 (version 2004)
database. All calculations were performed with X’Pert High Score Plus computer program (Malvern
Panalytical Ltd., Malvern, UK).

Raman spectra were collected with use of a dispersive T64000 triple-grating Raman spectrometer
(HORIBA Jobin-Yvon, Longjumeau Cedex, France) equipped with confocal microscope BX-40 (Olympus,
Tokyo, Japan). As an excitation source, an Ar-ion laser line 514.5 nm was selected. The laser power
measured on the sample surface did not exceed 2 mW to protect the sample against local overheating
and eventual degradation. The acquisition time was 120 s, and the spectral resolution was below
1 cm−1. The spectra of the AC2 and AC3 samples and the corresponding catalysts were not collected
due to strong elastic scattering on the sample grain masking the Raman signal.

The morphology of carbon supports and ruthenium catalysts was assessed with the use of
scanning electron microscope (SEM) FEI Quanta 250 FEG equipped with EDS (Energy Dispersive
Spectrometer) system (Hillsboro, OR, USA).

The metal content of the Ru/C catalysts was measured by the atomic absorption spectroscopy
using SOLAAR M6 Unicam atomic absorption spectrometer. The weight percentage of ruthenium in
the catalysts is 5 ± 0.5%.

5. Conclusions

Ru/C catalysts showed different activities in levulinic acid hydrogenation with formic acid used as
a hydrogen source depending on the type of carbon support. In our work, we showed that the carbon
nature strongly modifies the metal–support interaction and the strength of the hydrogen adsorption on
the metal surface. In consequence, those factors have a direct effect on the activity of the investigated
materials. The catalyst possessing the highest number of defects, stimulating metal–support interaction,
exhibited the highest activity. Additionally, we found that there is a direct relationship between the
strength of the hydrogen adsorption and the catalytic performance, as higher hydrogen mobility
(low hydrogen adsorption strength) enhances the activity of the studied catalysts.

Supplementary Materials: The following are available online. Figure S1: Nitrogen adsorption-desorption
isotherms of supports, Figure S2: TPR-H2 profiles of supports, Figure S3: TPR-H2 cycles of Ru/AC1 catalyst,
Figure S4: Reusability tests of Ru/AC1 catalyst in LA hydrogenation.
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