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Abstract

Background: Many patients diagnosed with oesophageal adenocarcinoma (OAC) present with advanced disease
and approximately half present with metastatic disease. Patients with localised disease, who are managed with
curative intent, frequently undergo neoadjuvant chemoradiotherapy. Unfortunately, ~ 70% of patients have little or
no response to chemoradiotherapy. We previously identified miR-330-5p as being the most significantly downregulated
microRNA in the pre-treatment OAC tumours of non-responders to treatment, but that loss of miR-330-5p had a limited
impact on sensitivity to chemotherapy and radiation in vitro. Here, we further examined the impact of miR-330-5p loss on
OAC biology.

Methods: miR-330-5p was suppressed in OE33 OAC cells following stable transfection of a vector-driven anti-sense RNA.
Whole transcriptome digital RNA-Seq was employed to identify miR-330-5p regulated genes, and gPCR was used for
validation. Protein expression was assessed by protein array, Western blotting and zymography. Invasive potential

immunocompromised CD1 mice.

miR-330-5p suppression grew faster than controls.

was measured using a transwell assay system. Tumour xenograft growth profile studies were performed in

Results: In OE33 cells, suppression of miR-330-5p significantly altered expression of 42 genes, and several
secreted proteases. MMP1 gene expression and protein secretion was significantly enhanced with miR-330-5p
suppression. This corresponded to enhanced collagen invasion in vitro. In vivo, OE33-derived tumour xenografts with

Conclusions: Loss of miR-330-5p expression in OAC tumours may influence tumour cell invasive capacity, tumour
growth and therapeutic sensitivity via alterations to the tumour microenvironment.
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Background

More than half of patients diagnosed with oesophageal
cancer will not survive more than a year and UK in-
cidence rates are one of the highest in Europe [1].
Tumours are predominated by two histological sub-
types, squamous cell carcinoma (SCC) and adenocar-
cinoma (OAC). In the past three decades a dramatic
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epidemiological shift in the incidence of these sub-
types has occurred in both Europe and North America,
with OAC now the predominant subtype, having in-
creased more than 600% [2]. Even with advances in
screening, diagnosis and treatment the overall 5-year sur-
vival rates have only risen from ~ 4% in the 1970s to ~
15% at present, and currently reside at ~ 40% for localized
disease [3].

OAC develops from the premalignant chronic acid re-
flux disease Barrett’s oesophagus (BO) [4]. The persistent
exposure to low pH and bile acids causes a metaplastic
transition from normal stratified squamous epithelium
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to single-layered mucin-secreting columnar epithelium.
OAC is a disease of stepwise progression from non-dys-
plastic BO, to dysplastic BO and adenocarcinoma. How-
ever, the progression from BO to OAC occurs in less
than 1% of patients and the majority of patients present
with OAC without prior diagnosis of BO [5]. The bio-
logical drivers of OAC include chronic inflammation,
disrupted cell adhesion, hypoxia and genomic instability
[6-9].

Across most of Europe and North America a multi-
modal approach to treatment, involving neoadjuvant
chemoradiotherapy (neo-CRT) prior to surgery, is gener-
ally recognized as the gold standard for managing locally
advanced OAC [10]. Under the neo-CRT regimen the at-
tainment of a complete or near complete pathological
response, as dictated by the Mandard tumour regression
grade (TRG@), is a proxy for improved outcome for pa-
tients [11, 12]. Considering only ~30% of patients re-
spond to neo-CRT treatment, the remaining ~70% are
subjected to toxicity and are at increased risk of surgical
complications with no apparent benefit and the progno-
sis of non-responders may be worsened due to the un-
necessary delay to surgery [13]. Identifying those
patients resistant to treatment through understanding
the molecular and cellular basis governing response and
resistance to neo-CRT is essential in improving treat-
ment efficacy, increasing complete pathological response
rates and ultimately OAC patient outcomes. Historically,
the analysis of standard clinicopathological parameters is
unable to predict tumour response to neo-CRT [14]. As
patients with similar demographics, bearing tumours of
similar clinical characteristics, can have vastly different
responses to CRT it is likely that this dichotomy is due
to subtle differences in the cellular and molecular envi-
ronments of the tumours.

The current ‘omics’ era is providing large datasets
from patient derived samples in an effort to identify dis-
ease drivers, tumour subtypes and biomarkers of disease
progression and therapeutic response [15]. Mechanistic
studies are needed alongside these ‘omics’ datasets to in-
terpret the associated tumour biology. These studies will
improve our understanding of tumour biology and sup-
port the development of new therapeutic approaches.
Profiling of microRNAs (miRNAs), or miRnomics, has
identified potential biomarkers and new therapeutic tar-
gets. MicroRNAs (miRNAs) are essential regulators of
gene expression at the post-transcriptional level. They
bind to complementary mRNA via non-stringent Wat-
son-Crick base pairing and either repress protein trans-
lation or promote mRNA degradation [16]. Considering
a single miRNA can target and regulate potentially thou-
sands of mRNA this can dramatically alter the cellular
protein expression landscape and signalling pathways,
profoundly influencing cell behaviour. Genes encoding
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miRNAs have been mapped across the genome and are
frequently encoded at fragile sites, hence they are sus-
ceptible to deletion and mutation [17]. Cancer associated
miRNA are known as oncomiRs and can act as tumour
suppressors or oncogenes [18]. MiRNAs have been dem-
onstrated in many different cancers as functional modu-
lators of chemosensitivity and radiosensitivity and are
therefore promising biomarkers for the identification of
patients with resistant tumours, as well as therapeutic
targets for chemoradiation sensitisation [19].

There are a number of miRNAs that regulate sensitiv-
ity to chemotherapy and radiotherapy in OAC [20-23].
We have previously reported miR-330-5p as the most
downregulated miRNA in OAC tumours of patients un-
responsive to neo-CRT; however, miR-330-5p manipula-
tion in vitro only had a modest impact on direct cellular
radiosensitivity and no significant impact on chemosen-
sitivity [20]. In more recent studies others have also
identified miR-330 downregulation in multiple cancer
types. In an oesophageal squamous cell carcinoma study,
miR-330-3p was downregulated in neo-CRT non-re-
sponders [24]. In lung cancer patients with brain metas-
tases downregulated miR-330 expression correlated with
radiation sensitivity and poor prognosis [25].

In this current study the implications of miR-330-5p
downregulation in OAC neo-CRT non-responders were
further investigated. Firstly, transcriptome analysis was
undertaken to identify gene expression changes associ-
ated with miR-330-5p silencing. The most significantly
altered annotated target was MMP-1, and it was subse-
quently demonstrated in OE33 cells that MMP-1 expres-
sion is modulated by miR-330-5p and miR-330-5p
suppression enhances cellular invasion. Furthermore, in
vivo xenograft data demonstrated that silencing miR-
330-5p expression enhances OAC tumour growth.

Methods

Cell lines and culture

The OE33 cell line was purchased from the ECACC
(catalogue number 96070808). Cells were cultured in
RPMI 1640 medium (Lonza, Switzerland) supplemented
with 10% foetal bovine serum (Bio-Whittaker, Lonza,
Switzerland), 1% penicillin/streptomycin (Lonza, Switzerland)
and 1% GlutaMAX (Invitrogen, ThermoFisher Scien-
tific, UK) as previously described [20]. Cell lines were
regularly tested for mycoplasma contamination using
the MycoAlert Mycoplasma Detection Kit (Lonza,
Switzerland).

Plasmid transfection

A miRNA-suppressing miR-ZIP plasmid was used for in
vitro miR-330-5p suppression (catalogue number MZIP-
330-5p-PA-1, System Biosciences, California, USA) as
previously described [20]. Cells were transfected with
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the miR-ZIP plasmid or a scrambled non-targeting vec-
tor control MIRZIP-VC plasmid (catalogue number
MZIP000-PA-1, System Biosciences) using Lipofecta-
mine 2000 (Invitrogen, ThermoFisher Scientific, UK).
The single clone (SC) cell line was derived from an indi-
vidual clone that was selected after assessing GFP ex-
pression using fluorescent microscopy. The SC cell line
had high levels of GFP expression indicating high ex-
pression of the miRZIP-330-5p plasmid. The miRZIP-
VC SC was derived from an individual clone that was se-
lected after assessing GFP expression using fluorescent
microscopy. The heterogeneous clonal (HC) cell line
was derived from a mixed population of stable clones.
The miRZIP-VC HC was derived from a mixed popula-
tion of stable clones. The miR-330 precursor plasmid
was used for in vitro miR-330-3p/5p overexpression
(catalogue number PMIRH330PA-1, System Biosci-
ences). The miR-VC (catalogue number CD511B-1, Sys-
tem Biosciences) vector control plasmid was used as a
control. Transient overexpression of miR-330-3p and
miR-330-5p was confirmed via qPCR analysis, as previ-
ously described [20].

RNA-seq whole transcriptome analysis

Total RNA was extracted from the OE33 miRZIP-330-
5p SC and the OE33 miRZIP-VC SC. RNA-seq whole
transcriptome analysis was outsourced to LC Sciences
(Texas, USA). The RNA samples were prepared for ship-
ping as advised by LC Sciences. LC Sciences performed
whole transcriptome digital RNA-seq (DGE) using Illu-
mina sequencing by synthesis technology, as previously
described [23].

RNA extraction and qPCR

Total RNA extraction, RNA quantification, reverse tran-
scription and qPCR were performed as previously de-
scribed [20]. For qPCR, QuantiTect Primer Assays were
used for MMP1, MMP7 and B2M (Catalogue numbers;
QT00014581, QT00001456 and QT00088935, respect-
ively) (Qiagen). Relative MMP1 or MMP7 mRNA ex-
pressions were determined using the 2% (Livak)
method [26].

Preparation of conditioned media

In 6cm dishes, 8 x10° cells were seeded in complete
medium and incubated for 48 h to reach ~70% con-
fluency. The medium was discarded and cells were
washed with PBS before 2.5 mL serum free RPMI 1640
was applied. Cells were incubated for 24 h, and then the
conditioned medium was subsequently harvested and
centrifuged at 4 °C for 5 min at 300xg to pellet non-ad-
herent cells and debris. The conditioned medium was
then transferred into a centrifugal filter column (5kDa
molecular weight cut-off) to concentrate the protein
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(Vivaspin® 4 Sartorius, ThermoFisher, UK). Columns
were centrifuged at 4°C for 60-70 min at 4000xg to
concentrate conditioned medium. Approximately 100 pL
of concentrated protein sample was recovered.

Western blotting

The BCA assay (Pierce, Thermo Scientific, UK) was used
to quantify protein content in the concentrated condi-
tioned media, and 50 pg of protein was loaded onto 10
or 12% SDS-PAGE gels. Electrophoretically separated
proteins were transferred onto PVDF (ThermoFisher
Scientific, UK) using a wet transfer tank system (BioRad,
UK). Following transfer, PVDF membranes were blocked
with 5% non-fat milk TBST (0.1% Tween) solution. Blots
were probed for MMP1 (1:1000 dilution, MAB901
mouse monoclonal, R and D Systems, UK), MMP7 (1:
1000 dilution, MAB9071 mouse monoclonal, R and D
Systems, UK) and the loading control B-actin (1:10000
dilution, AC-15 mouse monoclonal, Santa Cruz Biotech-
nology, Texas, USA). Image Lab 3.0 software (BioRad,
UK) was used for densitometry analysis of western blots.

Zymography

Gelatin zymography was employed to detect the pres-
ence and activity of MMP1 in conditioned serum free
media. Samples were prepared by combining 20 uL of
concentrated conditioned medium with 5 pL of non-re-
ducing sample buffer. The prepared samples were loaded
into the wells of a 1 mg/mL gelatin gel and proteins were
separated using electrophoreses (120V for 2h). Gels
were transferred into renaturing wash buffer (2.5% Tri-
ton-X, 50 mM Tris pH 7.4, 5mM CaCl,) for 1h, during
which time the buffer was changed three times. The zy-
mogram was rinsed in deionised water and incubated in
developing buffer (50 mM Tris, pH 7.4, 5mM CaCl,) at
37 °C overnight. Zymograms were stained with coomas-
sie stain (0.125% w/v coomassie brilliant blue R-250, 1%
v/v acetic acid, 45% v/v ethanol, 54% v/v water) for 1 h
and destained with solution I (62.5% v/v ethanol, 25% v/
v acetic acid, 12.5% v/v water) for 30 min and solution II
(0.05% v/v ethanol, 7% v/v acetic acid, 92.95% v/v water)
for 1 h. Zymograms were washed with water for 30 min
and stored in gel preservative solution (3% v/v glycerol,
30% v/v methanol, 67% v/v water). Zymograms were im-
aged using the Molecular Imager ChemiDoc XRS with
Image Lab 3.0 software (BioRad, UK). The images appear
as a ‘reverse’ coomassie, with the zymogram staining gel-
atin blue and the hydrolase activity of the enzyme visible
as a white band/cleared area.

Protease and protease inhibitor antibody arrays

Antibody-based arrays were used to assess the relative
expression levels of 32 proteases and 35 protease inhibi-
tors in conditioned medium (75 ug protein) as per the
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manufacturer’s instructions (Proteome Profiler antibody
arrays, R and D Systems, UK).

Transwell invasion assay

The Corning BioCoat Growth Factor Reduced matrigel
Invasion Chamber (8 pm membrane) assay was used to
measure cellular invasion, as per the manufactures in-
structions (VWR, UK). Cells were seeded at a density of
2.5 x 10* cells per insert and plates were incubated for
24 h. Membranes were mounted onto glass sides with
mounting media containing DAPI stain (ProLong Gold
Antifade Mountant with DAPI, Invitrogen, UK). Slides
were visualised under the microscope using the DAPI
filter and x 10 magnification. The DAPI stained nuclei
were counted using Image ] software.

The colorimetric OCM high sensitivity non-cross-
linked collagen invasion assay was used to determine
cellular invasiveness, as per the manufacturer’s instruc-
tions (Merck Millipore, Darmstadt, Germany). Briefly,
2.5 x 10° cells in serum-free medium were applied to the
collagen coated upper chamber inserts and plates were
incubated at 37 °C in a humidified CO, incubator for 24
or 48 h. Following processing and staining as per the
manufacturer’s instructions, stained inserts were incu-
bated in extraction buffer (provided) for 15min, and
subsequently optical density at 560 nm was measured.

In vivo xenografts

OE33 miRZIP-330-5p HC and miRZIP-VC HC cells
were prepared for subcutaneous injection into CD1 nude
mice. For each cell line, 6 mice were implanted subcuta-
neously on the right flank with 4 x 10° cells/100 pl in
50% serum-free media/50% Cultrex (RnD Systems, UK)
as described [27]. Tumour measurements were taken 2—
4 times per week using callipers. When tumours were at
size, animals were sacrificed via cervical dislocation. All
animal procedures were approved by the University of
Hull Animal Welfare Ethical Review Body and carried
out in accordance with the United Kingdom’s Guidance
on the Operation of Animals (Scientific Procedures) Act
1986 and within guidelines set out by the United
Kingdom National Cancer Research Institute Commit-
tee on the Welfare of Animals in Cancer Research
[28] under Home Office Project License number 60/
4549 held by Dr. Cawthorne.

Statistical analysis

Unless otherwise stated data are presented as the mean
+ standard error of the mean (SEM) and are representa-
tive of at least three independent experiments. Statistical
analysis was carried out using GraphPad InStat v3. Spe-
cific statistical tests used are disclosed in the relevant
figure legends. Differences were considered to be statisti-
cally significant at p < 0.05.
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Results

Identifying the gene targets of miR-330-5p

Endogenous miR-330-5p expression in OE33 OAC cells
was silenced using the miRZIP-330-5p vector, which
produces an anti-sense miR-330-5p that irreversibly
binds to endogenous miR-330-5p, thereby inhibiting its
function. Two stable OE33 miRZIP-330-5p models were
established; a single clone model (SC) and a heteroge-
neous clonal (HC) model. To identify targets and path-
ways that were altered by miR-330-5p silencing the
miRZIP-330-5p SC model was used for transcriptome/
DGE analysis. Forty-two genes were differentially
expressed between the OE33 miRZIP-VC SC and the
OE33 miRZIP-330-5p SC cell lines (Additional file 1).
Of these, 19% were upregulated (8 genes) and 81% were
downregulated (34 genes) as a result of miR-330-5p
silencing.

Validating MMP1 as a target of miR-330-5p

The DGE analysis identified a 5-fold increase in MMUPI
and a 2.5-fold increase in MMP7 in the miRZIP-330-5p
SC, which was validated via qPCR (Fig. 1). The increase
in the MMPI mRNA corresponded with an increase in
MMP1 protein expression in conditioned media from
both the miRZIP-330-5p SC and miRZIP-330-5p HC cell
lines (Fig. 2a and b). There was no change in MMP7
protein expression despite the increase in mRNA ex-
pression (Fig. 2b), and this was subsequently used as a
protein loading control. The upregulated expression of
MMP1 corresponded to an increase in the expression of
pro-MMP1 and active MMP1 protein (Additional file 2).
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Fig. 1 Silencing miR-330-5p in OE33 cells increases MMPT and MMP7
mMRNA expression. In the OE33 miRZIP-330-5p SC gPCR analysis
confirmed a ~ 2.5 fold increase in MMP1 and MMP7 mRNA
expressions. The relative fold change in MMPT and MMP7 in the
miRZIP-330-5p cell line was calculated relative to the miRZIP-VC
SC control (normalised to 1, dotted line). Data are presented as
the mean + SEM (n = 3). Statistical analysis was performed using
the one-sample t-test; * p < 0.05
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* p <0.05; ns, not significant

Fig. 2 MiR-330-5p regulates the expression of extracellular MMP1 protein expression. a MMP1 protein expression in conditioned media was
increased in the OE33 miRZIP-330-5p SC compared to the miRZIP-VC SC. The blot is representative of n =3 independent experiments.
Statistical analysis was performed using densitometry data and a one-tailed unpaired t-test; * p <0.05. b MMP1 protein expression in
conditioned media was increased in the OE33 miRZIP-330-5p HC compared to the miRZIP-VC HC. The expression of MMP7 protein was
not increased by miR-330-5p silencing. The blot is representative of n =3 independent experiments. Statistical analysis was performed
using densitometry data and the unpaired t-test; * p <0.05; ns, not significant. ¢ In the OE33 cell line the transient overexpression of
miR-330 significantly decreased the expression of MMP1 protein in the 24 h conditioned media (48 h post-transfection) compared to the
miR-VC. Blots represent n =3 independent experiments. Statistical analysis was performed using densitometry data and the paired t-test;

Of the eight upregulated genes identified in the DGE,
four genes have potential binding sites for miR-330-5p
(Additional file 1) [29]. The MMP1 mRNA has three
predicted binding sites for miR-330-5p and it was
hypothesised that miR-330-5p likely directly targets the
MMP1 mRNA. Concordantly, the transient overexpres-
sion of miR-330 in the OE33 cell line decreased extracel-
lular MMP1 protein expression (Fig. 2c).

Antibody-based arrays were used to analyse the ex-
pressions of 32 proteases and 35 protease inhibitors in
conditioned media from the miRZIP-VC SC and the
miRZIP-330-5p SC cell lines (Fig. 3a and b). The anti-
body arrays further supported the previous observations
of increased MMP1 and unaltered MMP7 protein ex-
pression in the conditioned media of the miRZIP-330-5p
cells. This suggested miR-330-5p regulates MMP1 pro-
tein expression and the biological implications of this re-
lationship were further investigated.

Silencing miR-330-5p increased MMP1 expression and
altered invasive potential

The matrix metalloproteinase family are most commonly
associated with remodelling of the extracellular matrix
and cellular invasion. Therefore, the invasive potential of
the miRZIP-330-5p HC cell line compared to the miR-
ZIP-VC HC cell line was examined. Despite the increase
in MMP1 protein expression with miR-330-5p silencing,
the OE33 miRZIP-330-5p HC cell line did not display a
more invasive phenotype at the time points tested in the
matrigel-based transwell invasion assay (Fig. 4a). How-
ever, OE33 are considered poorly invasive in cross-
linked collagen, and inclusion of the OE33 miRZIP-330-
5p SC cell line in a non-cross linked collagen transwell
invasion assay demonstrated significantly enhanced inva-
sive potential at 24 h and 48 h (Fig. 4b).

miR-330-5p silencing accelerates in vivo tumour growth
The OE33 miRZIP-VC HC and miRZIP-330-5p HC
cell lines were used to establish in vivo tumour xeno-
grafts in CD1 mice. Tumour growth profiles indicated
significantly accelerated tumour growth in the miRZIP-
330-5p xenografts compared to the miRZIP-VC xeno-
grafts (Fig. 5).

Discussion

We previously demonstrated in pre-treatment tumour
biopsies from OAC neo-CRT non-responders that miR-
330-5p was the most significantly downregulated
miRNA [20]. In vitro miR-330 overexpression and miR-
330-5p silencing did not alter cellular sensitivity to
cisplatin or 5-FU but miR-330-5p silencing marginally
increased radioresistance [20]. To further study the
biological significance of downregulated miR-330-5p in
OAC the expression of miR-330-5p was silenced in the
OE33 cell line using a plasmid vector encoding the anti-
sense miR-330-5p, to effectively mimic the downregu-
lated miR-330-5p expression observed in the tumours of
neo-CRT non-responders.

Gene expression analysis was used to identify potential
direct and indirect targets of miR-330-5p; mRNA targets
of miR-330-5p that are translationally repressed by
mechanism other than degradation are unlikely to have
altered mRNA expression as a result of miR-330-5p si-
lencing. The majority of gene expression changes re-
ported here are most likely to be indirectly associated
with miR-330-5p silencing. There were 8 genes (7 anno-
tated) that were upregulated in response to miR-330-5p
silencing. The most upregulated gene was PRAME (pref-
erentially expressed antigen of melanoma). PRAME is a
tumour antigen that induces a cytotoxic T-cell immune
response [30]. Although the tumour antigen is preferen-
tially expressed in melanoma it has also been identified
in a number of other cancers and correlates with prog-
nosis and survival [31]. The second most upregulated
gene with miR-330-5p silencing was ADRA2C (adrenore-
ceptor alpha 2C), which has a predicted binding site for
miR-330-5p [29]. Expression of alpha-2-adrenergic re-
ceptors has been reported in breast cancer cells and tis-
sue, and receptor activation induces proliferation [32]. It
is possible that ADRA2C may be functionally involved
in the accelerated tumour growth observed in vivo in
this present study. In colorectal cancer ADRA2C gene
expression has been identified as a predictor of advanced
clinical stage [33]. The third and fourth most upregu-
lated genes were MMPI and MMP?7.

The upregulated expressions of MMPI and MMP7
with miR-330-5p silencing were of particular interest be-
cause MMP1 and MMP7 have previously been reported
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Fig. 3 Protease and protease inhibitor antibody-based array profiles. Silencing miR-330-5p altered the expression of secreted proteases (a) and
protease inhibitors (b) in 24 h conditioned media. Densitometry analysis was used to calculate the fold change in protein expression in the OE33
miRZIP-330-5p SC relative to the OE33 miRZIP-VC SC. Highlighted in bold are proteins that exceeded +1.2 fold change. The antibody-based array
confirmed an increase in MMP1 expression with miR-330-5p silencing, and confirmed no increase in MMP7 expression. Data represent a single

experimental repeat

as prognostic markers in oesophageal cancer [34-36].
The first of these studies reported MMP1 as an inde-
pendent prognostic marker in a cohort of 19 SCC and
27 OAC patients [34]. Survival analysis showed the
MMP1 positive group had a median survival of 7 months
compared to 16 months in the MMP1 negative group
[34], suggesting MMP1 overexpression promotes a poor
prognosis. The role of MMP1 in early disease was re-
ported in another study that identified MMP1 as a pre-

invasive factor in Barrett’s oesophagus-associated OAC
[37]. The expression of MMP1 was confirmed in 95% of
patients with OAC and Barrett’s oesophagus, further-
more, in vitro MMP1 expression strongly correlated
with proliferation. Although MMP1 expression was not
associated with overall survival, high expression of
MMP1 was associated with lymph node metastasis [37].
The upregulation of MMP1 expression in OAC has been
linked to the EST-domain transcription factor PEA3
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Fig. 4 Silencing miR-330-5p enhances OE33 cell invasion. a The invasive potential of the OE33 miRZIP-330-5p HC was not significantly increased
relative to the miRZIP-VC HC in the 24 h matrigel invasion assay. Data are representative of n = 3 independent experiments. Data presented as
the mean + SEM. Statistical analysis was performed using the one-sample t-test; ns, not significant. However, in (b) the invasive potential of the
OE33 miRZIP-330-5p SC was significantly increased relative to the miRZIP-VC SC in the more sensitive non-cross-linked collagen invasion assay at
24 h and 48 h. Data are representative of n =3 independent experiments. Data presented as the mean + SEM. Statistical analysis was performed
using the paired t-test; * p < 0.05
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Fig. 5 Growth profiles of tumour xenografts established from OE33
miRZIP-VC and miRZIP-330-5p heterogeneous cell lines. (A) Mice
were implanted on day 0 and tumour growth rate in mm? per day
was calculated between days 18 and 46. These measurements were
taken before tumour sizes exceeded 200 mm?. Animals per group:
miRZIP-VC n =5, miRZIP-330-5p n =4. Data are presented as the
mean + SEM. Statistical analysis was performed using the unpaired
t-test; *p < 0.05

subfamily, which promotes MMP1 expression and po-
tentially drives metastasis [38]. The MMP family degrade
various components of the extracellular matrix and en-
able cancer cells to invade and metastasise. However, the
activities of MMPs are not limited to extracellular matrix
remodelling [39]. Recently, MMP1 has been implicated
as a promoter of angiogenesis and in the context of
tumour sensitivity to CRT, neovascularisation, vascular-
ity and hypoxia are all factors that significantly influence
tumour response to therapy [40].

The upregulated expression of the MMPI mRNA cor-
responded to an increase in the expression of pro-
MMP1 and active MMP1 protein (Additional file 2).
Conversely, the increase in the MMP7 mRNA did not
correspond to an increase in the MMP7 protein. The in-
crease in MMP1 protein expression was far greater in
the miRZIP-330-5p SC than the in the miRZIP-330-5p
HC. It is likely that the silencing of miR-330-5p in HC
cell line was not as extensive as it was in the SC cell line
and this may explain the difference in MMP1 expression
between the cell lines. There are three possible binding
sites for miR-330-5p in the MMPI mRNA, and no
predicted binding sites for miR-330-3p, suggesting
miR-330-5p may specifically target and regulate
MMP1 expression [29]. In addition, the overexpres-
sion of miR-330 decreased the expression of MMP1
further supporting the role of miR-330-5p as a re-
pressor of MMPI translation.
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In the non-crossed linked collagen assay the invasive
potential of the miRZIP-330-5p SC was significant en-
hanced compared to the miRZIP-VC SC. However, inva-
sion was not enhanced in the 24 h matrigel assay. The
preferred substrate of MMP1 is collagen and this may in
part explain the different results from the two invasion
assays. Furthermore the increase in MMP1 expression
was more subtle in the miRZIP-330-5p HC used in the
matrigel assay compared to the miRZIP-330-5p SC used
in the collagen assay. This study is not the first to iden-
tify miR-330-5p as a modulator of cellular invasion. The
in vitro overexpression of miR-330-5p in cutaneous ma-
lignant melanoma has been shown to decrease cellular
migration and invasion [41]. In non-small cell lung
cancer miR-330-5p was found to be downregulated and
restoring expression in vitro inhibited cell growth and
promoted apoptosis [42]. Another non-small cell lung
cancer study identified the long non-coding RNA
(IncRNA) PCAT6 (prostate cancer-associated tran-
script 6) as a promoter of migration and invasion though
regulation of miR-330-5p [43].

Considering that we had originally identified miR-330-
5p downregulation in patient tumour biopsies, an in vivo
model was established using the miRZIP-330-5p cells.
The mixed population of clones (miRZIP-330-5p HC
and miRZIP-VC HC) were considered to be a more rele-
vant model of tumour heterogeneity than the cell lines
derived from a single clone. In vivo OE33 miRZIP-330-
5p HC xenografts grew significantly faster than the miR-
ZIP-VC HC xenografts. The tumour xenografts include
elements of an intact tumour microenvironment, such
as stroma and vasculature that cannot be accounted for
in vitro. However, the in vivo model also has limitations
and was not suitable for studying potential changes in
invasion, typically because the subcutaneous xenografts
were established in immune-compromised mice using a
relatively non-invasive cell line. In spite of these limita-
tions, the enhanced tumour growth observed in vivo
demonstrates that silencing a single miRNA can have a
significant impact on OAC tumour biology.

Conclusion

In summary, the data support the role of miR-330-5p as
a modulator of MMP1 expression. Silencing miR-330-5p
in vitro increased MMP1 expression and enhanced inva-
sive potential. In OAC tumours downregulated miR-
330-5p was associated with CRT resistance [20]. Consid-
ering miRNA are produced in all cell types and are
known to directly and indirectly modulate the tumour
microenvironment, therapeutic intervention at the
miRNA level could alter the biology of the extracellular
microenvironment and CRT sensitivity [44]. It is not
known if downregulated miR-330-5p is associated with
enhanced MMP1 expression in OAC tumours although
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silencing miR-330-5p in vivo enhanced tumour growth.
Considering miR-330-5p did not significantly alter
cellular response to CRT in our previous in vitro
study, the identification of miR-330-5p regulated
genes and proteins with extracellular functions was of
particular interest here. Downregulated miR-330-5p
expression in OAC tumours could confer a more in-
vasive and aggressive tumour phenotype that indir-
ectly confers resistance to CRT.
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