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Long noncoding RNAs (lncRNAs) have been shown to play key roles in various biological processes. However, functions of most
lncRNAs are poorly characterized. Here, we represent a framework to predict functions of lncRNAs through construction of a
regulatory network between lncRNAs and protein-coding genes. Using RNA-seq data, the transcript profiles of lncRNAs and
protein-coding genes are constructed. Using the Bayesian network method, a regulatory network, which implies dependency
relations between lncRNAs and protein-coding genes, was built. In combining protein interaction network, highly connected
coding genes linked by a given lncRNAwere subsequently used to predict functions of the lncRNA through functional enrichment.
Application of ourmethod to prostate RNA-seq data showed that 762 lncRNAs in the constructed regulatory network were assigned
functions. We found that lncRNAs are involved in diverse biological processes, such as tissue development or embryo development
(e.g., nervous system development and mesoderm development). By comparison with functions inferred using the neighboring
gene-based method and functions determined using lncRNA knockdown experiments, our method can provide comparable
predicted functions of lncRNAs. Overall, ourmethod can be applied to emerging RNA-seq data, whichwill help researchers identify
complex relations between lncRNAs and coding genes and reveal important functions of lncRNAs.

1. Introduction

There are only ∼1% of human transcripts encoding proteins
[1], and a large fraction of transcripts is long noncoding
RNAs (lncRNAs), which are an unknown component of
mammalian genomes [2]. LncRNAs are spliced, polyadeny-
lated ranging from 200 bp to more than 10 kb [3–5]. They
are transcribed from genome regions that are known to
lack protein-coding genes, open reading frames, and other
properties necessary to be translated into proteins [6, 7].
Recent studies showed that lncRNAs play key roles in many
important biological processes, such as the development of
vertebrates, cell differentiation, and immune responses, and
are related to complex human diseases [2, 8–12]. LncRNAs
can have diverse functions in gene regulation, especially
in the epigenetic control of chromatin [13–16]. The most

famous example is the inactive X chromosome through cis-
acting of XIST lncRNA [17]. In addition to cis-regulation,
lncRNAs can also act in trans to regulate gene expression
[7]. For example, Rinn et al. found that HOTAIR acted
in trans to repress HOXD locus transcription [5]. Despite
many interesting findings of a few lncRNAs, generalizing
these findings to thousands of lncRNAs is difficult. More
importantly, the functions of most lncRNAs are largely
unknown in comparison to small noncoding RNAs (i.e.,
microRNAs) [18].Therefore, predicting functions of lncRNAs
remains a greatly substantial challenge.

Currently, there have been some significant efforts
applied to identify lncRNAs and explore their functions.
Guttman et al. performed loss-of-function experiments on
many large intergenic noncoding RNAs expressed in mouse
embryonic stem cells and characterized the effects on gene
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expression [8]. They demonstrated that these noncoding
RNAs (ncRNAs) play key roles in the control of embryonic
stem cell state. However, these knockdown experiments are
time consuming and labor intensive [19]. Some researchers
attempt to predict functions of lncRNAs by means of dif-
ferent biological information, such as sequences or genomic
positions of lncRNAs. For example, Bellucci et al. utilized
lncRNA secondary structure propensities inferred based on
sequence information to predict their associated proteins [20]
and hence provide a potential way to predict functions of
lncRNAs. Wamstad et al. determined GO enrichment for
the two nearest neighboring protein-coding genes relative
to lncRNAs and found the involvement of lncRNAs in
development, morphogenesis, and transcriptional processes
[13]. In addition, studies of protein-coding genes have
revealed that the relations between mRNAs with similar
half-lives have closely related physiological functions, raising
the possibility that the half-lives of noncoding RNAs also
can be used to identify their functions [21, 22]. Recently,
researchers used reannotation microarray expression data
to identify lncRNAs and predicted functions of lncRNAs
based on coding-noncoding gene coexpression network [23].
However, reannotation microarray strongly depends on the
design of the probes [24, 25].

RNA-sequencing (RNA-seq) performs whole transcrip-
tome sequencing and quantifying gene expression with
dynamic range, which overcomes the shortcomings of the
microarray technology and has already been widely used for
studying model organisms and human [9, 26–28]. Cabili et
al. defined a reference catalog of more than 8000 human long
intergenic noncoding RNAs from RNA-seq data [11], most of
which were not previously described. Recent great advances
in RNA-seq and computational methods for reconstructing
transcriptome offer a wonderful opportunity to annotate
and characterize lncRNAs, and a large number of lncRNAs
have been discovered using RNA-seq [11, 29, 30]. Therefore,
abundant RNA-seq data allow us to comprehensively identify
and quantify lncRNAs (also protein-coding genes) and enable
us to study the important roles of lncRNAs in various
biological processes.

Here, we used RNA-seq of 58 prostate samples to identify
lncRNAs and protein-coding genes and construct transcript
profiles of lncRNAs and protein-coding genes, respectively.
Based on the Bayesian networkmethod, a regulatory network
for capturing relations from lncRNAs to protein-coding genes
was constructed. Protein-coding gene modules linked with
each lncRNA from the regulatory network were identi-
fied through mapping to protein interaction network, and
its functions were subsequently predicted. A total of 762
lncRNAs were assigned functions. Consistent with previous
reports, many lncRNAs are widely involved in the develop-
ment, cell cycle, metabolism, and other biological processes.

2. Materials and Methods

2.1. RNA-Seq Data Sets. Fifty-eight prostate samples [31]
were detected using RNA-seq, including 42 prostate cancer
samples and 16 benign samples. The alignment BAM files
that were available at the Gene Expression Omnibus (GEO)

database with accession number GSE25183 were directly used
for subsequent analysis. We obtained other RNA-seq data
of 30 prostate cancer samples (GSE22260) [32]. In addition,
the raw RNA-seq data of 32 breast cancer samples was
downloaded from GEO with accession number GSE45419
[33]. We also used our previously detected RNA-seq data of
brain tissues from 38 psychiatric and normal samples that has
been deposited at the Sequence Read Archive (SRA) database
(accession number SRP035524) [34].

2.2. Protein-Protein Interaction (PPI) Network. Protein-pro-
tein interaction network can offer a global view to understand
gene functions and various cellular processes. The protein
interaction network was obtained from the Human Protein
Reference Database (HPRD). We extracted the maximum
component of the protein interaction network, which con-
tained 36900 interactions and 9219 genes.

2.3. Construction of Transcript Profiles of lncRNAs and Pro-
tein-Coding Genes. The sequenced reads were mapped to
human reference genomic utilizing TopHat [35]. Then, we
used Cufflinks [36] to assemble exonic and splice-junction
readings into transcripts using their alignment results from
TopHat and estimated transcript abundances in fragments
per kilobase of exon per million fragments mapped (FPKM)
by parsimonious allocations of readings to the transcripts.
Subsequently, we used known annotation information from
UCSC and Ensembl database to identify ncRNAs, lincRNAs,
and protein-coding genes. We combined known ncRNAs
and lincRNAs to obtain more comprehensive annotation of
lncRNAs (Figure 1).

The assembly results were classified based on the follow-
ing.

(i) Genes have at least 90% overlap with known annota-
tion of pseudogenes, which are considered as pseudo-
genes in our study.

(ii) Genes that do not pass the above step are then
compared with the annotation of known noncoding
RNAs and those which have at least 90% overlap with
known noncoding RNAs are retained as ncRNAs.

(iii) Genes that do not pass the above steps and have
at least 90% overlap with long intergenic noncoding
gene are retained as lincRNAs.

(iv) The set of genes following the above steps was then
compared with the annotation set of known protein-
coding genes, if one gene has 60%overlapwith known
protein-coding genes considering coding gene.

(v) The remaining genes are unannotated and are thus
excluded from our study.

In order to explore potential lncRNA-gene relations,
lncRNAs and protein-coding genes were considered for
further analysis only if they were expressed in at least 50
samples. Finally, we reserved these lncRNAs longer than
200 bp and constructed transcript profiles of lncRNAs and
protein-coding genes. FPKMof lncRNAs and protein-coding
genes were set to 0 when they were not present in some
samples.
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Figure 1: The workflow of functional prediction of lncRNAs. We identified lncRNAs and protein-coding genes from RNA-seq data of 58
prostate cancer samples and created transcript profiles of lncRNAs and protein-coding genes for construction of the regulatory network
between lncRNAs and protein-coding genes based on the Bayesian network method. To predict functions of individual lncRNA in the
regulatory network, we mapped its linked protein-coding genes onto human PPI network and mined highly connected modules, which
was subsequently used to predict functions by functional enrichment (𝑃 value < 0.05).

2.4. Construction of Bayesian Network. In this study, we
used Bayesian network to reveal regulatory relationships
between lncRNAs and protein-coding genes, which has been
widely used for discovering gene regulatory networks [37–
41]. Bayesian network represents a joint probability distribu-
tion as a directed acyclic graph. It consists of two components.

The first component, 𝐺, is a directed acyclic graph (DAG)
whose vertices represent the random variables 𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑁

and whose edges correspond to dependencies between
variables. The second component describes a conditional
distribution for each variable which is only dependent on
its parent vertices. These two components specify a unique
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Figure 2: An example of a simple Bayesian network structure.
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decomposed into a product of conditional probabilities based
on the graphical structure:

𝑝 (𝑢
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where Pa𝐺(𝑢
𝑖
) is the set of parents of 𝑢

𝑖
in 𝐺. Figure 2 shows

an example of a Bayesian network 𝐺 and the joint probability
distribution it implies.

To construct the regulatory network, we discretized the
expression levels of each lncRNA and protein-coding gene
from continuous values into two categories (high expression
and low expression) by Hartemink’s pairwise mutual infor-
mation method [42]. Then these probability distributions in
formula (1) can be computed by counting the frequencies of
different combinations. In the process of Bayesian network
structure learning, themost likely graph𝐺 for a given data set
𝐷 can be inferred by searching for the optimal graph based on
a Bayesian scoring metric. As both structure and parameters
of the Bayesian network are typically unknown [43], we thus
employed the commonly used approximate Bayesian scoring
metric, Bayesian information criteria (BIC) [44, 45].The BIC
scoring function can be defined as follows:

BICscore (𝐺,𝐷) = log 𝐿 (𝑢
1
, 𝑢

2
, . . . , 𝑢

𝑁
) −

𝑑

2

log 𝑛, (2)

where 𝐿(𝑢
1
, 𝑢

2
, . . . , 𝑢

𝑁
) is the likelihood of the data𝐷 accord-

ing to estimated parameters and structure 𝐺, 𝑛 is the sample
size of the data set, and d is the number of parameters. Finally,
the graph space was explored using the greedy hill-climbing
algorithm with random restarts to get the most likely graph
𝐺 for lncRNAs and protein-coding genes. Pseudocode and
illustration for hill-climbing algorithm are shown in Figure 3.

The construction of Bayesian network was generated
using 𝑅 package bnlearn [45].

2.5. Prediction of the Functions of lncRNAs by Network Mod-
ules. In general, genes with high interconnections tend to
have more similar functions [46]. Therefore, predicting the
function of lncRNAs based on their directly linked protein-
coding genes together can benefit from network modular
strategies [47, 48] because lncRNAs may be involved in
multiple biological processes.

We integrate the protein-protein interaction (PPI) net-
work and then predict the functions of lncRNAs using
network modules derived from the PPI network. For each
lncRNA in the regulatory network constructed based on the
Bayesian network method, its directly linked protein-coding
genes were mapped onto the human PPI network. Of these
genes in the PPI network, we computed the shortest path
lengths between any two genes and then used the dynamic
cutting tree [49] to mine gene modules. The significant
functions enriched by each module (𝑃 value < 0.05) were
identified. These functions were regarded to be associated
with the lncRNA.

3. Result

3.1. Construction of Transcript Profiles of lncRNAs and Protein-
Coding Genes Using RNA-Seq. RNA-seq provides an accu-
racy and dynamic characterization of the whole cell tran-
scriptome, including different types of RNAs, such asmRNAs
and lncRNAs. A total of 58 prostate samples were detected
using RNA-seq [31]. The size of 250–300 bp polyA-RNA
fragments was selected to construct libraries, which were
sequenced using single-end and paired-end on an Illumina
Genome Analyzer I and Genome Analyzer II flow cell. In
total, approximately 300 million readings were mapped to
human reference genome hg18 using TopHat with default
parameters. The alignment BAM files that were available at
the Gene Expression Omnibus (GEO) database with acces-
sion number GSE25183 were directly used for subsequent
analysis (Figure 1).

To construct transcript profiles of lncRNAs and protein-
coding genes, these mapped readings were assembled into
transcripts using Cufflinks [36] with default parameters (a
maximum intronic length of 300 kb; minor isoforms with
abundance less than 10% of the major isoform). For all 58
samples, 1.69 million transcripts were generated from Cuf-
flinks corresponding to 59404 genes (Supplemental Table S1
available online at http://dx.doi.org/10.1155/2015/839590).We
annotated these millions of magnitude of transcripts gener-
ated by Cufflinks based on known genomic annotation infor-
mation from different databases (e.g., UCSC and Ensembl).
These genomic annotations are composed of the following: (1)
18921 protein-coding genes fromUCSC database coding gene
track; (2) 37584 ncRNAs from type of noncoding transcripts
in Ensembl database; (3) 8669 pseudogenes obtained through
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Figure 3: Pseudocode (a) and illustration (b) of a Bayesian network structure hill-climbing search procedure. 𝐸, 𝐺,𝐷, and 𝑈, respectively,
are edge sets, Bayesian graph, the training data, and a subset of vertices in Pseudocode (a).

combination of the annotation of pseudogenes in UCSC and
Ensembl database; and (4) 21552 lincRNAs from the UCSC
lincRNA track.

Based on known annotation information of protein-
coding genes, ncRNAs, pseudogenes, and lincRNAs, tran-
scripts in each sample were classified into sets of protein-
coding genes, lincRNAs, known ncRNAs, pseudogenes, and
unannotated transcripts. NcRNAs with length greater than
200 bp and lincRNAs were both regarded as lncRNAs. We
identified 7843 lncRNAs (6267 from the ncRNA annotation
and 1576 from the lincRNA annotation) and 15305 protein-
coding genes from the 58 prostate samples according to four
filtering rules (details in the method section). We found large
variance of lncRNAs across all samples; that is, more than
60.7% of lncRNAs (4763 of 7843) occur at just a few samples
(≤10) and only 1355 lncRNAs (17.3%) are present at more
than 50 samples. Interestingly, the binary map showing the
presence and absence of lncRNAswas able to successfully dis-
tinguish normal, metastatic, and localized prostate samples
(Figure 4(a)), suggesting the existence of phenotype-specific
lncRNAs. In fact, we observed that some lncRNAs trended
to be expressed only in metastatic prostate cancer samples
and some are expressed only in localized prostate cancer
samples. To characterize potential lncRNA-gene relations,
lncRNAs and protein-coding genes were obtained only if they
were expressed in at least 50 samples. Finally, we obtained
1355 lncRNAs and 8644 protein-coding genes, which were
subsequently used to construct a lncRNA-gene regulatory
network.

3.2. Construction of lncRNA-Gene Regulatory Network Based
on Bayesian Network Method. Network analysis offers an
efficient method of functional annotation of various biologi-
cal molecules [50, 51]. Using transcript profiles of lncRNAs
and protein-coding genes derived from RNA-seq data, we
constructed a lncRNA-gene regulatory network based on the
Bayesian network method. We discretized transcript profiles
of lncRNAs and protein-coding genes using Hartemink’s
pairwise mutual information method. Then, using a hill-
climbing greedy search on the space of the directed acyclic
graph, the optimal network matching transcript profiles of
lncRNAs and protein-coding genes were identified. There
are 20957 edges referring to 9999 nodes composed of 1355
lncRNAs and 8644 protein-coding genes in the regulatory
network containing the dependency relationships between
lncRNAs protein-coding genes (Figure 4(b)). We analyzed
the distribution of lncRNA degree in the regulatory network
(Figure 4(c)), finding that the degree of most lncRNAs is
small (mean degree of all lncRNAs is 15.46); only several
lncRNAs have large degree (maximum degree of lncRNA is
135). Also, we observed that one lncRNA can connect many
protein-coding genes, and one protein-coding gene can also
be connected by several lncRNAs.

Previous studies have suggested that lncRNAs can act
in cis to activate or silence transcription of genes, such as
cis-acting of Xist [17]. However, there is mounting evidence
showing that lncRNAs can act in trans, such as HOTAIR
silencing HOXD locus [5]. Therefore, we sought to analyze
whether lncRNAs tend to affect protein-coding genes in cis
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Figure 4: (a) A binary map showing the presence (red) and absence (white) of lncRNAs in 58 samples can distinguish prostate cancer
samples frombenign samples and differentiate localized prostate cancer samples frommetastatic samples. (b)The regulatory network between
lncRNAs and protein-coding genes was constructed using RNA-seq data of 58 prostate samples based on the Bayesian network method.
Red nodes represent protein-coding genes, and green nodes represent lncRNAs. (c) Distribution of degree of lncRNAs in the regulatory
network. (d)The distance between lncRNAs and their linked protein-coding genes. (e)The ratio of protein-coding genes located on the same
chromosome with their linking lncRNAs.

or in trans. For each lncRNA in the regulatory network, we
extracted its linked protein-coding genes and examined how
frequent the linked protein-coding genes located at the same
chromosome as the lncRNA. We found only a small part of
protein-coding genes located at the same chromosomes as

their associated lncRNAs. We further found that lncRNAs
affect protein-coding genes with distance around 10–20Mb
with a peak of 14M (Figure 4(d)), which is more than 100 kb
used by analysis of lncRNAs based on neighboring genes
[8]. Interestingly, only 15 (1.11%) of 1355 lncRNAs linked
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with protein-coding genes within 100 kb were identified,
suggesting that lncRNAs may act on broader regions in
cis, although most genes are probably affected by lncRNAs
in trans. Additionally, we found that lncRNAs with larger
degrees connect less frequently with protein-coding genes on
the same chromosome (Figure 4(e)), suggesting that some
hub lncRNAs may function dependently on their effects in
trans.

Considering the existence of disease and normal sam-
ples in these 58 prostate samples, we used the significance
analysis of microarrays (SAM) method [52] to identify
differentially expressed lncRNAs and protein-coding genes
(false discovery rate, FDR ≤ 0.05). Of 1355 lncRNAs, 510
(37.6%) showed differential expression with 351 upregulated
and 159 downregulated lncRNAs. Of 8644 protein-coding
genes, 3821 (44.2%) showed differential expression with 2295
upregulated and 1526 downregulated coding genes. Among
20957 edges in the regulatory network, there are 2167 edges
which show consistent upregulation, 885 edges with consis-
tent downregulation, 838 edges with upregulated lncRNAs
and downregulated genes, and 983 edges with downregulated
lncRNAs andupregulated coding genes (Supplemental Figure
S1A). As expected, upregulated lncRNAs tend to connect with
upregulated protein-coding genes (Wilcoxon’s rank sum test,
𝑃 value < 2.2𝑒 − 16, Supplemental Figure S1B), but not vice
versa.

In addition, recent studies showed that dysregulated
lncRNAs contribute to many human diseases [31, 53, 54]. A
possible hypothesis is that dysfunction lncRNAs may destroy
some known disease genes, which in turn induce the devel-
opment of disease. Therefore, we assessed whether disease-
related lncRNAs are connected with known disease genes in
the regulatory network.Throughmanual literature searching,
we found 12 disease-associated lncRNAs (including ANRIL,
DGCR5, GAS5, H19, Malat1, NEAT1, TUG1, Zfas1, ncRAN,
DLEU2, Sox2ot, PTENP1, and PlncRNA-1) [53] in the net-
work and 7655 disease genes derived fromOMIM.Wedid not
find obvious difference between the disease and nondisease
genes linked by disease-associated lncRNAs (Figure 5). By
comparing the mean degrees of nondisease-associated lncR-
NAs anddisease-associated lncRNAs,we found that themean
degree of disease-associated lncRNAs (mean degree 12.31)
is lower than nondisease-associated lncRNAs (mean degree
15.5).

3.3. Predicting Functions of lncRNAs Based on Network Mod-
ules. To predict the functions of lncRNAs, we applied a
module-based method that has been extensively used to pre-
dict functions of gene sets through integrating our inferred
lncRNA-gene regulatory network and protein-protein inter-
actions. For each lncRNA in the regulatory network, their
linked protein-coding genes were mapped onto the human
PPI network. On the basis of the PPI network, we computed
the shortest path lengths between any two genes to mine
modules. The significant functions enriched by each module
(𝑃 value < 0.05) were regarded to be associated with the
lncRNA and assigned to the lncRNA.

Of the 1355 lncRNAs in the network, 762 were assigned
with enriched functions. The other lncRNAs were not
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Figure 5:There are 12 disease-associated lncRNAs in the regulatory
network. Red bar denotes the proportion of disease genes linked by
the disease-associated lncRNAs in all disease genes derived from
OMIM. Blue bar denotes the proportion of nondisease genes linked
by the disease-associated lncRNAs in the protein-coding genes
derived from UCSC.

because their linked protein-coding genes either cannot form
modules in the PPI network or are not significantly involved
in any biological processes. Consistent with previous studies,
many of these lncRNAs were found to be associated with
development, metabolism, and some fundamental cellular
functions (e.g., cell cycle, signal transduction, and tran-
scription) [9, 23]. Using our method can assign functions
to known prostate-associated lncRNAs. For example, one
lncRNA named PlncRNA-1 has been demonstrated to be
related to prostate cancer. A recent study suggests that silenc-
ing of PlncRNA-1 significantly reduced cell proliferation and
induced apoptosis [54]. Consistently, through our prediction
method,we annotated PlncRNA-1with functions of cell cycle.
In the network, we also found that PlncRNA-1 can affect
POFUT1 gene involved in Notch signaling pathway, which is
required for normal prostatic epithelial cell proliferation and
differentiation [55].

By using relationships between lncRNAs and protein-
coding genes from the regulatory network, we can also
annotate poorly characterized lncRNAs with novel functions.
For example, Malat1 lncRNA linked 27 protein-coding genes
in the network, which form two modules in the PPI network.
Genes in the two modules were significantly involved in
biological processes, including cerebellar cortex formation,
nucleosome assembly, cell cycle, transcription elongation,
and cell-cell signaling (Figure 6(a)). Consistently, previous
studies have suggested that Malat1 lncRNA is a component
of nuclear bodies and may be associated with the cerebellum
of human alcoholics, depletion of which resulted in aberrant
mitosis increased cell death [56–59]. The lncRNA Malat1 is
dispensable for mouse development [60], which consists of
our prediction functions of embryonic morphogenesis. In
addition, we found several novel functions ofMalat1 lncRNA,
such as cell aging, histone modification, and metabolic
process. Another lncRNA named NEAT1 linked with 15
protein-coding genes in the network forms one module
in PPI network form, which was significantly involved in
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functions related to neuron projection development, cell
differentiation, DNA damage response, cell cycle, Wnt recep-
tor signaling pathway, and nuclear transport (Figure 6(b)).
Previous studies have suggested that NEAT1 lncRNA has an
important structural role in the nuclear paraspeckles [61] and
it plays important roles in Huntington’s disease by disrupt-
ing neuron differentiation [62], which coincides with our

predicted functions. A recent study found that NEAT1 might
be a general feature of differentiation [62–64], supporting
our predicted function of cell differentiation. Interestingly,
novel functions, such as cell cycle andDNAdamage response,
suggest that NEAT1 lncRNA may be associated with the
parthenogenesis of cancer. Further experiments could help to
elucidate its roles in cancer.
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Furthermore, we analyzed the affected biological pro-
cesses of lncRNAs through their nearest neighboring genes.
We identified the nearest neighboring protein-coding genes
of these 1355 lncRNAs in the network and completed the
functional enrichment using all of these protein-coding
genes. The set of neighboring genes is significantly involved
in 263 GO terms (𝑃 value < 0.05), such as metabolic process,
development, and cell cycle, consistent with previous reports
[11, 65]. Of these enriched GO terms, 89.3% were also found
using our method. For each lncRNA in the network, we
examined the overlaps between GO terms associated with
its nearest protein-coding gene and ones predicted using our
method. We found that 132 of 762 lncRNAs have at least one
shared GO term, but the overlapping GO terms only occupy
a small proportion of terms predicted using our method.

Through knockdown experiments of lncRNAs and subse-
quent microarray-based expression profiling, a recent study
systematically analyzed functions of 147 lncRNAs in mice
[8]. To further evaluate the performance of our approach, we
searched for orthologous lncRNAs with knockdown data in
mice and evaluated the overlapping of functions identified
between our approach and knockdown-based experiments.
Based on sequence alignment, 48 orthologous lncRNAs were
obtained. For each lncRNA, its knockdown expression data
were used to determine the affected genes by differential
expression analysis (fold change > 2 and 𝑡-test with FDR <
0.05). We then performed GO enrichment analysis based
on the affected genes for the determination of its func-
tions. Among these 48 lncRNAs, we found that 38 lncR-
NAs show overlapping of functions identified between our
approach and knockdown-based experiments; 4 were not
involved in any functions based on knockdown expression
data, and 5 were not based on our approach. Also, we found
that our approach can capture many important functions
(e.g., development, cell proliferation, and cell differentiation)
that were also confirmed by knockdown-based experiments
(Figure 6(c), Supplemental Figure S2). For example, by ana-
lyzing the knockdown expression data of ENST00000467603
orthologous lncRNA in mice, we found the orthologous
lncRNA involved in embryonic development, cell prolifer-
ation, and cell death processes (Figure 6(c)) that were also
predicted using our approach. In particular, we found that the
lncRNA connects with the IRF6 gene in the regulatory net-
work, which encodes a member of the interferon regulatory
transcription factor (IRF) family involved in the development
process [66, 67] and regulation of cell proliferation [68].
Consistently, the knockdown of its orthologous lncRNA in
mice significantly affected the expression level of the ortho-
log gene of IRF6. By analyzing the knockdown expression
data of another lncRNA named ENST00000487673 orthol-
ogous lncRNA in mice, we found the orthologous lncRNA
involved in cell proliferation, lung development, and tissue
morphogenesis processes, which were also predicted using
our method. Moreover, in the regulatory network, the
ENST00000487673 lncRNAwas found to link with SLC39A6
gene, an essential cofactor for hundreds of enzymes, encoding
one member of the SLC39 family and involved in differ-
entiation and development [69, 70]. Notably, knockdown
of its orthologous lncRNA in mice significantly affected

the expression level of SLC39A8 gene, whose orthologous
gene in human together with SLC39A6 belong to the SLC39
family [69].

3.4. Application of the Method to Other RNA-Seq Data. We
applied our method to three other RNA-seq data sets includ-
ing breast cancer, prostate cancer, and psychiatric disorders
and obtained their corresponding regulatory networks.There
were 27090 edges referring to 12526 nodes composed of
808 lncRNAs and 11718 protein-coding genes in the regu-
latory network of breast cancer, 28422 edges referring to
13454 nodes composed of 790 lncRNAs and 12664 protein-
coding genes in prostate cancer, and 25192 edges referring to
10634 nodes composed of 1371 lncRNAs and 9263 protein-
coding genes in psychiatric disorders (Figure 7(a)). For each
regulatory network, we predicted the functions of lncRNAs
by using network modules derived from the PPI network.
A total of 668, 648, and 717 lncRNAs were assigned with
enriched functions in breast cancer, prostate cancer, and
psychiatric disorders, respectively. We found that some lncR-
NAs commonly appeared in these four RNA-seq data sets
(Figure 7(b)), and some lncRNAs were present in only one
RNA-seq data set, in line with high tissue specificity of lncR-
NAs [11]. As expected, the two RNA-seq data sets of prostate
cancer shared more lncRNAs than others (Figure 7(b)). To
compare the functions of lncRNAs among these four RNA-
seq data sets, we obtained 85 common lncRNAs. We found
that lncRNAs can be involved in the same functions among
these four RNA-seq data sets and, notably, they can also be
enriched in some tissue-related functions (Figure 7(c)). For
example, lncRNA ENST00000448587 (known as TINCR)
was found to be enriched in heart development among these
four data sets (Figure 7(d)). In particular, we found that the
lncRNA was also involved in regulation of cell differentiation
in three data sets including breast cancer, prostate cancer,
and psychiatric disorders, which was consistent with a pre-
vious study that TINCR can control tissue differentiation
[71]. Moreover, we found that the lncRNA was enriched in
tissue-related functions, such as synaptic transmission and
axon ensheathment in psychiatric disorders and response
to steroid hormone in prostate cancer. In these four RNA-
seq data sets, lncRNA ENST00000411553 was enriched in
apoptotic process, suggesting its importance in the devel-
opment of diseases. We also found that ENST00000411553
was involved in tissue-related functions such as neuron
differentiation, axonogenesis, and neuron development in
psychiatric disorders, hormone-mediated signaling pathway
in prostate cancer, and regulation of cell migration in breast
cancer (Figure 7(e)).

4. Discussion

Although human genome encodes thousands of lncRNAs,
only a few lncRNAs have been functionally characterized,
and most functions of lncRNAs remain unknown. Here, we
proposed an integrative framework to systematic prediction
of lncRNA function. Using combination of a large number of
RNA-seq data sets, we constructed a lncRNA-gene regulatory
network based on the Bayesian network method and then
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cancer, prostate cancer, and psychiatric disorders based on the Bayesian network method. Red nodes represent protein-coding genes, green
nodes represent lncRNAs, and edges represent regulatory relationships. (b) Heatmap representing the GO terms of lncRNAs in four data sets.
For each lncRNA, detected GO terms are indicated in red. I denotes psychiatric disorders, II denotes breast cancer, III denotes prostate cancer
(GSE22260), and IV denotes prostate cancer (GSE25183). (c) Heatmap shows the shared functions of lncRNAs in four data sets (columns).
Color key represents the number of data sets sharing the same GO terms for each lncRNA (rows). (d) Functional heatmap (left panel)
representing the GO terms (rows) of ENST00000448587 in four data sets (columns). Detected GO terms in each data set are indicated
in red. Venn diagram (right panel) showing the number of overlapped GO terms of ENST00000448587 in four data sets. (e) Functional
heatmap (left panel) representing the GO terms (rows) of ENST00000411553 in four data sets (columns). Detected GO terms in each data set
are indicated in red. Venn diagram (right panel) showing the number of overlapped GO terms of ENST00000411553 in four data sets.

predicted lncRNA functions using a module-based strategy
by integrating protein interaction network. Our results show
that lncRNAs are involved in diverse biological processes,
such as development, metabolism, and differentiation, con-
sistent with many previous studies.

Recently, some researchers used reannotation microar-
ray expression data to predict functions of lncRNAs [23,
72]. However, microarray is greatly dependent on designed
probes and hence cannot comprehensively characterize
dynamic and relatively low expression of lncRNAs [24, 25].
Also, lncRNAs have strong tissue specificity [9, 11], and many
lncRNAs are not identified at present [29]. RNA-seq has
the ability to capture the expression levels of genome-wide
transcripts, including ones with extremely low expression
levels, which thus provides a more precise measurement of
levels of transcripts with great dynamic range in comparison
tomicroarray [27, 50]. Expression levels of lncRNAs detected
using RNA-seq cannot be reproduced using microarray
because of their low correlation [73].More importantly, RNA-
seq data can be used to identify known and novel lncRNAs
[11, 29] and quantify their transcript abundance [27] in a
specific condition [31]. Therefore, our approach—utilization
of RNA-seq data—has the ability to characterize condition-
specific lncRNAs and mRNAs, which can further help to
systematically depict their potential relations.

With the Bayesian network method as our basis, we con-
structed a lncRNA-gene regulatory network using transcript
profiles of lncRNAs and protein-coding genes generated from
RNA-seq data. The Bayesian network allows us to discover
causal relations between lncRNAs and genes by capturing
properties of conditional independence between variables
[37]. It also allows us to handle noise and focus on depen-
dency relationships with strong signals in observed data. It
has been widely used for building a variety of regulatory
networks [37, 40, 74].

Subsequently, we applied a module-based strategy
through combination of the lncRNA-gene regulatory
network and protein interaction network. Such modular
method has been widely used in prediction of molecular
functions because of the prevalence of modular organization
of biological networks [51]. LncRNAs may also exert specific
functions by regulating function-related genes or by
regulating key genes, which in turn affect downstream
function-related genes. Using the module-based method,
genes connected by a given lncRNA in the regulatory
network were divided into coherent groups of genes that
show tight connections in protein interaction network.Thus,
our method can effectively predict lncRNA functions by
considering not only causal relations between lncRNAs
and protein-coding genes but also functional associations
between genes in protein interaction network.
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Furthermore, taking into account cis-acting of lncRNAs,
several studies used their neighboring protein-coding genes
to annotate the function of lncRNAs. However, it is difficult
to determine the genomic range of cis-acting for lncRNAs.
That is, there is absence of a unified criterion for the estab-
lishment of neighboring protein-coding genes of lncRNAs.
Previous studies used different distances to search for their
neighboring genes, such as 10 kb [28, 75] and 300 kb [8],
and also used one (or two) nearest neighboring protein-
coding gene(s) to describe the function of lncRNAs [11, 13].
Moreover, it is difficult to predict functions of individual
lncRNAs dependent on one or a few neighboring genes.More
importantly, a recent loss-of-function experiment has been
used to investigate the effects of lncRNAs on protein-coding
gene expression [8]. They found that only 2 of 147 lincRNAs
function in cis and most lincRNAs affect gene expression in
trans. The trans-acting of lncRNAs will hinder the function
characterization of lncRNAs based on neighboring protein-
coding genes. In comparison with neighboring gene-based
function prediction of lncRNAs, we found a part of lncRNAs
with functions predicted using our method overlapping with
those predicted by their neighboring genes. Furthermore,
we found that our method can also capture most functions
of orthologous lncRNAs in mouse determined by lncRNA
knockdown experiments. Obviously, our method is not
restricted to potential cis-acting of lncRNAs and thus can be
used to explore more extensive functions for lncRNAs.

In addition, in the regulatory network, 8644 (45.7%)
of 18921 protein-coding genes are linked by lncRNAs, sug-
gesting broad effects of lncRNAs on protein-coding genes
and therefore supporting their important roles in biology
[8]. Interestingly, we found 10 of the 12 disease-associated
lncRNAs linked with at least one disease protein-coding gene
in the regulatory network, suggesting that disease lncRNAs
may contribute to the pathogenesis of disease by regulating
some known disease genes. Their regulatory relations may
enable us to discover novel disease lncRNAs using known
disease genes.

5. Conclusion

In conclusion,we proposed a framework that integrates RNA-
seq data and PPI network based on Bayesian networkmethod
to comprehensively characterize the functions of lncRNAs.
By applying our method to RNA-seq data from prostate
samples, we performed a large-scale functional prediction of
lncRNAs and analyzed the features of regulatory relations
between lncRNAs and protein-coding genes. Our study
demonstrated that RNA-seq combining with PPI network
based on Bayesian network method is a powerful method
for functional analysis of poorly characterized ncRNAs and
can be further used for mining functions of ncRNAs in other
conditions.
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