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Abstract 

Background:  There is growing evidence indicating that a number of functional connectivity networks are disrupted 
at each stage of the full clinical Alzheimer’s disease spectrum. Such differences are also detectable in cognitive 
normal (CN) carrying mutations of AD risk genes, suggesting a substantial relationship between genetics and AD-
altered functional brain networks. However, direct genetic effect on functional connectivity networks has not been 
measured.

Methods:  Leveraging existing AD functional connectivity studies collected in NeuroSynth, we performed a meta-
analysis to identify two sets of brain regions: ones with altered functional connectivity in resting state network and 
ones without. Then with the brain-wide gene expression data in the Allen Human Brain Atlas, we applied a new 
biclustering method to identify a set of genes with differential co-expression patterns between these two set of brain 
regions.

Results:  Differential co-expression analysis using biclustering method led to a subset of 38 genes which showed dis-
tinctive co-expression patterns between AD-related and non AD-related brain regions in default mode network. More 
specifically, we observed 4 sub-clusters with noticeable co-expression difference, where the difference in correlations 
is above 0.5 on average.

Conclusions:  This work applies a new biclustering method to search for a subset of genes with altered co-expression 
patterns in AD-related default mode network regions. Compared with traditional differential expression analysis, 
differential co-expression analysis yielded many more significant hits with extra insights into the wiring mechanism 
between genes. Particularly, the differential co-expression pattern was observed between two sets of genes, suggest-
ing potential upstream genetic regulators in AD development.
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Introduction
Human brain functions as a network of multiple brain 
regions. Each brain region has its own function but also 
shares information with each other. Therefore, they form 
a complex comprehensive network in which informa-
tion is continuously processed and transmitted between 
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structurally and functionally connected brain regions [1]. 
Functional brain connectivity is captured based on the 
assessment of temporal correlations between different 
brain regions of interest (ROIs) using functional mag-
netic resonance imaging (fMRI). There has been growing 
evidence that a number of functional connectivity net-
works are disrupted at each stage of the full clinical Alz-
heimer’s disease (AD) spectrum [2–4]. Particularly, such 
neural differences are also detectable in cognitive normal 
(CN) carrying mutations of AD risk genes, suggesting a 
substantial relationship between genetics and AD-altered 
functional brain networks [5]. However, direct genetic 
effect on functional connectivity networks has not been 
measured [5, 6].

Present genetic association studies of brain connectiv-
ity are mostly for structural brain network with a primary 
focus on examining pairwise univariate associations 
between genetic markers such as Single Nucleotide Poly-
morphisms (SNPs) and basic connectome measures at 
each edge [7] or at each voxel [8, 9]. A few recent stud-
ies worked on association brain expression with brain 
connectivity and allowed detection of underlying genes 
[4, 10]. However, only the expression and connectivity in 
each brain region were examined.

Recently, the Allen Human Brain Atlas (AHBA) 
(https://​portal.​brain-​map.​org/) provided a complete 
transcriptomic atlas inside the brain. It measured the 
expression level of more than 10,000 genes across  1000 
brain samples. This data allows us to study another type 
of brain connectivity, i.e., co-expression network between 
brain regions, which captures the similarity of brain 
regions based on the expression level of a set of genes. 
Recent analyses have used the AHBA data to look for the 
associations between co-expression brain network and 
the organization of human brain functional connectiv-
ity [11–14]. However, the co-expression brain network 
is mostly built using all genes. This strategy might miss 
some signal since a certain brain function only involves 
a set of genes. Using all genes to study the brain inter-
regional co-expression will possibly mask some pattern 
out. Since the human brain expression data is only lim-
ited to postmortem brains, it is difficult to meaningfully 
relate gene expression with functional connectivity when 
performing a specific task. Therefore, most of those stud-
ies focused on the functional connectivity measured 
under resting state, which has been previously found to 
be consistent across healthy subjects [15, 16].

Leveraging this brain wide gene expression data, we 
proposed a novel strategy to explore the transcriptomic 
changes underlying the functional brain connectivities 
altered in AD brains, including both differential expres-
sion and differential co-expression. Specifically, we first 
performed a meta-analysis of existing AD resting state 

network studies collected in NeuroSynth, and identi-
fied two sets of brain regions: ones with altered func-
tional connectivity in resting state network and ones 
without. Then with the brain-wide gene expression data 
in the Allen Human Brain Atlas, we applied a bicluster-
ing method to identify a subset of genes with differential 
co-expression patterns between these two set of brain 
regions. In total, we were able to identify 38 genes in 4 
subnetwork modules with differential co-expression pat-
terns, which in further analysis are found closely con-
nected to known AD risk genes.

Methods
Functional connectivity data
We used NeuroSynth (https://​neuro​synth.​org/) database 
to collect the functional connectivity papers related to 
AD. It is a web platform established in 2011 for large-
scale automated synthesis of functional magnetic reso-
nance imaging (fMRI) data. To the best of our knowledge, 
Neurosynth is by far the largest and most up-to-date col-
lection of functional connectivity studies. It has collected 
14,371 papers on fMRI studies with reported MNI coor-
dinates of activation sites.

In total, 137 papers in NeuroSynth are listed under the 
term “Alzheimer” and 60 of them are focused on rest-
ing state functional connectivity. All these resting state 
papers were further categorized according to the diagno-
sis groups used for comparison, like AD vs normal con-
trol, mild cognitive impairment (MCI) vs normal control, 
MCI vs AD, MCI only and Mild AD vs Normal control. 
Some papers included only one diagnosis group and 
some have more than 2 diagnosis groups. Since the meta-
analysis tool in NeuroSynth does not differentiate the 
activation patterns between each pair of groups if more 
than two diagnosis groups exist, we only focused 16 stud-
ies performing comparison analysis between Alzheimer 
patients and normal controls.

Meta‑analysis of functional connectivity altered in AD
Meta-analysis of co-activation patterns reported in 16 
pre-selected papers was performed using the core pack-
age provided by NeuroSynth, a lightweight set of Python 
modules that support large-scale automated synthesis 
and manipulation of functional MRI activation. First, 
each paper was labeled with multiple terms and a cor-
responding binary image mask was generated, with a 
value of 1 (reported) assigned to each voxel in the brain 
if it was within a focus reported in that article and 0 (not 
reported) if it was not. Based on that, for each brain voxel 
and term (e.g., task), every study can be cross-classified 
by activation (present or absent) and term (present or 
absent), producing a 2 × 2 contingency table of counts. 
The statistical inference was then done using chi-square 

https://portal.brain-map.org/
https://neurosynth.org/


Page 3 of 9He et al. BMC Medical Genomics           (2022) 15:92 	

test, with a significant result implying the presence of a 
dependency between term and activation. As a result, 
a Nifti file indicating the voxel level significance of co-
activation was generated. In total, 6982 voxels passed 
the significance threshold (FDR corrected p ≤ 0.05 ) and 
were considered with altered functional connectivity in 
AD patients. We further mapped each of these voxels to 
Glasser atlas based on their MNI coordinates using Rest-
ing-State fMRI Data Analysis Toolkit [17]. Out of 6982 
voxels, 6622 of them were located within 2mm distance of 
Glasser regions and therefore are mapped to their closest 
Glasser regions of interest (ROIs). The rest were excluded 
from the subsequent analysis. To focus our analysis to 
resting state network, we further mapped Glasser ROIs 
to Yeo 7 atlas [18] and 103 Glasser ROIs were found to 
be involved in default mode network, where 64 of them 
have significant voxels identified from meta-analysis and 
39 of them do not. For those ROIs with significant voxels, 
we further excluded the ones with less than 10 significant 
voxels and 46 Glasser ROIs were retained.

Gene expression data
Brain wide transcriptomic data were downloaded from 
the Allen Human Brain Atlas (AHBA) [14]. The AHBA 
includes genome-wide microarray-based expression 
covering the entire brain through systematic sampling 
of regional tissue, where ∼60,000 probes across approxi-
mately ∼1000 samples were collected for each individual 
postmortem brain. The samples are distributed across 
cortical, subcortical, brainstem and cerebellar regions in 
each brain. Expression profiles for all six health human 
brains have been released, including two full brains and 
four right hemispheres.

The AHBA transcriptome data was pre-processed fol-
lowing a recently published protocol [19]. More spe-
cifically, first, given that microarray data only quantifies 
probes that correspond to a short DNA sequence, we 
performed a probe-to-gene mapping using Re-Annota-
tor [20] with Genome v19. Secondly, we filtered out the 
probes that does not exceed the background noise based 
on the intensity based filtering (IBF) provided by AHBA. 
Only probes that exceed the background noises in at least 
50% of all brain samples across all subjects be retained. 
In case of multiple probes corresponding to one gene, we 
represent the gene with the probe that shows best expres-
sion consistency across individual brains [21]. Finally, 
to enable the association between gene expression and 
functional connectivity, we mapped AHBA brain sam-
ples to the Glasser ROIs based on their Montreal Neu-
rological Institute (MNI) coordinates. Default Mode 
Network (DMN) related Glasser ROIs without gene 
expression data was excluded for the subsequent analysis. 

Ultimately, we have the expression data of 10,027 genes 
from 46 AD-related and 20 non AD-related DMN ROIs.

Given that the genes greatly outnumbered the Glasser 
ROIs to be analyzed, the gene expression is represented 
as a flat matrix and will likely produce biased results 
with biclustering methods. To address this problem, we 
narrowed our candidate gene list based on the large-
scale GWAS summary statistics from the International 
Genomics of Alzheimer’s Project (IGAP) [22]. In total, 
7,055,881 single nucleotide polymorphisms (SNPs) of 
17,008 Alzheimer’s disease cases and 37,154 controls 
were included in their stage 1 GWAS analysis. In stage 
2, 11,632 SNPs with p ≤ 10−6 were genotyped and tested 
for association in an independent set of 8,572 Alzhei-
mer’s disease cases and 11,312 controls. Finally, a meta-
analysis was performed combining results from stages 
1 & 2 [23]. SNPs with meta analysis p ≤ 5× 10−3 were 
extracted and their corresponding genes (N=946) were 
used for the subsequent differential expression and dif-
ferential co-expression analysis.

Differential expression analysis
Using the gene expression data in AD-related and non 
AD-related DMN ROIs , we performed the traditional 
differential expression analysis using Limma package in 
R [24]. All the p-values were further adjusted using FDR 
method to correct for multiple comparison and the sig-
nificance threshold was set at 0.05.

Differential co‑expression analysis
We applied a new biclustering method to identify sub-
groups of genes among the 946 genes that show differen-
tial correlation patterns between the two conditions, i.e., 
AD-related and non AD-related DMN ROIs. Specifically, 
we first estimated a differential correlation matrix for the 
946 genes between the two conditions, which is assumed 
to be a sparse matrix. We then applied a binary matrix 
factorization method to identify subgroups of genes that 
consistently shown non-zero differential correlations 
with each other.

We consider a data-driven adaptive thresholding 
method for the estimation of the differential correlation 
matrix proposed in [25]. Let X(t) = (X

(t)
1
, ...,X

(t)
p )T  be a 

p-variate random vector with mean µt , covariance 
matrix �t =

(
σijt

)
1≤i,j≤p
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Rt =

(
rijt

)
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 , for t=1,2. Suppose we observe n1 i.i.d. 
random samples {X (1)

1
, ...,X (1)

n1
} from X (1) and n2 i.i.d 

samples random samples {X (2)
1
, ...,X (2)

n2
} from X (2) , and 

the two samples are independent. The goal is to esti-
mate the differential correlation matrix D = R1 − R2 , 
under the assumption that D is sparse. However, nei-
ther of R1 , R2 is known, and what we observe are the 
sample correlation matrices denoted as R̂t , t = 1, 2 , and 
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the sample differential correlation matrix denoted as 
D̂ = R̂1 − R̂2 , Here R̂t is calculated from the random 
samples of X (t) . A key challenge to the construction of 
D from D̂ is the estimation of the noise levels of the 
individual entries in D̂ , as these entries are random var-
iables themselves. A data-driven approach based on 
cross validation is used to individually threshold the 
entries of D̂ with the threshold adaptive to the noise 
level of each entry. Basically, without loss of generality, 
we break down the samples in each condition into five 
folds respectively, four folds for calculating the training 
differential correlation matrix denoted D̂0 and one fold 
for calculating the testing differential correlation matrix 
denoted D̂1 . For any threshold parameter τ , we calcu-
late the thresholded matrix of D̂0 denoted as D̃0 as 
D̃0 = D̂0 ∗

(∣∣∣D̂0

∣∣∣ > τ

)
 . This means that all entries in D̃0 

less than τ will be thresholded to 0. And the generaliza-
tion loss associated with τ will be defined as ∥∥∥D̃0 − D̂1

∥∥∥
F

 , where � · �F  denotes the Frobenius norm. 
We calculate such generalization loss for a grid of τ , 
and we repeat for 100 times for each τ to select the 
most optimal τ with the smallest generalization loss. 
Denote the thresholded sample differential correlation 
matrix with the most optimal threshold parameter as 
D̃ , it will then be used as an estimate for the sparse 
matrix D.

On the estimated differential correlation matrix D̃ , 
we look for those groups of genes such that within the 
same subgroup, genes show consistently non-zero dif-
ferential correlations with each other between the two 
conditions. This is equivalent to look for submatrix of 
non-zero entries in the D̃ matrix. We will apply our 
in-house binary matrix factorization algorithm, called 
MEBF, to look for such submatrix in the dichotomized 
D̃ [26]. Basically, MEBF iteratively looks for submatri-
ces in a binary matrix that is dense in 1.

Results
Differential expression
Differential expression analysis yielded 1247 genes with p 
value less than 0.05. After multiple correction using FDR, 
only 3 genes were left including VWA3A, TMEM18 and 
ZNF845. VWA3A has been previously found associated 
with progressive supranuclear palsy (PSP), a degenera-
tive neurological disorder that causes progressive impair-
ment of balance and walking [27]. DNA methylation level 
of TMEM18 was significantly correlated to the burden of 
neuritic amyloid plaques (NP), a key quantitative meas-
ure of Alzheimer’s disease neuropathology [28]. ZNF845 
is located within a gene network module that is up-regu-
lated in the cerebellum region of AD brains [29, 30].

Differential co‑expression analysis
Differential co-expression analysis using biclustering 
method led to a subset of 38 genes which showed dis-
tinctive co-expression patterns between AD-related and 
non AD-related DMN ROIs (Fig.  1). More specifically, 
we observed 4 sub-clusters with noticeable co-expression 
difference, where the difference in correlations is above 
0.5 on average. Overall, sub-clusters 1 and 4 have higher 
co-expression pattern in AD-related ROIs, and sub-clus-
ters 2 and 3 have higher co-expression pattern in the non 
AD-related regions. Interestingly, these sub-clusters are 
all between two sets of genes without any overlap, which 
is very likely due to the alteration of upstream regulators.

Pathways enrichment analysis
For 38 genes identified with differential co-expression 
patterns, we further performed pathway enrichment 
analysis to investigate potential system level perturba-
tions. Enrichment analysis was performed using Reac-
tome webserver (https://​react​ome.​org/) based on 
pathways in REACTOME database [31]. After FDR 
correction, 21 pathways were found to be significantly 
enriched by our gene set with adjusted p-value p ≤ 0.05 
(Fig. 2). Among those, top hits are mostly signaling path-
ways related to ERBB4, ERBB2 and PTK6. ERBB4 are 
found highly enriched in neuronal plaques of AD patients 
and therefore is speculated to play a role in the pathol-
ogy of Alzheimer’s disease (AD) [32, 33]. Similarly, sig-
nificantly high level of ERBB2 was confirmed in the 
hippocampus of human AD brains. As oncogenic recep-
tor tyrosine kinase, ERBB2 was identified to have a criti-
cal function in its monomeric form and increased levels 
of ERBB2 in the hippocampus was suggested as a poten-
tial diagnostic marker of sporadic AD [34]. Signaling by 
PTK6 is activated downstream of ERBB2, and thus is no 
surprise to be identified. Another pathway that made the 
top hits is Long-term potentiation (LTP), whose mecha-
nism is affected by the amyloid-β fragments, one of the 
two hallmarks of AD [35]. It is a rapid and persistent 
increase in synaptic transmission and AD-diseased syn-
apses are found intrinsically defective in LTP [36].

Functional interactions with AD genes
We further performed gene set enrichment analysis in 
ReactomeFI ( a Cytoscape plugin) to examine the rela-
tionship between 38 differentially co-expressed genes 
and known AD genes identified from large-scale GWAS 
[23]. In total, 15 AD genes were included, i.e., APOE, 
TOMM40, CR1, DSG2, CD33, CLU, CELF, BIN1, RIN3, 
PICALM, EPHA1, INPP5D, MEF2C, HLA-DRB5, and 
HLA-DRB1. Linker genes were used in case that two 
set of genes are not directly connected. As shown in 

https://reactome.org/
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Fig. 3a, 23 out of 38 genes were found to interact with 
others; the rest 15 genes do not connect with any other 
genes and thus are not shown in the network. It is 
observed that most differentially co-expressed genes 
are located downstream in the network, without direct 
interactions between them. This adds weights to our 
earlier speculation that difference in co-expression 
observed between two set of genes are likely due to the 
alteration of upstream regulators. Inside the network, 

we found 2 differentially co-expressed genes with 
high degree, PPARG1A and ERBB4. While ERBB4 has 
been previously discussed, PPARGC1A helps decrease 
the generation of A β and its levels are reduced in AD 
brains [37]. With all genes considered, top hub genes 
include EP300, PRKC1, CREB1, BIN1 and CBL. Same 
gene set analysis was also performed for genes within 
each sub-cluster (Fig.  3b–e) and similar patterns were 
observed for all of them.

Fig. 1  Heatmap showing difference in co-expression between a subset of genes identified from biclustering mthod
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Fig. 2  Pathways enriched by 38 differentially co-expressed genes ranked by - log10(p) . Shown on the right of each bar is FDR corrected p-value

Fig. 3  Functional interaction network between differentially co-expressed genes and AD genes. Green nodes: linker genes, Blue nodes: AD genes, 
Yellow nodes: differentially co-expressed genes identified from bilcustering. a functional interaction network generated using all differentially 
co-expressed genes, b–f functional interaction networks generated using differentially co-expressed genes from each sub-cluster
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Discussion
Most of our findings are downstream genes without 
direct interaction, which is likely due to that our tar-
geted differential co-expression missed some important 
upstream genes. Therefore, we mapped all the genes in 
the subnetwork Fig. 3a to our complete brain expression 
data and further examined the differential co-expression 
patterns between gene pairs in the network. Out of 66 
genes in the network, 50 of them were found to have 
expression level information in the processed AHBA 
data, where 16 of them were not examined in our targeted 
analysis. For all 54 gene pairs with available expression 
data, we re-evaluated their difference in co-expression by 
comparing the Pearson’s correlation between AD-related 
and non AD-related DMN ROIs. Shown in Fig. 4 is the 

differential co-expression mapped to the subnetwork in 
Fig. 3a. For those 54 gene pairs, edge thickness was made 
proportional to the difference in co-expression. The rest 
of edges were marked as gray due to the lack of expres-
sion data in either or both connected genes. As expected, 
we observed differential co-expression patterns in some 
upstream genes, which has not been previously included 
in our biclustering analysis. Particularly, genes PRKCA, 
FOS, SP1, PICALM and CLTA were found as top hubs 
with altered co-expression with several other genes in 
AD-related DMN ROIs. While PICALM is already a 
AD gene, other hub genes are also known to be closely 
related to AD. The one with most links as differentially 
co-expressed is PRKCA gene, which has been previously 
associated with an altered amyloid precursor protein 

Fig. 4  Re-evaluated difference in co-expression for all gene pairs in functional interaction network Fig. 3a. Green nodes: linker genes, Blue nodes: 
AD genes, Yellow nodes: differentially co-expressed genes identified from bilcustering. Gray edges are the gene pairs with missing expression data. 
Red color edges are genes pairs with expression data and their thickness are proportional to difference in co-expression
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(APP) secretion in fibroblasts in AD patients [38]. Three 
variants in PRKCA has been linked with increased cata-
lytic activity displayed in late onset AD [39]. Another hub 
gene with many differentially co-expressed links is CLTA, 
which encodes for protein Clathrin light chain A - a 
potential regulator of synaptic vesicle formation. A recent 
co-expression analysis suggested a potential role of CLTA 
in maintaining the homeostasis of the metastable subpro-
teome associated with Alzheimer’s disease [40]. SP1 gene 
is a regulator which mediates the expression of several 
AD-related proteins, including amyloid precursor protein 
(APP) and tau [41].

Conclusion
Leveraging the brain-wide gene expression data, we 
applied a new biclustering method to search for a sub-
set of genes with altered co-expression patterns in AD-
related default mode network regions. Compared with 
traditional differential expression analysis, differential 
co-expression analysis yielded many more significant hits 
with extra insights into the wiring mechanism between 
genes. Particularly, the differential co-expression pat-
tern was observed between two sets of genes, suggesting 
some potential upstream regulators. This hypothesis was 
further supported by our findings that these genes were 
mostly located downstream of AD genes or other linker 
genes when mapped to functional interaction network. 
Considering that biclustering analysis was only applied to 
a set of targeted genes, we re-evaluated the difference of 
co-expression for all gene pairs in the enriched functional 
network. As expected, we observed some upstream hubs 
including PICALM, PRKCA and CLTA with altered co-
expression with several other genes. All of these genes 
and enriched pathways are related to synaptic transmis-
sion and synapse formation, which suggests their poten-
tial role in mediating the alterations of resting state 
functional connectivity in AD brains.
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