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Predictive Value of Delta-Radiomics
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Garrett Simpson, William Jin, Benjamin Spieler , Lorraine Portelance, Eric Mellon,
Deukwoo Kwon, John C. Ford and Nesrin Dogan*

Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL, United States

Purpose: The purpose of this work is to explore delta-radiomics texture features for
predicting response using setup images of pancreatic cancer patients treated with
magnetic resonance image guided (MRI-guided) stereotactic ablative radiotherapy (SBRT).

Methods: The total biological effective dose (BED) was calculated for 30 patients treated
with MRI-guided SBRT that delivered physical doses of 30–60 Gy in three to five fractions.
Texture features were then binned into groups based upon BED per fraction by dividing
BED by the number of fractions. Delta-radiomics texture features were calculated after
delivery of 20 Gy BED (BED20 features) and 40 Gy BED (BED40 features). A random
forest (RF) model was constructed using BED20 and then BED40 features to predict
binary outcome. During model training, the Gini Index, a measure of a variable’s
importance for accurate prediction, was calculated for all features, and the two features
that ranked the highest were selected for internal validation. The two features selected
from each bin were used in a bootstrapped logistic regression model to predict response
and performance quantified using the area under the receiver operating characteristic
curve (AUC). This process was an internal validation analysis.

Results: After RF model training, the Gini Index was highest for gray-level co-occurrence
matrix-based (GLCM) sum average, and neighborhood gray tone difference matrix-based
(NGTDM) busyness for BED20 features and gray-level size zone matrix-based (GLSZM)
large zones low gray-level emphasis and gray-level run length matrix-based (GLRLM) run
percentage was selected from the BED40-based features. The mean AUC obtained using
the two BED20 features was AUC = 0.845with the 2.5 percentile and 97.5 percentile values
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ranging from 0.794 to 0.856. Internal validation of the BED40 delta-radiomics features
resulted in a mean AUC = 0.567 with a 2.5 and 97.5 percentile range of 0.502–0.675.

Conclusion: Early changes in treatment quantified with the BED20 delta-radiomics
texture features in low field images acquired during MRI-guided SBRT demonstrated
better performance in internal validation than features calculated later in treatment. Further
analysis of delta-radiomics texture analysis in low field MRI is warranted.
Keywords: delta-radiomics, texture analysis, pancreas cancer, MRI, low field (0.35 T)
INTRODUCTION

Radiomic analysis is the extraction of quantitative image descriptors
from radiographic images. Radiomic texture features quantify image
gray-level spatial relationships that are hypothesized to represent a
tumor’s underlying microenvironment (1). Tumor heterogeneity
presents a major obstacle for personalized medicine and effective
treatment, and quantification of the heterogeneity could provide
valuable insight (2, 3). Utilization of radiomic features is attractive,
as it can provide a non-invasive patient-specific biomarker based
on routinely acquired images (4–6). Interest in radiomic
texture features intensifies, as they are found to have utility in
predictive modeling, support clinical decision-making, and
are linked with phenotypic and genetic profiles of various
cancers (7–9).

Application of radiomic analysis in pancreatic cancer patients
is of particular interest due to the poor treatment outcomes. The
incidence of pancreatic cancer continues to increase with a low 5-
year overall survival of approximately 9% and is predicted to be
one of the top 5 contributors of cancer deaths among men and
women in the United States in 2021 (10). Surgery offers patients
with pancreatic ductal adenocarcinoma (PDAC) the best chance
of long-term survival, but only a minority of patients, 15%–20%,
qualify for resection (11). Patients diagnosed as having
borderline resectable or unresectable disease generally receive
upfront chemotherapy (nCRT) followed by stereotactic body
radiation therapy (SBRT) (12–14). This regime can induce
changes in the gross disease and allow patients to qualify for
surgery. Furthermore, SBRT has improved complete
pathological response rates from 2.5% to 7.8% (15). Real-time
disease monitoring via radiomic analysis may provide valuable
personalized information that could lead to beneficial adaptation
of the patient care path and improved outcome.

The requirement and desire for better visualization of tumor
target and organs at risk locations in patient populations like
PDAC patients during therapy have driven the development of
new image guidance technology. Magnetic resonance imaging
(MRI)-guided radiotherapy units provide an ideal platform for
treatment of pancreas SBRT patients because of the ability to
acquire high-quality images. MR images have improved soft
tissue contrast compared to traditional X-ray guidance
modalities and allow for safe dose escalation and avoidance of
critical organs in proximity to the target. The daily MRIs
acquired prior to each treatment are a by-product of the
patient care path but may contain valuable information about
2

patient disease over the course of treatment. These daily images
provide an opportunity for constructing models predictive of
treatment response for PDAC patients using radiomic analysis.
A previous work has indicated that the low field strength MR
images provide an adequate base for texture analysis (16).
Furthermore, a longitudinal image series may bring the
opportunity to monitor tumor microenvironment changes
during treatment.

Using the average radiomic feature value throughout the
treatment demonstrated possible prognostic utility, but
consideration of the time that a prediction is made is
important (17). A prediction made too late in the treatment is
not ideal because the knowledge provided is unlikely to positively
impact a patient’s care. Interest and application of radiomic
texture features has shifted towards delta-radiomics, which
considers changes in radiomic feature values in response
during treatment. Delta-radiomics may provide valuable
patient-specific outcome prediction with multiple fractions
remaining. Indication of disease response prior to the end of
radiotherapy treatment could provide valuable information for
physicians to consider options for the remainder of the
treatment. A limited number of studies have explored delta-
radiomic analysis on diagnostic images acquired prior,
periodically during, or after treatment (18–21). Nasief et al.
used delta-radiomics texture features calculated as the change
relative to pre-fraction values extracted from CT images of
pancreatic cancer patients to predict treatment outcome (22).
High-contrast diagnostic images with better resolution are
generally considered ideal for radiomics analysis; however, the
limited number of images could limit exploration of delta-
radiomics. The increased reliance on imaging in radiation
oncology is producing longitudinal image series. The indication
of prognostic performance of delta-radiomics features extracted
from cone beam computed tomography images was encouraging
and has led to further interest in using setup images from other
modalities (23). MRI-guided units produce daily setup images for
each patient with previous work from our group, indicating that
these images may provide a basis for radiomics analysis (24).
Radiomics analysis of low field MRIs has gained popularity, but
delta-radiomics analysis of images in SBRT for response
prediction in PDAC patients is still evolving. The purpose of
this study is to use low field strength MR images acquired prior to
each daily treatment of PDAC patients treated with MRI-guided
SBRT to evaluate the feasibility of using delta-radiomic features
for predicting patient response.
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MATERIALS AND METHODS

Patient Database
To qualify, patients should have biopsy-confirmed PDAC,
including locally advanced or borderline resectable disease.
Addit ional ly , each pat ient should have completed
chemotherapy prior to MR-guided SBRT. Patients’ individual
treatment schedules were used to group fractions with similar
amounts of delivered dose together. The total biological effective
dose (BED) was calculated for each patient using an alpha/beta
ratio = 10 (25). Patients were treated with three to five fractions
(1–2 weeks), with a total BED ranging from 54.8 to 132 Gy with a
median of 100 Gy (physical dose ranging from 30 to 60 Gy and a
median of 50 Gy). Treatments were planned and adapted as
needed using an isotoxic approach to escalate the dose to the
target until organs at risk dose constraints neared their
maximums (26).

Patient treatment response was based upon post-surgery
pathology or post-treatment imaging studies. Treatment
response for patients who had undergone curative-intent
resection following SBRT utilized tumor response grading with
the College of American Pathologists (TRG-CAP). Response for
patients with imaging studies was determined according to
modified response evaluation criteria in solid tumors
(mRECIST 1.1) (27, 28). A previously used binary response
classification scheme was used to assign each patient to the
responder (RS) or non-responder (NR) category (17). Response
for patients able to undergo resection was determined using
TRG-CAP. TRG-CAP scores ≤2 were considered responders and
a score = 3 as NR. For patients who did not qualify for curative
resection, follow-up imaging using mRECIST 1.1 criteria was
utilized and was determined using dynamic CT, MRI, or PET
images acquired within 1–3 months after SBRT.

Daily Setup Images and
Volume Delineation
Daily images were acquired on the 0.35-T split-bore MRI-guided
radiation treatment unit prior to each daily treatment (MRIdian,
ViewRay Inc., Cleveland, OH). Images utilized for this work were
acquired using the clinical pulse sequence. The sequence is a true
fast imaging with balanced steady-state free procession pulse
sequence (bSSFP). bSSFP is a popular choice for MR-guided RT
systems because of the short acquisition time needed for
volumetric image acquisitions, high signal contrast in soft tissue,
insensitivity to motion, and minimal spatial integrity perturbation.
The images contained a blend of T1- and T2-weighted visual
Frontiers in Oncology | www.frontiersin.org 3
characteristics (29). Clinical setup images were acquired with
1.5 × 1.5 × 3.0 mm3 voxel dimensions. Three variations of the
clinical bSSFP sequence were included and can be seen in
Table 1. The inclusion of multiple variations of the same pulse
sequence was deemed acceptable because of identical acquisition
times, identical voxel sizes, identical flip angles, and similar
repetition time (TR) and echo time (TE) (30). Any difference in
parameters should have a minimal impact on feature value.
Images of patients with arms above their heads were acquired
using an MR-compatible board and surface coil. After patients
finished treatment, the images were exported to MIM Maestro
v6.5.5 (MIM, Software, Cleveland, OH) for contouring. The gross
tumor volume (GTV) was contoured on each daily setup image by
a radiation oncologist with expertise in PDAC.

Radiomic Texture Feature Extraction
After contouring, the GTVs were exported from MIM to be
processed in MATLAB 2020b (The MathWorks, Inc., Natick,
MA). Prior to radiomic texture feature calculation, the intensity
range of each GTV was normalized by limiting the dynamic
range using the methods of Collewet et al., the “± 3s” method
(S4) (31). The GTVs were then quantized to 64 gray levels with
the histogram equalization method using a combination of in-
house programs and publicly available codes (24, 32). Radiomic
texture features belonging to gray-level co-occurrence matrix-
based (GLCM, IBSI aggregation code IAZD), gray-level size zone
matrix-based (GLSZM, IBSI aggregation code KOBO), gray-level
run length matrix-based (GLRLM, IBSI aggregation code IAZD),
and neighborhood gray tone difference matrix-based (NGTDM,
IBSI aggregation code KOBO) were calculated from each daily
setup image (33–39). Details regarding aggregation codes and
feature names for the 39 radiomic texture features are displayed
in Table 2. Five radiomic features were modified in accordance
with that of Fave et al. to remove some intrinsic volume
dependence (40).

All radiomic texture features were calculated via the 3-D
definitions using the 26-nearest neighbor voxels. GLCM-based
features were calculated using a voxel displacement of one. The
GLCM is populated by calculating the probability of gray-level
intensities occurring together within a given region. While the
GLCM records two voxel intensities, GLSZM and GLRLM
record connected isotone zones and regions, respectively.
Coordinates in the GLSZM correspond to the probability of a
zone of a gray level of a size occurring with the region of interest.
Similarly, the GLRLM encodes the probability of a gray level
occurring in a connected run of a certain size. The NGTDM
TABLE 1 | The three versions of the bSSFP pulse sequence employed by the MR system for alignment of patients prior to radiotherapy delivery.

Acquisition Parameter Image Pulse Sequences

Clinical A Clinical B Clinical C

TR/TE (ms) 3.00/1.27 3.33/1.43 3.36/1.44
Bandwidth (Hz/pixel) 604 537 534
Field of view (mm) 540 × 465 × 432 400 × 400 × 432 350 × 350 × 432
Matrix size 360 × 360 × 144 266 × 266 × 144 234 × 234 × 144
April 2022 | Volume 12
All pulse sequences have identical flip angles and voxel dimensions.
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records the average difference between each gray level and the
voxels surrounding it. Each radiomic texture feature sums over
the probabilities within the class matrix. The result is a single
descriptive number for each feature emphasizing different
characteristics of gray-level intensity relationships within
the image.
Frontiers in Oncology | www.frontiersin.org 4
Two sets of delta-radiomics texture features were calculated
for each patient using the BED/fraction to group features
calculated from different time points into similar delivered
dose regions. The total BED was divided by the number of
fractions and serves to represent features as a function of time
and of dose. Delta-radiomics features were calculated by taking
the difference in feature values between pre-radiation images
(fraction 1 setup images) and then after a certain amount of dose
was delivered. Specifically, for this patient cohort, the following
dose bins of 20 and 40 Gy were used and named BED20 and
BED40, respectively. BED20 features were calculated after the
delivery of 20–30 Gy and BED40 features after 40 Gy.

Radiomic Texture Feature Selection
and Analysis
A supervised machine learning approach, random forest (RF),
was used to explore the data and select potentially predictive
features using a two-step process (41). RF is an ensemble method
that creates many weaker learners called decision trees by
splitting the training data and combining many decision trees
into a forest. Combining the weak learners allows the model to
overcome variability in the data and is considered a strong
learner (42). The first step of the process was to select
potentially prognostic values using the Gini Index that
quantifies how important each feature is for accurate
predictions during RF model training (43). An RF model was
trained using BED20 or BED40 delta-radiomics texture features
to predict binary patient outcome. The Gini Index, a measure of
variable importance for predictive accuracy, was obtained during
model training by calculating the out-of-bag error using
bootstrapped datasets from building 500 trees (weak learners)
in R (R Foundation for Statistical Computing, Vienna, Austria)
(42). The top 2 ranking features were evaluated using an internal
validation approach to avoid overfitting due to the limited
sample size of patients. A bootstrapped logistic regression
model was used to evaluate the pre-selected delta-radiomic
features by bootstrapping the data 1,000 times and selecting
two-thirds (20 patients at a time) to construct the logistic
regression. The resulting model was used to predict the
outcome for all patients and to calculate area under the
receiver operating characteristic curve (AUC) for each
iteration. The numbers reported are internal validation AUCs
based upon the 2.5 and 97.5 percentile values, and the mean
value of the 1,000 iterations.
RESULTS

Patient Database
A total of 30 patients were included for analysis. The RS
group consisted of 11 patients with complete or partial
responses. The patients with progressive and stable diseases
were included in the NR group and totaled 19. Table 3
displays each patient’s response along with the total BED and
delivered BED/fraction.
TABLE 2 | Second-order radiomic texture features serving as the basis for the
delta-radiomics texture features.

Matrix encoding class (IBSI/aggrega-
tion code)

Radiomic texture feature (IBSI
code)

GLCM (LFYI/IAZD) Contrast (ACUI)
Dissimilarity (8S9J)
Homogeneity (IB1Z)
Correlation (NI2N)
Energy (8ZQL)*
Variance (UR99)
Entropy (TU9B)
Sum average (ZGXS)

GLRLM (TPOI/IAZD) Short run emphasis (220V)
Long run emphasis (W4KF)
Gray-level non-uniformity (R5YN)*
Run length non-uniformity (W92Y)*
Run percentage (9ZK5)
Low gray-level run emphasis (V3SW)
High gray-level run emphasis (G3QZ)
Short run low gray-level emphasis
(HTZT)
Short run high gray-level emphasis
(GD3A)
Long run low gray-level emphasis
(IVPO)
Long run high gray-level emphasis
(3KUM)
Gray-level variance (8CE5)
Run length variance (8CE5)

GLSZM (9SAK/KOBO) Small zone emphasis (5QRC)
Large zone emphasis (48P8)
Gray-level non-uniformity (JNSA)
Zone-size non-uniformity (4JP3)
Zone percentage (P30P)
Low gray-level zone emphasis
(XMSY)
High gray-level zone emphasis
(5GN9)
Small zone low gray-level emphasis
(5RAI)
Small zone high gray-level emphasis
(HW1V)
Large zone low gray-level emphasis
(YH51)
Large zone high gray-level emphasis
(J17V)
Gray-level variance (BYLV)
Zone-size variance (BYLV)

NGTDM (IPET/KOBO) Coarseness (QCDE)*
Contrast (65HE)
Busyness (NQ30)*
Complexity (HDEZ)
Strength (1X9X)
GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; GLSZM,
gray-level size zone matrix; NGTDM, neighborhood gray tone difference matrix; IBSI, is the
Image Biomarker Standardization Initiative. Features marked with * were IBSI features
modified to decrease volume independence (39).
April 2022 | Volume 12 | Article 807725
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Feature Selection and Analysis
The delta-radiomics texture features selected by each model as
important for prediction during model training can be seen in
Figure 1. Based on the Gini Index, GLCM sum average and
NGTDM busyness were selected for further analysis during RF
model training for BED20-based delta-radiomics texture
features, as seen in the top half of Figure 1. The higher the
value of the Gini Index is, the more important the feature is for
model predictive accuracy. The other features included were
ranked lower based on the Gini Index, indicating less predictive
importance. For the BED40 delta-radiomics texture features
(bottom of Figure 1), GLSZM large zones low gray-level
emphasis and GLRLM run percentage were selected as most
important for model prediction accuracy. The Gini Index values
for the top 6 features were ranked closer to each other than the
BED20-based features. The results of the bootstrapped logistic
regression modeling using the respective features are displayed in
Table 4. Delta-radiomics features extracted early in treatment,
BED20-based features, achieved higher AUCs than the BED40
features. The mean internal validation AUC obtained during the
bootstrapped logistic regression using the BED20 features with
the percentile range from 2.5% to 97.5% was AUC = 0.845
[0.794–0.856]. The mean AUC for the BED40 delta-radiomics
was AUC = 0.567 [0.502–0.675].
Frontiers in Oncology | www.frontiersin.org 5
The ROCs calculated during the logistic regression analysis and
the RF model ROC estimates are displayed in Figure 2. The values
of the top 2 BED20 delta-radiomics texture features are displayed
in Figure 3, with the Y-axis as the mean radiomic texture feature
values and the X-axis containing the bin for delivered dose that the
feature values were assigned to for RS and NR patients for the two
most predictive delta-radiomic texture features selected at the
BED20 timepoint. The features are graphed as the percent change
from pre-RT values for each feature and group of patients. The RS
group generally had small increases in GLCM sum average values
(negative percent change from pre-RT values) from pre-radiation
features to BED20, then values return to near pre-treatment levels
by the BED40 timepoint. Most of the NR group features decreased
at BED20 (positive percent change) and returned to approximately
pre-radiation levels also. NGTDM busyness increased from pre-
radiation values to BED20 for both RS and NR. While the RS
group’s features had little change between BED20 and BED40, the
NR group’s features continued to increase in the same period.
DISCUSSION

Delta-radiomics using patient setup imaging was initially explored
by Fave et al. using CBCT images of lung patients (23).
TABLE 3 | Characteristics of patients included for delta-radiomics texture analysis.

Patient Number Response Total BED BED/Fx BED20 BED40

1 RS 72 14.4 Fx1–Fx3 Fx1–Fx4
2 NR 59.5 11.9 Fx1–Fx3 Fx1–Fx5
3 NR 72 14.4 Fx1–Fx3 Fx1–Fx4
4 NR 100 20 Fx1–Fx2 Fx1–Fx3
5 NR 59.5 11.9 Fx1–Fx3 Fx1–Fx5
6 RS 54.8 11.0 Fx1–Fx3 Fx1–Fx5
7 RS 72 14.4 Fx1–Fx3 Fx1–Fx4
8 NR 72 14.4 Fx1–Fx3 Fx1–Fx4
9 NR 72 14.4 Fx1–Fx3 Fx1–Fx4
10 RS 59.5 11.9 Fx1 - Fx3 Fx1–Fx5
11 NR 100 20.0 Fx1–Fx2 Fx1–Fx3
12 NR 100 20.0 Fx1–Fx2 Fx1–Fx3
13 RS 100 20.0 Fx1–Fx2 Fx1–Fx3
14 RS 132 26.4 Fx1–Fx2 Fx1–Fx3
15 RS 100 20.0 Fx1–Fx2 Fx1–Fx3
16 RS 100 20.0 Fx1–Fx2 Fx1–Fx3
17 NR 100 20.0 Fx1–Fx2 Fx1–Fx3
18 RS 61.5 12.3 Fx1–Fx3 Fx1–Fx5
19 RS 100 20.0 Fx1–Fx2 Fx1–Fx3
20 RS 100 20.0 Fx1–Fx2 Fx1–Fx3
21 NR 100 20.0 Fx1–Fx2 Fx1–Fx3
22 NR 100 20.0 Fx1–Fx2 Fx1–Fx3
23 NR 100 20.0 Fx1–Fx2 Fx1–Fx3
24 NR 100 20.0 Fx1–Fx2 Fx1–Fx3
25 NR 100 20.0 Fx1–Fx2 Fx1–Fx3
26 NR 100 20.0 Fx1–Fx2 Fx1–Fx3
27 NR 100 20.0 Fx1–Fx2 Fx1–Fx3
28 NR 100 20.0 Fx1–Fx2 Fx1–Fx3
29 NR 100 20.0 Fx1–Fx2 Fx1–Fx3
30 NR 72 14.4 Fx1–Fx3 Fx1–Fx4
Ap
ril 2022 | Volume 12 | Article
The second column contains the binary response classification for each patient, the third column is the total BED for the entire treatment, and the column “BED/Fx” is the total BED divided
equally between the number of fractions (in Gy). The final two columns contain the fractions used to calculate the difference corresponding to the binning scheme for delivered dose for each
type of delta-radiomics texture features.
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The concept of monitoring changes in disease via radiomic texture
features induced by treatment is beginning to take hold with the
increased reliance of imaging in radiation oncology. Jeon et al.
calculated delta-radiomics texture features from T2-weighted
diagnostic MR images acquired before and after preoperative
chemoradiotherapy in locally advanced rectal cancer patients
(18). The region of interest was a dynamic range limited using
the Collewet method and quantized to 64 intensity levels, as in this
work. The study investigated the predictive ability with local
recurrence, distant metastasis, and disease-free survival as
endpoints. They selected a least absolute shrinkage and selection
operator (LASSO) model to preselect delta-radiomics texture
features and used a Cox regression analysis to determine the
prognostic ability of the features. Delta-radiomic features were
Frontiers in Oncology | www.frontiersin.org 6
predictive of all study outcomes. Interestingly, GLCM sum average
and GLSZM large zone low gray-level emphasis were selected in
their study as predictive. Only second order texture features were
included for this work for a few reasons. The number of features
was limited to keep the feature space small for the limited sample
size of patients. The texture features included have been a
mainstay in radiomics texture analysis studies, since their
introduction and previous work conducted by the authors
included repeatability analysis of the same features included in
this work (24). Lastly, as the feature space begins to include higher
order texture features, the interpretability of such features can
become very difficult.

Fave’s work exposed the possibility of extracting predictive
information from low-quality setup images and set the stage for
applications in low field strength daily patient setup MR images.
Boldrini et al. used 0.35-T setup images of rectal cancer patients
acquired at fractions 1, 5, 10, 15, 20, and 25 to predict complete
clinical response (16). Delta-radiomics features were defined as
the ratio between pre-RT (fraction 1 setup image) subsequent
time points. The most predictive timepoint was after the delivery
of 22 Gy (physical dose). GLCM energy, GLRLM gray-level
nonuniformity, and least axis length were selected as predictive
of complete clinical response. Although only 16 patients were
included, the selection of GLCM energy as one of the best
radiomic predictors is encouraging.

Nasief et al. used CT-based delta-radiomics texture features
extracted from pancreatic cancer patients treated with 28
fractions of CT-guided chemoradiation therapy to predict
pathological response (22). Delta-radiomics texture features
were calculated using the relative change in feature values from
fraction 1 to each subsequent fraction. Comparisons of the
current study and Nasief et al. should be minimized due to the
differences in imaging modalities and fractionation, but Nasief
et al. were able to achieve an AUC = 0.94 that is very encouraging
of the performance of delta-radiomics texture features. A recent
study by Cusumano et al. used 35 pancreatic cancer patients and
considered radiomic texture features extracted from time points
defined by delivered BEDs of 20, 40, and 60 Gy to predict local
control following MR-guided RT (44). The patient library used
for their work included patients treated with 5 fractions (17
patients) and 15 fractions (18 patients), and the use of BED was
used to group patients to similar points in treatment. In our
current study, the BED was used to group changes in features
with delivered BED. Cusumano et al. extracted a total of 60
radiomic texture features that adhered to IBSI feature definitions.
One feature calculated at the BED 40 Gy time point was
predictive of local control at 1 year, with AUC = 0.78 and with
95% confidence interval of 0.61–0.94 but did not overlap with the
features selected in this study. The large confidence interval
could easily be attributed to the heterogeneity of fractionation of
the patient population, and it is possible that different features
could be prognostic at different points in time for different study
endpoints. The pancreatic patients in this current work are all
treated with SBRT, while Cusumano et al. used hypo-
fractionated and SBRT patients. The results of this work
suggested that changes induced from a baseline pre-RT value
TABLE 4 | The left column contains row labels for the BED20 (middle column)
and the BED40 (right column) for relevant radiomic texture features selected by
the Gini Index and their internal validation AUCs obtained from bootstrapped
logistic regression analysis.

Delta-radiomics feature
type:

BED20 BED40

Feature 1 GLCM sum average Low gray-level run
emphasis

Feature 2 Large zones low gray level-
emphasis

Run percentage

Mean AUC 0.845 0.567
2.5% AUC value 0.794 0.502
97.5% AUC value 0.856 0.675
FIGURE 1 | Plots of the mean decrease in the Gini Index used to select the
two most important deltaradiomics texture features after training the RF to
predict binary outcome. The top plot consists of the BED20-based radiomics
texture features and the bottom contains the BED40-based features.
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early in SBRT may have clinical utility. With both studies, the
way response has been defined is likely an oversimplification of
response, and the underlying biology and the accuracy of delta-
radiomics feature analysis could be suppressed.

There are a few shortcomings of this study. Besides possibly
oversimplifying response, the use of mRECIST for response
determination is less than ideal, as it relies itself on imaging-
based evaluation. Expansion of the library to include more
patients with pathology-based responses could significantly
strengthen results, as the response for 10 patients was
determined with pathology (versus 20 using mRECIST) in this
work. The development and further validation of more specific
response evaluation methods, such as PET response criteria in
Frontiers in Oncology | www.frontiersin.org 7
solid tumors (PERCIST) and/or metabolic imaging, might help
increase certainty of classifying patients as RS and NR (45). The
relatively small sample size may not represent a fair sample of the
true patient population, and a larger patient cohort is being
pursued that will allow external validation. The use of the
internal validation AUC in this study served its purpose,
providing a common measuring stick to evaluate whether delta-
radiomics texture analysis is feasible and could contain predictive
utility. Although the behavior of the features in Figure 3 is easy to
see when graphed and analyzed, it is disconnected from any
underlying changes to the tumor microenvironment. In addition,
from Table 3, it is apparent that the time and range of dose
delivered between the pre-RT (fraction 1 setup scan) and BED40
FIGURE 3 | The values of the top two performing texture features in terms of internal validation AUC from the BED20 model. Y-axes are the percent change relative
to the pre-RT (0 Gy) values graphed at each point of 20 Gy and 40 Gy. The plots display the mean percent change in each feature value, the points, the ranges
represent the range of the standard error from the means.
FIGURE 2 | The black ROC curves represent the RF model estimates based on model training. The RF model AUC = 0.876 for BED20 and AUC = 0.601 for the
BED40 RF model. The gray curves represent the returned bootstrapped logistic regression produced using the top two features, with an average AUC = 0.845 for
BED20 and AUC = 0.567 for BED40-based features.
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point compared to the BED20 point is spread out. Without
correlation studies and larger patient cohorts, it is difficult to
understand that the underpinnings GLCM sum average and
NGTDM busyness are quantifying. This is a portion of research
that radiomics texture features must bridge prior to wide clinical
acceptance. The BED20 delta-radiomics texture features could be
capturing and quantifying an initial inflammatory mechanism, a
change in tumor signaling, or even just the altering of the physical
cellular structure after radiation damage. It is possible that by the
BED40 dataset’s acquisition, the delta-radiomics has become too
heterogenous to extract any predictive features in the small cohort
of 30 patients, or these mechanisms have simply stopped. Lastly,
but always prevalent in radiomic texture analysis studies,
variability in target volume contouring may impact results.
CONCLUSION

This work sought to explore the application and feasibility of
delta-radiomics texture analysis in low field strength daily MR
setup images. While it remains to be seen if the predictive power
of the delta-radiomic texture features selected and the method of
analysis utilized in this study will hold in a larger patient cohort,
the application of delta-radiomics should be further pursued. The
workflow developed in this study could be easily modified and
applied to larger data sets as a step in building clinical models and
applied to other clinical sites. Changes detected early in treatment
could provide valuable information with time left for physicians
to consider changes to the treatment regime, including further
dose escalation or alternative immunotherapies. Further
expansion of the patient library using more patients, external
validation, and exploration of a multi-institutional dataset for
building a model would appear to be justified.
Frontiers in Oncology | www.frontiersin.org 8
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