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Abstract

Motivation: Computational prediction of transcription factor (TF) binding sites in the genome re-

mains a challenging task. Here, we present Romulus, a novel computational method for identifying

individual TF binding sites from genome sequence information and cell-type–specific experimental

data, such as DNase-seq. It combines the strengths of previous approaches, and improves robust-

ness by reducing the number of free parameters in the model by an order of magnitude.

Results: We show that Romulus significantly outperforms existing methods across three sources

of DNase-seq data, by assessing the performance of these tools against ChIP-seq profiles. The dif-

ference was particularly significant when applied to binding site prediction for low-information-

content motifs. Our method is capable of inferring multiple binding modes for a single TF, which

differ in their DNase I cut profile. Finally, using the model learned by Romulus and ChIP-seq data,

we introduce Binding in Closed Chromatin (BCC) as a quantitative measure of TF pioneer factor ac-

tivity. Uniquely, our measure quantifies a defining feature of pioneer factors, namely their ability to

bind closed chromatin.

Availability and Implementation: Romulus is freely available as an R package at http://github.com/

ajank/Romulus.

Contact: ajank@mimuw.edu.pl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Eukaryotic transcription is an extremely complex process, controlled

by transcription factor (TF) binding to regulatory elements in multiple

locations in the genome. The traditional method of analyzing individ-

ual active regulatory elements in the genome involves the digestion by

DNase I and subsequent identification of regions where TFs are bound

to the DNA fragment and protect the DNA from degradation by the

enzyme. These protected sites, or TF footprints, can be identified on a

large scale by a more recent protocol, DNase I digestion followed by

high-throughput sequencing (DNase-seq) (Crawford et al., 2006).

CENTIPEDE (Pique-Regi et al., 2011) was the first algorithm

aimed at combining sequence information with chromatin state data

to identify the sites where a particular TF was bound in the genome.

This method relied on the presence of a DNA sequence motif at candi-

date binding sites. A logistic regression model allowed for multiple

types of prior information to be incorporated, e.g. Position Weight

Matrix (PWM) score, distance to the nearest Transcription Start Site

and sequence evolutionary conservation. The posterior component

consisted of a combination of negative binomial and multinomial pos-

itional models for each type of experimental data, such as DNase-seq

or histone modification ChIP-seq. Overall, the main strength of
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CENTIPEDE is the ability to identify binding sites for multiple TFs

from a single DNase-seq experiment.

MILLIPEDE (Luo and Hartemink, 2013), a method inspired by

CENTIPEDE, also aims at identifying TF binding sites, and also com-

bines DNase digestion data with TF binding specificity information,

but performs the analysis in a supervised manner. The supervised ap-

proach allows for the model to be explicitly trained to discriminate

bound and unbound sites, but requires to provide such a classification

as input. The method of MILLIPEDE is a simplification of the

CENTIPEDE approach. Instead of a comprehensive combination of

negative binomial and multinomial models to represent the positional

distribution of DNase I cuts, these cuts were grouped into several (e.g.

5 or 12) bins. The log-transformed DNase I cut counts within these

bins were incorporated in the logistic regression model, together with

all the prior information. Overall, the number of parameters in

MILLIPEDE is at least an order of magnitude smaller than in

CENTIPEDE. The authors showed that MILLIPEDE outperforms

CENTIPEDE marginally in human but dramatically in yeast. This

was attributed mostly to avoiding over-fitting of parameters by focus-

ing on a more coarse-grained set of features, capturing the large-scale

differences between the bound and unbound states. The selection of

optimal discriminative features is a hallmark of another similar

method, BinDNase (K€ah€ar€a and L€ahdesm€aki, 2015), which also fol-

lows the supervised approach and outperforms MILLIPEDE.

Wellington (Piper et al., 2013) is another recent algorithm to pre-

dict occupied TF binding sites from DNase-seq data. This algorithm

is based on a completely different approach, and does not require a

DNA sequence motif to identify the prior set of candidate binding

sites. Instead, Wellington quantifies an imbalance in the DNA

strand-specific alignment information of DNase-seq data around

virtually every location in the genome. The authors argue that in a

‘double hit’ DNase-seq experiment, where each end of a DNA frag-

ment represents an in vivo DNase I cleavage site, most of the DNA

fragments captured for sequencing are in the order of 50–150 bp in

length, and they are expected to originate from within the DNase I

hypersensitive sites, as opposed to nucleosomal DNA.

Since the length of DNase I hypersensitive sites is usually 200–

250 bp, the captured fragments are likely to span the regions of DNA

protected by bound TFs. These captured fragments manifest them-

selves after sequencing as 50 sequence tags, representing just one end

of these fragments. Hence, a typical DNase I hypersensitive site should

be enriched in forward strand tags upstream and in reverse strand tags

downstream of bound TFs. Wellington takes advantage of this strand

imbalance criterion to greatly increase the specificity by reducing the

number of false positives. For each basepair, Wellington tests the hy-

pothesis that there are significantly more reads aligning to the forward

strand in the upstream shoulder region with respect to the reads align-

ing to the forward strand in the footprint region. Moreover, a reverse

complement hypothesis is tested, i.e. that there are significantly more

reads aligning to the reverse strand in the downstream shoulder region

with respect to the reads aligning to the reverse strand in the footprint

region. The final Wellington P-value for a given genomic location is a

product of the two for the aforementioned hypotheses.

None of the existing methods mentioned above allows for direct

incorporation of knowledge about TF complexes which could be

formed by the TF of interest. The comprehensive knowledge of such

functional structures is essential to fully understand the mechanisms

of transcriptional regulation. Recently, several computational meth-

ods are focused on the identification of the putative structures of TF

complexes that bind cooperatively to DNA, using ChIP-seq

(Whitington et al., 2011) or chromatin accessibility data (Jankowski

et al., 2014; Kazemian et al., 2013). Such a prior information on TF

complex structures should be incorporated by the methods aimed at

identification of individual TF binding sites.

Here, we propose Romulus, a novel computational method to ac-

curately identify TF footprints from genome sequence information and

cell-type–specific experimental data, such as DNase-seq data. Our ap-

proach combines the strengths of CENTIPEDE and Wellington, while

keeping the number of free parameters in the model relatively low. For

a given TF, we first identify candidate binding sites that have above-

background sequence affinity, using a Position Weight Matrix. Then,

following CENTIPEDE, we employ an Expectation–Maximization-

based approach to simultaneously learn the DNase I cut profiles and

classify the binding sites as bound or unbound by the TF.

Our method allows for multiple bound states for a single TF, dif-

fering in their cut profile and overall number of DNase I cuts. To

make the model robust, we employ a systematic approach to group

the DNase I cuts, according to their location and strand. Inspired by

Wellington, we take the forward strand DNase I cuts only upstream

and within the binding site, while the reverse strand DNase I cuts

only within the binding site and downstream. We model the total

number of cuts as a negative binomial component, while the cut dis-

tribution (regularized by binning outside the binding site) is mod-

elled as a multinomial component.

Overall, Romulus predictions agree well with experimental ChIP-

seq measurements of TF binding at candidate motif instances. We also

comprehensively compared the predictive performance of Romulus,

CENTIPEDE and Wellington, and show that Romulus significantly

outperformed CENTIPEDE and Wellington, especially when applied

to DNase-seq datasets with lower sequencing depth. Finally, we intro-

duce Binding in Closed Chromatin (BCC), a single statistic represent-

ing the chromatin state component of Romulus for ChIP-seq–inferred

binding sites, as a quantitative correlate of pioneer factor activity.

Romulus is available as an R package at http://github.com/ajank/

Romulus, along with documentation and examples, under the terms

of GNU GPL v3 open source software license.

2 Methods

2.1 DNase-seq data from multiple sources
The ENCODE Project (Bernstein et al., 2012) provides three

different tracks with human DNase-seq data. The track

wgEncodeOpenChromDnase from Duke University (Duke) follows

the ‘single hit’ protocol (Boyle et al., 2008), while wgEncodeUwDnase

and wgEncodeUwDgf, both from University of Washington (UW), fol-

low the ‘double hit’ protocol (Sabo et al., 2006). The latter track,

termed Digital Genomic Footprinting (DGF) yields much higher num-

ber of sequencing reads (Supplementary Table S1). We used all tracks

in three cell types: A549, HepG2 and K562.

2.2 ChIP-seq data as a TF binding benchmark
We downloaded a collection of human ChIP-seq datasets (narrowPeak

files) from ENCODE and used them as a gold standard for benchmark-

ing TF binding predictions (Supplementary Table S2). This collection of

datasets was also used to assess the performance of Wellington in (Piper

et al., 2013). The corresponding DNA sequence motifs (Supplementary

Table S3) for these TFs were taken from the HOMER (Hypergeometric

Optimization of Motif EnRichment) suite (Heinz et al., 2010).

The motif instances in the human genome for these motifs were

downloaded from http://homer.salk.edu/homer/ (HOMER Known

Motifs track). We considered these motif instances as candidate

binding sites (test cases) in performance assessment of the three

methods. The reference classification of the candidate binding sites
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was obtained as follows: motif instances overlapping any ChIP-seq

peak were classified as bound, and all the remaining ones were clas-

sified as unbound.

2.3 Prior probabilities of TF binding
The prior component of the model captures the genomic sequence

and other prior (i.e. independent of cell type or conditions) charac-

teristics of the candidate binding site for a given TF. Let us denote

by i a particular genomic instance (motif match) of a motif of inter-

est. Typically, the prior characteristics assigned to motif instances

could be: the respective PWM score, average evolutionary conserva-

tion and so on.

To formalize the model, let us denote the value of the jth prior

characteristic for motif instance i by a real number xi
jð Þ, where 1 � j

� J. In the simplest case, where each motif instance can be either

‘bound’ or ‘unbound’, we apply a logistic approach to model the

ratio of the prior probabilities:

P Zi ¼ 1ð Þ=P Zi ¼ 0ð Þ ¼ expðb0 þ
X

j
bjxi

jð ÞÞ:

Here, Zi¼1 indicates that the ith motif instance is bound,

whereas Zi¼0 indicates that it remains unbound. Such a model has

been used in CENTIPEDE (Pique-Regi et al., 2011).

We generalize the above-described model. Let us consider a TF

that manifests one or more cooperative binding modes, with well-

defined offsets and orientations within the underlying motif com-

plexes. The cooperative binding modes, and the corresponding

motif complexes, will be both denoted by k¼2, . . ., Kþ1, where

K is the number of cooperative binding modes. Each of these com-

plexes imposes certain offset and orientation of the partner motif

with respect to the primary motif (Jankowski et al., 2013, 2014).

The genomic location of the motif instance i therefore implies the

corresponding locations for all partner motifs within all defined

motif complexes. The prior characteristics for these partner motif

instances are calculated no matter how unfavourable they may be

for binding, and are included in the sequence xi
(j), where 1� j� J.

Note that in the homodimer case, some of these characteristic may

be derived from the same PWM, however scored at a different gen-

omic location.

Now let us focus on a particular cooperative binding mode k,

where 2�k�Kþ1. We introduce binary indicators cj
kð Þ 2 0; 1f g,

specifying whether the prior characteristic xi
jð Þshould be taken into

account in a cooperative binding mode k. The values of these indica-

tors ensure that only the characteristics specific to the primary motif

instance and to the partner motif instances within kth motif complex

will be taken into account. The monomer binding mode, denoted by

k¼1, should be characterized only by the characteristics referring to

the primary motif instance. Hence, cj
1ð Þ ¼ 0 for all the characteris-

tics j referring to any of the partner motifs. To model the prior prob-

abilities, we apply a logistic model against the unbound ‘pivot’ case

of Zi¼0:

P Zi ¼ kð Þ=P Zi ¼ 0ð Þ ¼ expðb0
kð Þ þ

X
j
bj

kð Þcj
kð Þxi

jð ÞÞ;

where Zi¼0 indicates no binding, Zi¼1 refers to binding as mono-

mer, and Zi¼2, . . ., Kþ1 refer to the respective cooperative bind-

ing modes. This way, we have Kþ1 outcomes separately regressed

against the pivot outcome Zi¼0 (see Supplementary Methods).

2.4 Chromatin state component
The chromatin state component of the model captures the cell-type–

specific and condition-specific experimental data around the

candidate binding sites. Typically, these experimental data will in-

clude DNase-seq or histone modification ChIP-seq profiles. In this

study, we use DNase-seq profiles around the candidate binding sites,

but other types of data might be used as well.

For each motif instance i, we consider the numbers of DNase I

cuts at individual basepairs in the vicinity in a strand-specific man-

ner. The forward strand cuts are taken only upstream and within the

candidate binding site, while the reverse strand cuts only within the

candidate binding site and downstream. In this study, we consider a

200 bp margin. Assuming that L is the length of the motif, the ma-

trix DNaseþi,j contains the numbers of forward strand DNase I cuts

(genomic positions j¼1, . . ., 200þL, relative to the position of

motif instance, starting 200 bp upstream of the motif, continuing

downstream), and the matrix DNase�i,j contains the numbers of re-

verse strand cuts (j¼1, . . ., 200þL, starting at the motif, continu-

ing downstream). We consider such matrices for all the chromatin

state data available to the model.

We also observed that all kinds of datasets based on short se-

quence reads, in particular all kinds of DNase-seq data, are prone to

artifactual spikes of reads (above 100 reads) mapped to a single lo-

cation and strand in the genome. These spikes may arise from the se-

quence fragments originating at repetitive regions with incomplete

representation in the reference genome. Hence, we applied clipping

to the number of reads mapped to a single location and strand,

choosing the threshold as the value of 99.9% quantile of all the

entries (for all i and j) of both matrices. The values above the thresh-

old were set to be equal to the threshold itself. We tried to use other

quantiles apart from the 99.9% quantile, namely 99% and 99.99%;

they all gave similar results (data not shown).

Let Xi ¼ ððDNaseþ i ;jÞj; ðDNase � i ;jÞj; . . .Þ denote all the chro-

matin state data available to the model for a given motif instance i.

As stated in the previous subsection, we introduce latent variables Zi

such that P Zi ¼ 0jXið Þ is the probability of motif instance i to be

unbound, P Zi ¼ 1 jXið Þ is the probability of it being bound by

monomer, P Zi ¼ 2 jXið Þ is the probability of it being bound in the

first cooperative binding mode, and so on. Our primary interest is

pi ¼
XKþ1

k¼1

PðZi ¼ kjXiÞ ¼ 1� PðZi ¼ 0jXiÞ;

i.e. the probability of the motif instance i to be bound in any binding

mode. It follows from the Bayes’ theorem (see Supplementary

Methods) that

pi

1� pi
¼
XKþ1

k¼1

P XijZi ¼ kð ÞP Zi ¼ kð Þ
P XijZi ¼ 0ð ÞP Zi ¼ 0ð Þ;

where P Zi¼ kð Þ=P Zi ¼ 0ð Þ is the prior component of the model dis-

cussed in the previous subsection.

The remaining conditional probabilities P XijZi¼ kð Þ for k¼0,

. . ., Kþ1 are modelled as follows. We assume that all the chromatin

state data included in the model are independent, given its binding

state Zi. Hence, the conditional probability is a product of the cor-

responding conditional probabilities for each type of chromatin state

data:

P XijZi ¼ kð Þ ¼ P DNaseþ i ;j

� �
j
jZi ¼ k

� �
� P DNase� i ;j

� �
j
jZi ¼ k

� �

� . . . :

Each of the conditional probabilities on the right side is mod-

elled separately, using a factorized model. For brevity, we discuss

the parametrization only for PððDNaseþ i ;jÞjjZi¼ kÞ, i.e. forward

strand DNase I cuts; it is analogous for the other strand and for
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other types of data. The first, negative binomial component cap-

tures the total number of reads mapped in the vicinity of the

motif instance i in binding mode k. The negative binomial distri-

bution is naturally parametrized by the success probability pþ kð Þ

2 0; 1ð Þ and the real-valued number of failures rþ kð Þ > 0. The se-

cond, multinomial component quantifies the probability of a par-

ticular spatial distribution of the given total number of DNase I

cuts, using the multinomial distribution (see Supplementary

Methods for details).

As opposed to CENTIPEDE (Pique-Regi et al., 2011), we do not

keep a separate free parameter for each position (respective to the

motif location) and strand, but apply a more flexible approach. For

each binding mode k, we divide the positions j into one or more

bins. Let us denote by DNaseBinj
þ(k) the bin number for position j

in binding mode k. Note that binding modes may differ in the way

the positions are split into bins. In this study, we take 20 bp long

bins outside the motif site, and single-basepair bins within the motif

site. Moreover, for the unbound mode (k¼0) we put all the pos-

itions in a single bin.

For a given binding mode k, we associate a free parameter kb
þ kð Þ

with each bin b¼1, . . ., Bþ(k). However, for the multinomial distri-

bution we must provide a vector of probabilities covering every sin-

gle position in the vicinity of the motif instance. Hence, we calculate

the actual multinomial coefficients k⁄
j
þ kð Þ by taking the values of kb

þ kð Þ for b¼DNaseBinj
þ(k) and normalizing them so thatP

jk
⁄
j
þðkÞ ¼ 1. By definition, the multinomial coefficients k⁄

j
þ 0ð Þfor

the unbound state are equal, i.e. there is no positional preference for

DNase I cuts in the null model.

2.5 Expectation–Maximization approach
To estimate the model parameters U ¼ ððbj

ðkÞÞj;k; ðpþ kð ÞÞk; ðp� kð ÞÞk;
ðrþ kð ÞÞk; ðr� kð ÞÞk; ðkb

þ kð ÞÞb;k; ðkb
� kð ÞÞb;kÞ, we apply the Expectation–

Maximization approach using a complete likelihood function. We

found no closed-form solution for ðbj
ðkÞÞj ;k; ðrþ kð ÞÞk and ðr� kð ÞÞk

that maximizes the likelihood function, hence we apply the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) numerical optimiza-

tion procedure (see Supplementary Methods). To increase the ro-

bustness of the model, we employ a shrinkage estimator of the

parameters kb
þðkÞ� �

b;k
and ðkb

� kð ÞÞb;k. For each b and k, we take

the regularized estimator dkb
þðkÞ þ ð1 � dÞjJbj=

P
bjJbj, where jJbj

is the size of the bin b, and d is the mixing parameter, equal to 0.5

by default.

The Expectation–Maximization procedure was initialized by

assigning the prior probabilities as follows. In the monomer bind-

ing mode, we put P Zi ¼ 1ð Þ=P Zi ¼ 0ð Þ ¼ 100 for the top 10% of

motif instances with highest total number of DNase-seq cuts. In a

dimer binding mode k, we put P Zi¼ kð Þ=P Zi ¼ 0ð Þ ¼ 100 for the

motif instances satisfying both of the following criteria: being

within the top 10% of motif instances with highest total number of

DNase-seq cuts, and being within the top 10% of motif instances

with highest dimerization partner motif score. In the cases not

mentioned above for any bound mode k, we put

P Zi¼ kð Þ=P Zi ¼ 0ð Þ ¼ 0:01. This default initialization procedure

allows for robust convergence of the algorithm; other procedures

may perform similarly (Supplementary Fig. S9; see Supplementary

Methods).

We then estimate the values for ðbj
ðkÞÞj;k, and for the first

Maximization step we take the prior probabilities as the posterior

ones. We iterate the Expectation–Maximization procedure, in each

iteration getting a revised vector of parameters, until the posterior

probabilities do not change by more than 0.001. In most of the cases

described here, the algorithm converged in fewer than 30 iterations.

3 Results

3.1 Romulus systematically outperforms existing

methods
We systematically benchmarked Romulus along with two above-

mentioned tools for TF binding site identification, CENTIPEDE

(Pique-Regi et al., 2011) and Wellington (Piper et al., 2013). As

described in the previous section, we applied all the methods in

an unsupervised manner to DNase-seq data from three ENCODE

sources: Duke DNase, University of Washington (UW) DNase

and UW Digital Genomic Footprinting (DGF). From each of the

DNase-seq data sources, sequence tag profiles were fetched for

three human cell types: A549 (lung adenocarcinoma epithelial

cell line), HepG2 (hepatocellular carcinoma cell line) and K562

(leukemia cell line). To validate the predictions, we used 39

ChIP-seq datasets from ENCODE to define genuine TF binding

sites (see Methods); note that no ChIP-seq data were used for

training.

Since both Romulus and CENTIPEDE learn a model for TF foot-

prints, we visualized these models by plotting their multinomial

components for representative cases (Fig. 1). Clearly, the DNase I

cut profiles fitted by CENTIPEDE capture much more noise than

their Romulus counterparts. Note that the curves for Romulus were

smoothed for the purpose of visualization by replacing the fixed-

value bins by a piecewise linear function. The multinomial models

for Romulus were based on a far smaller number of free parameters

than their CENTIPEDE counterparts (e.g. 48 versus 825 free param-

eters for 10 bp motif and 200 bp margin), hence they are less prone

to overfitting.

To systematically benchmark the three tools, we assessed their

predictive power for each combination of cell type and TF for

which we have reference ChIP-seq data (see Methods). The stand-

ard approach in assessing binary classifier performance is the

Receiver Operating Characteristic (ROC) curve, showing the rela-

tionship between false positive rate (i.e. 1� specificity, x axis) and

true positive rate (i.e. sensitivity, y axis). However, albeit routinely

performed, application of ROC curves to assess the performance

of TF binding site prediction is not adequate. These classification

tasks are characterized by highly skewed datasets containing rela-

tively small number of true positives (motif instances actually

bound by the TF) and large number of true negatives (motif in-

stances that remain unbound). Hence, the shape of ROC curves

and area under them is mostly affected by the ability of a particu-

lar tool to correctly predict unbound motif instances (Piper et al.,

2013).

To address the above-mentioned problem, we plotted Precision-

Recall curves, showing the relationship between recall (i.e. sensitiv-

ity, x axis) and precision (y axis). These curves were found to give a

more informative picture of an algorithm’s performance when clas-

sifying highly skewed datasets (Davis and Goadrich, 2006).

Example Precision-Recall curves for several TFs in K562 cells (Fig.

2A) suggest that Romulus outperforms the existing methods in most

of the cases. This observation is also supported by the corresponding

ROC curves (Supplementary Fig. 1A).

Common single-dimensional measures in assessing classifier

performance are the area under ROC curve (AUC-ROC) and the

area under Precision-Recall curve (AUC-PR). We calculated these

statistics for all the combinations of cell types and TFs considered,
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for each of the three DNase-seq data sources (Supplementary Figs

S2 and S3), and found that indeed Romulus outperformed the

other tools in most of the cases. A similar trend was observed for

Spearman correlation of binding predictions with ChIP-seq peak

height (Supplementary Fig. S4).

To obtain a summary view of the performance of each of the

three tools considered (CENTIPEDE, Wellington and Romulus) we

aggregated the AUC-PR statistics as violin plots, combining them

across different cell types and TFs (Fig. 2B). We used two-sided

Wilcoxon signed-rank test to compare the statistics between three

tools for each DNase-seq data source, and found that Romulus sys-

tematically and significantly outperformed the other tools. The same

trend was observed using AUC-ROC statistics (Supplementary Fig.

S1B). These aggregations also suggests that the performance of

CENTIPEDE is most affected by the choice of DNase-seq data

source, while the performance of Romulus and Wellington remain

stable. Intriguingly, CENTIPEDE performed poorly for the datasets

Fig. 2. Prediction performance of CENTIPEDE, Wellington and Romulus. (A)

Example Precision-Recall curves in K562 cells using three sources of DNase-

seq data. Areas under these Precision-Recall curves are indicated. Only the

results for a subset of four representative TFs are shown. (B) Areas under

Precision-Recall curves aggregated as violin plots and compared between

three tools and three DNase-seq data sources. Median values and interquar-

tile ranges are indicated. All the TFs and cell lines (A549, HepG2 and K562)

were considered jointly in this panel. ***, P-value<0.001. **, P-value< 0.01.

*, P-value<0.05. ns, non-significant (Color version of this figure is available

at Bioinformatics online.)

Fig. 3. Improvement of Romulus compared to Wellington in terms of area

under Precision-Recall curve significantly correlates with motif information

content. All the cell lines (A549, HepG2 and K562) were considered jointly

here. Pearson correlation values and P-values were calculated after excluding

the outliers with information content above 20 bits
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Fig. 1. Example models of TF footprints learned by CENTIPEDE (left) and

Romulus (right) for two TFs: bHLHE40 (top) and ELF1 (bottom) in A549 cell

line. Line colours indicate the strandness of DNase I cuts. In the case of

Romulus, the forward strand cuts are considered only upstream and within

the binding site, while the reverse strand cuts are considered only within the

binding site and downstream (Color version of this figure is available at

Bioinformatics online.)
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from UW DGF, despite the fact that UW DGF datasets had at least

2.25 times more reads than the corresponding Duke and UW DNase

datasets (Supplementary Table S1).

3.2 Romulus improves TF binding site prediction for

low-information-content motifs
We also studied the difference between AUC-PR performance of

Romulus and the second best performer, Wellington, and found that

for some specific TFs the difference is noticeably higher. We

hypothesized that this may be related to the motif information con-

tent of these TFs. To test this hypothesis, we calculated the Pearson

correlation coefficient r of the difference between AUC-PR perform-

ance, as described above, and the motif information content (Fig. 3).

A similar calculation was performed for AUC-ROC (Supplementary

Fig. S5).

We also performed a 1000-fold permutation test to calculate the

empirical P-value for the Pearson correlation coefficient, randomly

pairing the AUC-PR performance and the motif information con-

tent. For all the three DNase-seq data sources, we observed a statis-

tically significant negative correlation: P¼0.005 for Duke,

P¼0.024 for UW DNase-seq data and P<0.001 for UW DGF (Fig.

3). Thus, the gain of predictive power of Romulus over Wellington

is significantly higher for TFs with low-information-content motifs,

perhaps because of the Romulus’ ability to capture the shape of the

DNase I cut profile.

3.3 Knowledge of TF dimerization modes does not

improve the prediction of individual TF binding sites
Next, we tested the hypothesis that accounting for dimer binding

modes could significantly improve TF-DNA binding predictions.

The TFs AR, FOXA1, SOX2 and OCT4 are known to form strongly

cooperative dimeric binding complexes (Jankowski et al., 2013). We

therefore used matching ChIP-seq datasets (Supplementary Table

S4) to benchmark the binding predictions made by Romulus for

these TFs when information on their dimer binding modes was sup-

plied. We considered putative partner binding sites positioned at a

specific offset and orientation with respect to the primary motif, and

included the motif scores at these positions as prior characteristics in

the prior component of the model (see Methods).

Apart from the known AR–AR homodimer (Nelson et al., 1999)

and AR–FOXA1 heterodimer (Wang et al., 2011), we included two

predicted FOXA1–FOXA1 homodimers: one with convergent, and

one with divergent motifs (Jankowski et al., 2013; Starick et al.,

2015). Hence, the Romulus model had four states for AR (i.e. AR

monomer, AR–AR, AR–FOXA1 and unbound), and five states for

FOXA1 (FOXA1 monomer, FOXA1–AR, FOXA1–FOXA1 diver-

gent, FOXA1–FOXA1 convergent, unbound). The performance of

TF binding site prediction was assessed in unstimulated, as well as

androgen-stimulated, LNCaP cells.

For SOX2 and OCT4, we included the canonical SOX2–OCT4

heterodimer (Ng et al., 2012). The Romulus model had three states

for SOX2 (i.e. unbound, SOX2 monomer and SOX2–OCT4 hetero-

dimer), and three states for OCT4 (i.e. unbound, OCT4 monomer

and OCT4–SOX2). The performance of TF binding site prediction

was assessed in H1-hESC embryonic stem cells.

We expected that the additional binding modes would improve

overall predictive power, given that prior information on partner

motif scores could facilitate separation of distinct dimer footprints.

However, in terms of Precision-Recall curves (Fig. 4) and ROC

curves (Supplementary Fig. S6) we found no observable improve-

ment. We also confirmed that predicted dimer binding amounted for

32–71% of total predicted binding for a given TF, DNase-seq data

source and condition. To verify whether the dimer binding modes in-

deed have distinguishable profiles, we plotted the components of the

Romulus model: the negative binomial component (Supplementary

Fig. S7) and the multinomial component (Supplementary Fig. S8).

We found that the models learned by Romulus clearly differ between

the binding modes, yet their inclusion does not improve the predic-

tion of individual TF binding sites.

3.4 Binding in Closed Chromatin as a quantitative

predictor of pioneer factor activity
We noted that in the case of several TFs it was particularly challeng-

ing to predict their binding, and we hypothesized that it might be be-

cause these TFs are able to bind closed chromatin in violation of the

assumptions of Romulus and other algorithms. In such a situation of

binding to nucleosomal DNA, the way Romulus model accounts for

the local chromatin openness profile is not necessarily appropriate.

We found it promising to quantify this discrepancy. To this end, we

limited the scope to the bound motif instances according to the

ChIP-seq data, and considered the probabilities of the chromatin

state component in the Romulus model. We then plotted the cumu-

lative distribution functions of these probabilities (Fig. 5). These

functions should be perceived having two model cases in mind. If a

particular TF can only bind open chromatin, its binding sites will all

have high chromatin state component probabilities. The cumulative

Fig. 4. Precision-Recall curves for the known dimers. The TF in focus (OCT4,

SOX2, AR or FOXA1), DNase-seq data source (UW or Duke) and conditions

are indicated.þAndro, androgen stimulated cells. siFOXA1, silenced FOXA1.

siCTRL, control (Color version of this figure is available at Bioinformatics

online.)
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distribution function will therefore remain flat early on and then

show a spike towards the right end of the x-axis.

In contrast, a TF that can also bind closed chromatin will toler-

ate lower chromatin component scores. Its cumulative distribution

function will show some elevation at low-to-moderate scores, i.e. in

the middle of the x-axis range. Such an ability to bind closed chro-

matin without the aid of other TFs is a defining feature of pioneer

factors. Several pioneer factors have been identified so far, including

the forkhead box A (FOXA) factors, GATA-binding (GATA) fac-

tors, PU.1 and FOXD3 (Zaret and Carroll, 2011).

To quantify the amount of TF binding that takes place in loci

without a pronounced local chromatin openness signal, we introduce

Binding in Closed Chromatin (BCC). The value of BCC is calculated

as the Area-Under-Curve of a cumulative distribution function

described above (Fig. 5). Note that we take only the chromatin state

component, and exclude the prior (genomic sequence) component.

Incorporation of the primary motif score would be unreliable here,

since for some TFs their binding to closed chromatin may be

achieved only by their half-site, as is the case for Pax7 (Budry et al.,

2012). We observed that the chromatin state component probabil-

ities showed no correlation with ChIP-seq peak height or rank (data

not shown). We also compared the BCC values with Spearman

correlation coefficient between DNase I accessibility and motif score

(Blatti et al., 2015), and found no evident relationship between them

(Supplementary Fig. S10, see Supplementary Methods).

We found that the median value of BCC, for all TF binding site

predictions in all cell types, was 0.111 in Duke DNase, 0.099 in UW

DNase and 0.051 in UW DGF (Fig. 6). We focused on the TFs that

had a BCC value, in at least one case, more than one MAD (median

absolute deviation) above the median (Fig. 5, highlighted cumulative

distribution functions). Eight out of 26 TFs had BCC values above

the threshold in at least three cases; these candidate pioneer factors

are: CEBP, CTCF, FOXA1, JunD, Max, NRSF, PU.1 and USF1.

Notably, FOXA1 is a canonical example of a pioneer factor

(Lupien et al., 2008). We also noted that CTCF and NRSF both

have have long, information-rich motifs, which may allow them to

bind with high specificity regardless of local chromatin openness. It

has been also suggested (Garber et al., 2012) that at an early stage in

lineage commitment of dendritic cells, PU.1 and CEBP act as master

pioneer factors, while binding of second-tier factors JunB, IRF4 and

ATF3 primes the response and sets the basal expression levels of

other genes. Our results also suggest a previously unreported pioneer

factor activity of upstream stimulatory factor 1 (USF1) in HepG2

and K562 cell lines.

4 Discussion

In this study, we comprehensively compared the predictive perform-

ance of three tools aimed at predicting TF binding sites from

DNase-seq data. Two of them, CENTIPEDE and Wellington, used

completely different approaches to address this problem. In our

method proposed here, Romulus, we combined the benefits of both

of the two other tools, and showed that Romulus significantly

outperformed CENTIPEDE and Wellington, regardless of the

DNase-seq protocol used (‘single hit’ or ‘double hit’). The advantage

of Romulus was observed especially when applied to binding site pre-

diction for low-information-content motifs. It is likely that Romulus

gained in robustness and predictive power by limiting the number of

free parameters in the multinomial component to 2 � (motif

widthþ9). In contrast, CENTIPEDE used 2 � (motif widthþ400)�1

free parameters in the multinomial component, and Wellington does

not estimate any model parameters from the data.

Fig. 5. Cumulative distribution functions of the chromatin state component.

For each combination of TF and cell type, the cumulative distribution func-

tions of the chromatin state component calculated by Romulus using three

sources of DNase-seq data are shown. Cumulative distributions correspond-

ing to BCC values above the threshold from Figure 6 (for each cell type, one

MAD above the median) are highlighted (Color version of this figure is avail-

able at Bioinformatics online.)

Fig. 6. Binding in Closed Chromatin (BCC) values. The value of BCC is shown

for each combination of TF, DNase-seq data source and cell type. For each

DNase-seq data source, dashed vertical line indicates the mean and solid ver-

tical line indicates the threshold of one MAD (median absolute deviation)

above the median (Color version of this figure is available at Bioinformatics

online.)
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When allowing for more than one bound state in Romulus, we

found that the additional DNase I cut profiles can differ greatly.

However, the inclusion of these additional states for the known TF

dimers did not yield an increase in predictive power. We hypothesize

that three factors potentially contributed to this effect. Firstly, dimer

binding sites constitute only a small fraction of all binding sites, and

thus the overall improvement from considering dimer binding modes

is necessarily limited. Secondly, dimer binding may not induce

strong changes in the DNase I cut profile, relative to monomer bind-

ing. Rather, the profile shape could be influenced to a greater degree

by other parameters, such as the width of the hypersensitive region,

the location of the binding site in question with respect to the centre

of the region, and the spatial distribution of neighbouring binding

sites. If so, the shape of the DNase I cut profile would be only

weakly indicative of the binding mode. Finally, inclusion of add-

itional binding modes substantially increases the number of free par-

ameters in the model, which increases the likelihood of overfitting.

A recent computational method, protein interaction quantitation

(PIQ), used the correlation between TF binding and chromatin

openness to identify TFs that function as pioneer factors (Sherwood

et al., 2014). We have shown the value of a different approach that

prioritizes binding sites in closed chromatin. We propose that this

Binding in Closed Chromatin (BCC) score is a quantitative correlate

of pioneer factor activity. In other words, BCC values constitute a

measure of a TF’s ability to bind nucleosome-occluded DNA.

Indeed, multiple known pioneer factors were detected as having

high BCC scores. Notably, while PIQ requires data from two differ-

ent experimental conditions (before and after differentiation, for ex-

ample) to identify pioneer factors, the calculation of BCC requires

data from one condition only. Note that the BCC scores of some

TFs varied significantly across cell types. While some of this vari-

ability could be attributable to biological factors such as variation in

TF expression, technical factors may also play a role. For example,

closed-chromatin binding sites, which tend to be weaker, would be

detected in smaller numbers in the noisier ChIP-seq datasets.

Intriguingly, CTCF and NRSF (REST) were predicted both by

BCC and PIQ as pioneer factors, despite the use of divergent strategies

by the two algorithms. A unique feature shared by these two TFs is

that they have long, information-rich PWMs (both 20 bp; 32.7 and

34.9 bits of information, respectively) and bind DNA strongly using

multiple zinc-finger domains. They could therefore potentially bind

DNA ‘alone,’ without requiring co-binding by neighbouring factors

over 50–100 bp. In such a scenario, CTCF and NRSF could tightly

bind a 20-bp stretch of DNA closely flanked by nucleosomes, leaving

little room for DNA cleavage by DNase I. This would explain the

high BCC scores of these two TFs. On the other hand, given their

high DNA affinity, they would also be likely to bind motif instances

in promoter or enhancer regions characterized by highly open

chromatin. Thus, they would be predicted as pioneer TFs by both

methods, but for different reasons. Pioneer TFs with fewer DNA-

binding domains could adopt yet another configuration: they have

been shown to bind DNA that is wrapped around a histone octamer

(Iwafuchi-Doi and Zaret, 2014), Given the diversity of such possibil-

ities, we anticipate that TF-DNA binding predictions will eventu-

ally need to account for multiple binding ‘strategies,’ each defined by

the precise nature of the interplay between the TF and nucleosomes..
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