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A B S T R A C T   

Background: Circulating Tumor Cells (CTCs) represent a small, heterogeneous population that 
comprise the minority of cells able to develop metastasis. To trap and characterize CTCs with 
metastatic attitude, a CXCL12-loaded hyaluronic-gel (CLG) was developed. CXCR4+cells with 
invasive capability would infiltrate CLG. 
Methods: Human colon, renal, lung and ovarian cancer cells (HT29, A498, H460 and OVCAR8 
respectively) were seeded on 150 μl Empty Gels (EG) or 300 ng/ml CXCL12 loaded gel (CLG) and 
allowed to infiltrate for 16 h. Gels were then digested and fixed with 2 % FA-HAse for human 
cancer cell enumeration or digested with HAse and cancer cells recovered. CLG-recovered cells 
migrated toward CXCL12 and were tested for colonies/spheres formation. Moreover, CXCR4, E- 
Cadherin and Vimentin expression was assessed through flow cytometry and RT-PCR. The clinical 
trial “TRAP4MET” recruited 48 metastatic/advanced cancer patients (8 OC, 8 LC, 8 GBM, 8 EC, 8 
RCC and 8 EC). 10 cc whole blood were devoted to PBMCs extraction (7 cc) and ScreenCell™ 
filters (3 cc) CTCs evaluation. Ficoll-isolated patient’s PBMCs were seeded over CLG and allowed 
to infiltrate for 16 h; gels were digested and fixed with 2 % FA-HAse, cells stained and DAPI+/ 
CD45-/pan-CK + cells enumerated as CTCs. 
Results: Human cancer cells infiltrate CLG more efficiently than EG (CLG/EG ratio 1.25 for HT29/ 
1.58 for A498/1.71 for H460 and 2.83 for OVCAR8). CLG-recovered HT29 cells display hybrid- 
mesenchymal features [low E-cadherin (40 %) and high vimentin (235 %) as compared to 
HT29], CXCR4 two-fold higher than HT29, efficiently migrate toward CXCL12 (two-fold higher 
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than HT29) and developed higher number of colonies (171 ± 21 for HT29-CLG vs 131 ± 8 col-
onies for HT29)/larger spheres (spheroid area: 26561 ± 6142 μm2 for HT29-CLG vs 20297 ±
7238 for HT29). In TRAP4MET clinical trial, CLG-CTCs were isolated in 8/8 patients with OC, 6/8 
with LC, 6/8 with CRC, 8/8 with EC, 8/8 with RCC cancer and 5/8 with GBM. Interestingly, in 
OC, LC and GBM, CLG isolated higher number of CTCs as compared to the conventional 
ScreenCell™ (CLG/SC ratio = 1.88 for OC, 2.47 for LC and 11.89 for GBM). Bland and Altman 
blot analysis and Passing and Bablok regression analysis showed concordance between the 
methodological approaches but indicate that SC and CLG are not superimposable suggesting that 
the two systems select cells with different features. 
Conclusion: CLG might represent a new and easy tool to isolate invasive CTCs in multiple cancers 
such as OC, LC and GBM at today orphan of reliable methods to consistently detect CTCs.   

1. Introduction 

Metastasis, responsible of >90 % of death for cancer [1,2], derives from a multistep, inefficient process in which primary tumor 
shapes distant organ microenvironment permissive to metastatic outgrowth [3,4]. In April 2024, the search of ‘Circulating Tumour 
Cells’ on ClinicalTrials.gov website returned 246 “active” studies, underling the interest in CTCs as biomarkers for personalized 
oncology. Although 1 × 106 CTCs per gram of tumor tissue are estimated to reach the circulation in a day [5], less than 0.01 %, 
endowed with hybrid epithelial-mesenchymal phenotype and invasive/stemness properties, successfully complete the metastatic 
cascade [6,7]. Nevertheless, specific features of metastatic capability are poorly characterized. In cancers such as renal, endometrium, 
colon, lung, and breast, CTCs are informative on prognosis and predictive of response [8–14]. A meta-analysis including 50 studies 
with 6712 breast cancer patients showed that CTCs decrease after therapy [15]. In Non Small Cell Lung Cancer (NSCLC) a 
meta-analysis including 22 studies with 1674 NSCLC patients showed that CTCs correlate with Progression Free Survival (PFS) and 
Overall Survival (OS) before and after treatment [16] and PD-L1 positive CTCs predicts tumoral PD-L1 [17]. Nevertheless, CTCs 
characterization is challenging due to heterogeneity, rarity (one CTC is neighbored by 1x106 WBC and 1x109 RBC per ml of blood) [6, 
7,18] and the absence of validated/standardized methods. EpCAM-positive CTCs selection with CellSearch is the only FDA approved 
technology in breast, prostate and colorectal cancer [19]. It relies on CTCs enrichment using ferrofluid nanoparticles coated with 
anti-EpCAM antibodies followed by immunofluorescence using anti-CK8, -CK18, -CK19 and -CD45 antibodies and DAPI nuclear 
staining. EpCAM is frequently expressed on the cell surface of many epithelial cancer cells and scarcely in blood cells, representing an 
ideal marker for CTCs assessment; nevertheless, EpCAM expression is dynamic and context dependent [20,21]. Thus, CellSearch holds 
intrinsic limitations such as the lack of tumor-specific antigens and low efficiency for EpCAM low-expressing tumors as CTCs might not 
express or loose EpCAM due to epithelial-mesenchymal transition (EMT), underestimating mesenchymal and EpCAM-low CTCs 
subpopulations [22,23]. EpCAM expression could correlate with patient’s prognosis [24] and with organ tropism (EpCAM-negative 
CTCs associated with brain metastases; EpCAM-expressing CTC are associated with bone metastases [25–27]). Marker-independent 
techniques such as ScreenCell filters [28] and Parasortix [29] are based on CTCs physical proprieties, cell size or deformability 
respectively. Nevertheless, these methods cannot discriminate between CTCs and blood cells with similar physical proprieties. 
Microfluidic and nanotechnology approaches lack of automation, are expensive and in preclinical stage [18]. Thus, current methods 
display limitations [30] and do not take into account the heterogeneous, metastatic potential of CTCs being more focused on 
“searching for cancer cells” than “searching for metastatic cells” in the blood stream; this characteristic may lead to inaccurate results 
when using CTCs as a prognostic biomarker [30]. 

CXCR4 is a 48 kDa seven-span transmembrane domains G-protein-coupled chemokine receptor (GPCRs) that binds the chemokine 
CXCL12. CXCR4 is frequently overexpressed in solid tumors where affects proliferation, survival, metastatic dissemination and 
microenvironment composition [31–34]. In preclinical models of ovarian, lung, renal and colorectal cancer, CXCR4-expressing tumor 
cells are invasive, highly chemo-resistant and possess stem-like proprieties [31,35]. We previously demonstrated that cisplatin selects a 
cancer-initiating cell subset CD133+CXCR4+EpCAM-able to induce primary tumor recurrence and metastatic dissemination in lung 
cancer [36–38]. Mechanistically, cisplatin promotes the expansion and recruitment of CCR2+CXCR4+Ly6Chigh inflammatory 
monocytes and the production of CXCL12 that attract circulating CD133+CXCR4+ metastasis initiating cells to the lung [36]. A new, 
simple device based on the commercially available Belotero Hyaluronic gel dermal filler, loaded with the chemokine CXCL12 
(CXCL12-loaded hydrogel, CLG) reproduced a pseudo niche attracting immune and circulating cancer cells CXCR4+ [39]. We hy-
pothesized that this device might represent a suitable and cheap approach to trap and characterize subset of CTCs endowed with 
metastatic capacity. Thus, we aim to evaluate the efficacy of CLG in isolating patients derived CTCs in advanced cancers. To this aim, 
forty-eight patients with ovarian (OC), endometrial (EC), lung (LC), glioblastoma (GBM), renal (RCC) and colorectal cancer (CRC) with 
advanced disease were enrolled in TRAP4MET clinical trial and evaluated for CTCs at the diagnosis. 

2. Results 

2.1. Human cancer cells efficiently infiltrate CLG 

To test CLG efficiency in recovering cancer cells, human colon, renal, lung and ovarian cancer cells (HT29, A498, H460 and 
OVCAR8 respectively) infiltrate empty (EG) or CLG gels for 16 h. Gels were digested, cells fixed and DAPI-stained for enumeration or 
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recovering for plastic growing (Fig. 1A). Gels infiltration assay showed that human cancer cells infiltrate CLG more efficiently than EG 
(CLG/EG fold 1.25 for HT29/1.58 for A498/1.71 for H460 and 2.83 for OVCAR8) (Fig. 1B). 

2.2. HT29-CLG cells express high CXCR4, migrate efficiently toward CXCL12 and display mesenchymal features 

Only HT29 cells, with highest CXCR4 expression (21.5 %, not shown), were successfully gel-recovered and in vitro grown (HT29- 
EG are HT29 recovered from EG while HT29-CLG are HT29 cells recovered from CLG). Fig. 2A–B shows that HT29-CLG cells express 2- 
fold higher CXCR4 and more efficiently (2-fold) migrate toward BSA and CXCL12 [40] as compared to HT29. Compared to parental, 
HT29-CLG cells developed higher number of colonies (171 ± 21 for HT29-CLG vs 131 ± 8 for HT29 colonies, Fig. 2C) and better 
growth in hanging drops (total spheroid area: 26561 ± 6142 for HT29-CLG vs 20297 ± 7238 for HT29 colonies; spheroid index: 
0.9671 ± 0.022 for HT29-CLG vs 0.9199 ± 0.074 for HT29 colonies, Fig. 2D). HT29-CLG cells expressed lower E-cadherin (40 %) and 
higher vimentin (235 %) mRNA as compared to parental cells (Fig. 2E). Moreover, HT29-CLG cells were resistant to 5-Fluoracil and 
display less surface EpCAM (Fig. S1 A-B) as compared to the parental cell lines. These data suggest that CLG selects cancer cell 
subpopulation with more aggressive and hybrid-mesenchymal features. 

2.3. TRAP4MET clinical trial aims at isolating CLG-CTCs 

To test CLG efficiency in recovering human cancer cells from human blood, HT29 or H460 cells were spiked in healthy donor (HD) 
blood, the mixture Ficoll-paqued and allowed to infiltrate CLG. As shown in Fig. S2A, HT29 and H460 cells (identified as DAPI+/pan- 
CK+/CD45-cells) were successfully recovered from HD blood with a CTCs count of 4 and 2.6 cancer cells/cc respectively (HT29 re-
covery rate of 14 %; H460 recovery rate 9 %). Thus, CLG enables the enrichment and enumeration only of cancer cells displaying 
infiltrating features present in blood. To evaluate the efficacy of CLG in enumerating and characterizing patients derived CTCs, 48 
patients with advanced solid cancers were enrolled in the TRAP4MET trial (Table 1); specifically, eight patients with ovarian (OC), 
endometrial (EC), colorectal (CRC), renal (RCC), lung (LC) cancer and glioblastoma (GBM) were enrolled. CTCs were searched at the 
diagnosis of advanced/metastatic disease comparing CLG versus ScreenCell filters, a commercial size-based enrichment method CE- 
labelled assessed in several malignancies [41–46]. For CLG-CTCs, PBMC were isolated and 12-16 x 106 seeded on CLG in 8-well 
chamber slide. Cells were allowed to infiltrate the gels for 16 h and CTCs were counted as DAPI + nuclei, pan-CK+ and CD45−

(Fig. 3A–B). CTCs were also evaluated with the ScreenCell and identified as hematoxylin/pan-CK + cells. As reported in Table 2 and 
Fig. 4A, CTCs were successfully isolated with both methods (Fig. 4, Table 2 and Table S1), as 363 total CTCs (ranging from 0 to 80, in 3 
cc blood) were isolated with ScreenCell and 661 with CLG (ranging from 0 to 133, in 7 cc blood). CLG-CTCs were isolated in 8/8 

Fig. 1. Human cancer cells efficiently infiltrate CLG. (A) Schematic representation of Gel infiltration assay. (B) Human colon, renal, lung, and 
ovarian cells (HT29, A498, H460 and OVCAR8) were seeded on empty (EG) or CXCL12-loaded Hydrogel (CLG) on 8-well chamber slide in Serum 
Free (SF) media and allowed to infiltrate 16 h. Cells were fixed with 2%FA + Hyaluronidase (HAase) for 6 h and stained with DAPI for enumeration 
at fluorescent microscope. B 100, 500 or 1000 A498, HT29, H460 and OVCAR8 were allowed to infiltrate EG or CLG. Data in bar graphs represent 
mean ± SEM of at least two independent experiments. A two-tailed t-test was used to assess significance. *P < 0⋅05, **P < 0⋅01 ***P < 0⋅001. 
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patients with OC, 6/8 with LC, 6/8 with CRC, 5/8 with GBM, 8/8 with EC and 8/8 with RCC (Table 2). Bland and Altman blot analysis 
suggested concordance between CLG and ScreenCells method (Fig. 4B). Passing and Bablok regression analysis indicate that the 
methods are not superimposable (Slope A 0.28, 95 % CI 0 to 0.83; Intercept B 1.20, 95 % CI 0.54 to 2.57; Spearman’s coefficient =
0.415, deviation from linearity p < 0.01) (Table 3 and Fig. 4B) suggesting that the two methods could discriminate cell populations 
with different features. Interestingly, in lung cancer a significantly higher CTCs number was retrieved with CLG (Fig. 4C). In lung, 
glioblastoma and ovarian cancer patients, although not significant, there is higher number of CTCs in the CLG as compared to 
SceenCell in paired analysis (Fig. 4D). Thus, CLG identifies higher number of CTCs as compared to ScreenCell in ovarian, lung cancer 
and glioblastoma (CLG/SC ratio = 1.88 for OC, 2.47 for LC and 11.89 for GBM) and may enrich CTCs with specific biological features. 

3. Discussion 

In the present manuscript, a hyaluronic acid-based gel (dermal filler)-CXCL12 loaded (CLG) was considered for CTCs enumeration 
and characterization. In vitro studies demonstrated that CLG-recovered cancer cells displayed hybrid-mesenchymal features and 
enhanced CXCL12-dependent migration. Cancer cells migration/invasion capacities are critical for the metastatic cascade (eg. 
intravasation, extravasation and colonization of distant sites) and are frequently gained through the acquisition of mesenchymal 
phenotype. Thus, CXCL12-dependent migration may identify CTCs with metastatic attitude with a possible prognostic/predictive 
meaning [5,47]. TRAP4MET trial demonstrated that CLG is able to isolate CTCs from blood of ovarian, endometrial, lung, renal, 
colorectal cancer and glioblastoma patients as efficiently (renal) or even better (lung, ovarian, glioblastoma) than the size dependent 

Fig. 2. HT29-CLG cells express high CXCR4, migrate efficiently toward CXCL12 and show mesenchymal features. (A) HT29-EG- (HT29-EG) 
and CLG- (HT29-CLG) HT29-derived immortalized cells CXCR4 expression; (B) CXCL12-induced migration; (C) colony assay; (D) spheroid formation 
capability and (E) E-cadherin and Vimentin RNA expression. Data in bar graphs represent mean ± SEM of at least two independent experiments. A 
two-tailed t-test was used to assess significance. *P < 0⋅05, **P < 0⋅01 ***P < 0⋅001. 
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Table 1 
Patient characteristics. ADC = Adenocarcinoma, HG Serous = High grade serous ovarian cancer; NOS= Not otherwise specified non-small cell lung 
cancer.   

Colon Endometrial Glioblastoma Lung Ovarian Renal  

N (%) N (%) N (%) N (%) N (%) N (%) 

Age (median years) 
<62 4 (50) 1 (12.5) 5 (62.5) 2 (25) 2 (25) 8 (100) 
≥62 4 (50) 7 (87.5) 3 (37.5) 6 (75) 6 (75)  
Gender 
Male 4 (50)  4 (50) 5 (62.5)  6 (75) 
Female 4 (50) 8 (100) 4 (50) 3 (37.5) 8 (100) 2 (25) 
Stage 
Locally Advanced  6 (75) 6 (75)  5 (62.5)  
Metastatic 8 (100) 2 (25)  8 (100) 3 (37.5) 8 (100) 
Missing   2 (25)    
Histological variant 
ADC 7 (87.5) Endometrial 5 (62.5) IDH-WT 5 (62.5) ADC 7 (87.5) Serous 5 (62.5) Clear Cell 4 (50) 
Mucinous 1 (12.5) Mucinous 1 (12.5) Astrocytoma 1 (12.5) NOS 1 (12.5) HG Serous 2 (25) Mixed 1 (12.5)   

Serous 1 (12.5) Missing 2 (25)   Missing 1 (12.5) Missing 3 (37.5)   
Clear Cell 1 (12.5)          

Fig. 3. CLG efficiently recovered CTCs from cancer patient’s blood (TRAP4MET clinical trial). (A) Schematic representation of CTCs isolation 
using CLG. (B) CTCs isolated from patients from the TRAP4MET clinical trial using CLG. 7 cc patient’s blood were Ficoll-paqued and isolated cells 
suspended in Serum Free media and placed on CLG in 8-well chamber slide. Cells were allowed to migrate 16h and then fixed in 2 % FA-HAase and 
stained with DAPI, Alexa488-anti human CD45 and Alexa594-anti-human panCK. As negative control, HD blood samples were searched for DAPI+/ 
pan-CK+/CD45-cells (DAPI+/pan-CK+/CD45-mean count/cc of 0,33 ± 0,32). 

Table 2 
Isolated CTCs-TRAP4MET clinical trial patients. CTCs were isolated using Screen Cell and CXCL12-loaded hydrogel (CLG) from 
48 patients. CTCs counts as number of CTCs/cc of blood ±standard deviation. CRC = colorectal cancer, EC = endometrial 
cancer, GBM = glioblastoma, LC= Lung cancer, OC= Ovarian Cancer, RCC= Renal cell carcinoma.  

Disease CTCs/cc SC CTCs/cc CLG CLG/SC ratio 

CRC 5,46 ± 9,04 1,41 ± 1,19 0,26 
EC 4,25 ± 8,48 0,91 ± 0,80 0,21 
GBM 0,17 ± 0,31 1,98 ± 2,87 11,89 
LC 0,54 ± 0,67 1,34 ± 0,86 2,47 
OC 1,00 ± 1,13 1,88 ± 1,62 1,88 
RCC 3,50 ± 5,49 4,29 ± 6,12 1,22 
TOT 2,49 ± 5,64 1,97 ± 2,97   
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ScreenCell. Herein, isolated CTCs infiltrate the hydrogel and sense CXCL12. CLG-CTCs were identified as epithelial 
(CD45-/pan-CK+/DAPI+) within the majority of immune (CD45+/pan-CK-/DAPI+) cells. The ongoing molecular characterization 
will better define the biological features of CLG-CTCs as also immune/mesenchymal cancer associated cells express pan-CK [48–50]. It 
was previously reported that pseudo niche might trap CTCs. In murine model a subcutaneous hyaluronic acid-erythropoietin/CXCL12 
cancer trap attracted circulating prostate cancer cells reducing metastasis [51] and in murine breast cancer intraperitoneal poly-
caprolactone microspheres-CXCL12 increased immune cell recruitment [52]. We previously demonstrated that CLG attracted CXCR4+
CTCs in “in vivo” melanoma model [39]; herein we showed for the first time that CLG is able to isolate and enumerate human 
migrating/infiltrating CTCs in patients affected by advanced/metastatic solid cancer (lung, colon, ovarian, endometrium, lung and 
glioblastoma). CLG is feasible and sensitive in solid cancers (lung, ovarian and glioblastoma) orphans of clinically validated and 
regulatory-cleared method for CTCs. In glioblastoma, although rare, extracranial metastasis are reported as tumor representative and 
relevant for prognosis [53]. GBM-CTCs acquired mesenchymal/stem markers, are resistant to genotoxic treatments, able to repopulate 
locally and contribute to new tumor formation [54,55]. Herein we found that CLG identified CTCs in 5/8 GBM patients with a CTCs 
count 10-fold higher than ScreenCell suggesting a potential use in glioblastoma CTCs detection. In ovarian cancer, spread is mainly 
peritoneal; nevertheless, CTCs were relevant for prognosis [56–58]. EpCAM-based approach was limited in OC [59] while size based, 
density gradients and microfluidic devices were reported [60]. Nevertheless, multiplicity of devices and lack of external validation 
limited their use [61]. OC-CTCs were reported to overexpress CXCR4, MUC1, CK19, CD24, CD44, and TIMP1 and may have hybrid 
epithelial/mesenchymal phenotype [60,62–64]. In the manuscript, CLG identified CTCs in 8/8 OC patients with a CTCs count of 1,88 
± 1,62 CTCs/cc, which is almost 2-fold higher than ScreenCell. In lung cancer, CTCs are prognostic [65,66] and isolated through size, 
density gradients, EpCAM-immunomagnetic and microfluidic devices. EpCAM-negative CTCs were significantly higher than 
EpCAM-positive CTCs in stage IV patients and correlate with shorter OS and therapy resistance [67–69]. Moreover, CTCs from NSCLC 
patients co-express keratin and vimentin [70] suggesting cellular transition toward the mesenchymal phenotype. In TRAP4MET, 
CLG-CTCs cells were isolated in 6/8 LC patient’s with a mean count of 1,34 ± 0,86 CTCs/cc which is 2.47 fold higher compared to 
ScreenCell (p = 0.0379) suggesting that the evaluation through CLG may improve CTCs isolation. To this aim, a new Clinical Trial 
(TRAP4MET-1) is actually enrolling 60 OC and 60 NSCLC patients to evaluate the prognostic/predictive role of CLG-CTCs with 

Fig. 4. CLG isolated CTCs with higher efficiency than Screen Cell in OC, LC and GBM patients. Ten milliliters of blood were collected, 7 cc 
used for CLG-CTCs and 3 cc for Screen Cell™ CTCs isolation. (A) Total CTCs isolated with CLG vs SC; (B) Correlation analysis (Passing-Bablok 
regression and Bland-Altman plot); (C) Mann-Whitney test for independent samples analysis; (D) Wilcoxon test for paired samples analysis. 

Table 3 
Passing and Bablok regression analysis. Intecept A and Slope B with their 95 % confidence interval (CI).  

Passing and Bablok Regression Equation: y = 0,28 + 1,20 x 

Intercept A 95 % CI Fixed/constant bias Slope B 95 % CI Proportional bias Cusum test for linearity 

0,28 0 to 0,83 YES 1,20 0,54 to 2,57 NO Significant deviation from linearity  
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particular interest for PARPis sensitivity or immunotherapy eligibility and to elucidate their molecular features. 

3.1. Limitation of the study 

The TRAP4MET trial recognizes four main limitations: 1. patient’s/number of tumor analyzed and, thus, 2. lack of prognostic/ 
predictive meaning; 3. comparison between very different approaches (CLG identifies CTCs through invasion of hydrogel/migration 
toward CXCL12 while Screen Cell separates CTCs based on size); 4. lack of CLG-CTCs molecular characterization. As OC and LC were 
the best performing, the ongoing new clinical trial (TRAP4MET-1) will enroll 60 OC and 60 NSCLC patients to evaluate the CLG 
isolated CTCs prognostic/predictive value and to attempt their molecular characterization. 

4. Conclusions 

CLG, CXCL12-loaded gel, allows peripheral blood CTCs identification and enumeration. The CXCL12 allowed to capture end 
enumerate the CTCs possibly more prone to generate metastasis mainly in patients with ovarian, lung and glioblastoma. In conclusion, 
CLG is an easy and feasible device to isolate, enumerate and characterize human metastatic CTCs through a CTCs functional isolation. 

5. Materials and methods 

5.1. Cell lines 

Human colon cancer cells HT29, human ovarian cancer cells OVCAR 8 and human lung cancer cells H460 were cultured in RPMI 
(Invitrogen, San Diego, CA, USA). Human Renal cancer cells A498 were cultured in Iscove’s Modified Dulbecco’s Medium (IMDM) 
(Gibco BRL, Grand Island, NY). Cell lines derive from “NCI 60 cancer cell line collection” obtained directly from the National Cancer 
Institute’s Developmental Therapeutics program (NCI-DTP) [71]. Medium was supplemented with 10 % fetal bovine serum (FBS), 
penicillin (100 μg/mL), streptomycin (100 μg/mL) (Invitrogen, Carlsbad, CA). Cells were maintained in 5 % CO2 at 37 ◦C and test 
proved mycoplasma-free. For cytotoxicity assay, 2000 cells/well were seeded in triplicate into 96-well plates and 24 h later cells were 
treated with 5-Fluoruracil (5-FU). Cells were incubated at 37 ◦C with 5 % CO2 for 72 h, followed by SRB assay. The optical density was 
determined at 540 nm by a microplate reader. IC50 is the concentration at which growth was inhibited by 50 %. 

5.2. Cell migration 

For migration assay 24-well inserts (Corning, Corning, NY) with poly-carbonate membranes (8 μm pore size) were used. Mem-
branes were coated with collagen (human collagen type I/III) and fibronectin (20 μg/mL). HT-29, HT29-EG and HT29-CLG cells (1 ×
105 cells/well) were seeded into the upper chambers in RPMI medium with 0.5 % BSA alone or in the presence of the CXCR4 
antagonist R54 [40]; 100 ng/mL CXCL12 was added in the lower chambers. After 16 h in a humidified incubator, non-migrating cells 
were removed from the upper chamber using a cotton swab, and the cells that had migrated to the lower surface of the membrane 
insert were fixed in 4 % (w/v) paraformaldehyde in PBS and stained with DAPI (1:25.000, sc-3598 Santa Cruz for 15min). Cells were 
imaged fluorescent microscope (Carl Zeiss, Axio Scope.A1) and counted (number of cells in 10 randomly chosen fields). Migration was 
defined as migration index (number of cells migrating toward CXCL12/number of cells migrating toward BSA). 

5.3. Colony formation assay 

70–80 % grown human colon cancer cells (HT29, HT29-EG and HT29-CLG) were detached with trypsin and vital cells counted 
(Trypan blue exclusion). 500 cells were seeded into single well of 6-MW in 2 ml and allowed to grow for one week then cells were fixed 
and stained using crystal violet and washed in PBS. Colonies of at least 50 cells counted. 

5.4. Three-dimensional spheroids growth 

HT29, HT29-EG and HT29-CLG spheroid were obtained through hanging drops. 50 μL media containing 500 cells (1x104 cells/ml) 
was seeded into inverted Petri dish lid and at least 20 drops per dish were plated to allow grown for 72 h. Images of individual 
spheroids were captured via optical inverted microscope (Axiovert10 Carl Zeiss, Germany, using 10x objective) on day 3. Images were 
analyzed with ImageJ (v. 1.53). 

5.5. EG/CLG infiltration-recovery assay 

The commercially available Hyaluronic Acid based gel Belotero Intense® was purchased from Merz Pharma. CXCL12 (300 ng/ml, 
R&D System) was dropped onto the sterile gel, gently mixed and immediately used. 150 μl Empty Gels (EG) or CLG were placed in a 
single well of an 8-well chamber slide. For gel infiltration assay 100-500-1000 A498 (renal cancer), HT29 (colon cancer), OVCAR8 
(ovarian cancer) or H460 (lung cancer) cells were seeded over the gels in 150 μl Serum Free (SF) media and allowed to infiltrate 16 h. 
Cells were then fixed with 400 μl 2%FA + Hyaluronidase (HAase) for 6 h, washed three times in PBS and stained with DAPI (1:25.000, 
sc-3598 Santa Cruz) for enumeration at fluorescent microscope (Carl Zeiss Axio Scope.A1). For gel recovery, 200 cells HT29, A498, 
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OVCAR8 or H460 were suspended in 150 μl SF media, seeded on 150 μl EG or CLG and allowed to migrate ON. Cells were recovered by 
gel digestion with HAase and grown in complete media for 6 days. 

Human cancer cells (100 cells, HT29 and H460) were spiked were spiked in 3,5 cc HD whole blood and ficoll-paqued. Isolated cells 
were suspended in 600 μl SF media, seeded on 4 wells (150μl/well) of 8-well chamber slide containing 150 μl CLG and allowed to 
migrate for 16 h. Cells were fixed in 2 % FA-HAase and stained with anti-hCD45-Alexa488 (clone HI30, Biolegend, cat.304017), 
Alexa594-anti-human panCK (clone C-11, Biolegend cat. 628606), pan-and DAPI (1:25.000, sc-3598 Santa Cruz). Spiked cancer cells 
were identified as DAPI+/pan-CK+/CD45-cells; as control HD blood samples were also CLG-assessed. The same number of blood 
spiked cells were seeded on collagen/fibronectin functionalized coverslips, centrifuged, 4 % FA fixed and stained with DAPI to assess 
the precise number of spiked cells. 

5.6. Flow cytometry 

Surface markers were assessed by flow cytometry with FACSAriaIII cytometer (BD Biosciences, San Jose, CA, USA) and FACS-Diva 
software 8.1 (BD Biosciences, San Jose, CA USA). 1x104 cells/tube were harvested and incubated with specific or isotype control 
antibodies for 30 min at 4 ◦C in PBS-0.25 % Sodium Azide in the dark, washed in PBS and analyzed. PE Anti-Human CXCR4 antibody 
was purchased from R&D (clone 12G5), PE Mouse Anti-Human EpCAM (clone HEA-125) and PE mouse anti-human E-cadherin (clone 
67A4) antibodies were from Milteniy Biotech. 

5.7. Real-time-PCR 

RNA was extracted with TRIzol (Invitrogen, Carsbald, CA, USA) according to manufacturer’s instructions. Quantitative real-time 
PCR was executed using SYBR Green Master Mix (Sensi mix, Bioline); data were analyzed on QuantStudio™ 5 Real-Time PCR System 
with 2− ΔΔCt method. Target mRNA expression was normalized on β-actin (BACT) expression. See Supplementary Methods for full 
Primers list. 

5.8. TRAP4MET clinical trial 

TRAP4MET is a monocentric, biological, no-profit, clinical trial in which 48 metastatic cancer patients were evaluated for CLG- 
dependent CTCs isolation and characterization in comparison with Screen Cell filters. Forty-eight advanced solid cancer patients at 
diagnosis (8 colon (CRC), 8 lung (LC), 8 ovary (OC), 8 renal (RCC), 8 endometrium (EC) and 8 glioblastoma (GMB)) were eligible for 
the study. 10 cc blood have been collected from each patients and used as follow: a. 7 cc for CTCs isolation using CLG b. 3 cc were used 
for CTCs isolation using Screen Cell™. When drawing blood, the first milliliter of blood collected was eliminated to avoid cutaneous 
epithelial cells contamination during the sampling. For CTCs isolation using CLG 7 cc patient’s blood were collected in EDTA con-
taining tube and stored at +4 ◦C until isolation. Blood was Ficoll-paqued within 3 h from drawing and isolated cells were suspended in 
1.2 ml SF media. 150 μl of cell mixture were placed on 150 μl CLG in a single well of an 8-well chamber slide. Cells were allowed to 
migrate 16 h and then fixed in 400ul 2 % FA-HAase and stained with DAPI (1:25.000, sc-3598 Santa Cruz), Alexa488-anti human CD45 
(clone HI30, Biolegend, cat.304017) and Alexa594-anti-human panCK (clone C-11, Biolegend cat. 628606). Cancer cells were iden-
tified as DAPI + pan-CK + CD45− cells and enumerated. 

CTCs were isolated with the ScreenCell filters according to manufacture instructions. Briefly, all blood samples were collected in 3 
ml EDTA tube, inverted, incubated with 4 ml of fixative buffer (ScreenCell, Paris, France) and then filtered through the Cytology 
ScreenCell® device. Filters were then separated and captured cells stained with hematoxylin and pan-CK (ICC). All stained slides were 
evaluated by a consultant pathologist. The clinical study has been designed and developed according to the principles of the Good 
Clinical Practice guidelines of the International Conference on Harmonization and of the Declaration of Helsinki and approved by the 
Ethical Committee of the Istituto Nazionale Tumori di Napoli – IRCCS Fondazione G. Pascale (No. 50/20). All patients provided a 
written informed consent before starting blood samples collection. 

5.9. Statistical analysis 

The data was entered in a Microsoft excel database and imported to MedCalc (MedCalc Software, 10.6 version). We used Bland and 
Altman and Passing and Bablok analysis to know the agreement between ScreenCell and CLG. These analysis are employed to identify 
systematic difference between two different methodologies. In Bland and Altman graph the difference of CTCs count with the two 
methods (CLG minus SC) are on the y axis while the average on the x axis. The plot also show the mean of difference, 95 % CI for the 
mean of difference, and the line of equality. Passing and Bablok regression results are showed with a scatter diagram integrating 
regression line and regression equation (the intercept and slope respectively represents constant and proportional bias). Intercept A 
and slope B and their 95 % confidence intervals are used to define whether there is fixed or proportional bias. Mann–Whitney test was 
used to assess non-parametric data difference in distribution between 2 independent groups distribution and Wilcoxon for paired 
groups distribution. 

Ethics approval and consent to participate 

The clinical study was approved by the Ethical Committee of the Istituto Nazionale Tumori di Napoli – IRCCS Fondazione G. Pascale 
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(No. 50/20) and all patients gave a written consent before starting blood samples collection. 
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