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ABSTRACT
Chromosomal co-existence of metal and antibiotic resistance genes in bacteria offers
a new perspective to the bacterial resistance proliferation in contaminated
environment. In this study, an arsenotrophic bacterium Achromobacter
xylosoxidans BHW-15, isolated from Arsenic (As) contaminated tubewell water in
the Bogra district of Bangladesh, was analyzed using high throughput Ion Torrent
Personal Genome Machine (PGM) complete genome sequencing scheme to
reveal its adaptive potentiality. The assembled draft genome of A. xylosoxidans
BHW-15 was 6.3 Mbp containing 5,782 functional genes, 1,845 pseudo genes, and
three incomplete phage signature regions. Comparative genome study suggested
the bacterium to be a novel strain of A. xylosoxidans showing significant
dissimilarity with other relevant strains in metal resistance gene islands. A total of
35 metal resistance genes along with arsenite-oxidizing aioSXBA, arsenate reducing
arsRCDAB, and mercury resistance merRTPADE operonic gene cluster and
20 broad range antibiotic resistance genes including β-lactams, aminoglycosides,
and multiple multidrug resistance (MDR) efflux gene complex with a tripartite
system OM-IM-MFP were found co-existed within the genome. Genomic synteny
analysis with reported arsenotrophic bacteria revealed the characteristic genetic
organization of ars and mer operonic genes, rarely described in β-Proteobacteria.
A transposon Tn21 and mobile element protein genes were also detected to the
end of mer (mercury) operonic genes, possibly a carrier for the gene transposition.
In vitro antibiotic susceptibility assay showed a broad range of resistance against
antibiotics belonging to β-lactams, aminoglycosides, cephalosporins (1st, 2nd,
and 3rd generations), monobactams and even macrolides, some of the resistome
determinants were predicted during in silico analysis. KEGG functional orthology
analysis revealed the potential of the bacterium to utilize multiple carbon sources
including one carbon pool by folate, innate defense mechanism against multiple
stress conditions, motility, a proper developed cell signaling and processing unit and
secondary metabolism-combination of all exhibiting a robust feature of the cell in
multiple stressed conditions. The complete genome of the strain BHW-15 stands as a
genetic basis for the evolutionary adaptation of metal and the antibiotic coexistence
phenomenon in an aquatic environment.
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INTRODUCTION
With the passage of time, bacteria have acquired a number of mechanisms for both
metal and antibiotic resistances upon evolution. The genetic plasticity of bacteria allows
them to acquire such survival strategies by mutations, alteration of gene expression or
genetic material acquisition which leads to the harborage of resistance determinants
within (Silver & Phung, 1996; Munita & Arias, 2016).

Metals are common elements found throughout the earth’s crust naturally, and these
are widely distributed in the environment (Tchounwou et al., 2012). Each metal
maintains a distinct biogeochemical cycle on earth and can transfer from animal to
bacteria as part of cycling processes. Some metals are essential and some are toxic to
cellular system depending on metal species as well as cell type. For a bacterium, metals
including nickel, iron, copper, and zinc are required as trace elements and are essential
for some metabolic reactions. On the contrary, some metals such as mercury, silver and
cadmium are harmful even at very low concentration and have no biological role to
the organism (Hughes & Poole, 1989). Bacterial associations with metals are quite diverse
and the genomic level induction for their tolerance or transformation depends on the
exposure level.

On the other hand, extensive use of many antibiotics and their disposal from clinical
waste and industrial origin may contaminate the water. This can act as an inducer for
the dispersion of antibiotic resistance prevalence in both clinical and environmental
bacteria (Salyers & Amabile-Cuevas, 1997; Walsh, 2006). Also, it can lead to a potential
alteration of microbial ecosystems affecting their community composition and functions
(Baquero, Martínez & Cantón, 2008).

Bacteria can acquire resistance to both metals and antibiotics simultaneously. The
co-selection of these resistances can be caused by co-resistance or cross-resistance
occurring through multi-resistance genetic elements such as transposon, integron, and
plasmid (Baker-Austin et al., 2006). A rising concern is the development of antimicrobial
resistance in metal contaminated environments (Wright et al., 2006; Matyar, Kaya &
Dincer, 2008; Tuckfield & McArthur, 2008). A possible mechanism could be the selection
of metal resistance by metal stress acting as a determinant for the antibiotic resistance
acquisition making a bridge between non-antibiotic agents (e.g., metal) and antibiotic
resistance (Summers et al., 1993). It is possible that the way of the selection of resistance
variants for metal may be similar to the selection of antibiotic-resistant strains.

Bangladesh has been noted as the largest massive As poisoning occurrence country
by the World Health Organization (WHO). The reason behind the exposure is for
naturally occurring inorganic As accumulation in the groundwater of several colonized
areas (Smith, Lingas & Rahman, 2000). Therefore bacteria colonizing such environment
might have some As resistance or conversion mechanism within. Previously we found
diverse arsenotrophic bacteria living in arsenic affected groundwater in different areas of
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Bangladesh (Sultana et al., 2017). Having such a metal resistant microbiome its worth
studying their genomic potentiality as well as there other possible resistance mechanisms.
Moreover, a study showed that metal could induce antibiotic resistance in bacteria
(Chen et al., 2015). A genome-wide analysis provides an area for better understanding of
possible environmental co-selection and adaptation processes in bacteria against metals
and antibiotics along with unique metabolism and survival potential in stressed
environment. Therefore, in this study, a draft genome of environmental strain
Achromobacter xylosoxidans BHW-15 collected from As contaminated ground water is
reported and analyzed thoroughly to reveal the genomic features and its innate resistance
focusing on multi-metal resistance and multidrug resistance (MDR), core metabolism
and adaptation potentiality. The isolate was retrieved from As contaminated tubewell
water (total As content 0.01 mg/L) collected from the Bogra district of Bangladesh.

MATERIALS AND METHODS
Bacterial isolation and screening of arsenite transformation
The isolate designated as BHW-15 was retrieved from a tubewell water in Bogra District
of Bangladesh on arsenite supplemented heterotrophic growth medium (Sultana et al.,
2017). Arsenite transformation potential was analyzed by both KMnO4 and AgNO3 assay.
Qualitative KMnO4 screening method was used to determine the arsenite conversion
initially (Fan et al., 2008). KMnO4 has characteristic pink color and it is a highly oxidizing
agent. A total of 500 mL culture was taken in 1.5 mL micro-centrifuge tube and 10 mL of
0.05M KMnO4 was added and the color change was monitored. Phenotypic KMnO4

was verified by AgNO3 test (Salmassi et al., 2002). The isolate was streaked on
heterotrophic solid medium containing two mM sodium arsenite and incubated at 30 �C.
After the growth, 0.1 M of AgNO3 solution was added to the growth plate. Formation
of a brown precipitate was observed. The isolate was also analyzed for the presence of
arsenite-oxidizing aioA gene by polymerase chain reaction using specific primers
(Quemeneur et al., 2008) (Forward: 5′-CCACTTCTGCATGCTGGGMTGYGGNTA-3′,
Reverse: 5′- TGTCGTTGCCCCAGATGADNCCYTTYT-3′) followed by Sanger
sequencing of the PCR product to confirm the gene sequence.

Genome sequencing and assembly
DNA from the pure culture of the isolate BHW-15 was extracted using QIAamp DNA
Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.
The quality and quantity of the extracted genomic DNA were assured by Nanodrop
ND-200 (Thermo Fisher, Waltham, MA, USA) and the integrity was assured by agarose
gel electrophoresis. Whole genome sequencing was performed by Ion-Torrent High
Throughput Sequencing technology. Machine generated data was transferred to the Ion
Torrent server where data was processed through signal processing, base calling algorithms
and adapter trimming to produce mate pair reads in FASTQ format. The FASTQ reads
quality was assessed by the FastQC tool (Andrews, 2010) followed by trimming of low
quality reads and reads less than 200 bp using the Trimmomatic tool (Bolger, Lohse &
Usadel, 2014), where quality cut off value was Phred-20. De novo assembly of the reads was
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performed using SPAdes, (version 3.5.0) genome assembler (Bankevich et al., 2012).
Generated assembled reads were mapped and reordered according to a reference sequence
of A. xylosoxidans A8 complete genome from NCBI (accession number: NC_014640.1) by
progressive Mauve algorithm in Mauve software (Darling et al., 2004).

Identification of bacterial species
Assembled contigs were analyzed by BLAST and the k-mer algorithm in the KmerFinder
2.0 tool to identify the bacterium at species level (Hasman et al., 2014; Larsen et al.,
2014). Whole genome based phylogenetic analysis was performed using REALPHY
(Bertels et al., 2014). Annotated genome comparison was performed by locally collinear
block method in Mauve (Darling et al., 2004). The Plasmid Finder 1.3 tool was used for
the detection of plasmid sequence contamination (Carattoli et al., 2014).

Genome annotation, analysis and metabolic reconstruction
The assembled draft genome of BHW-15 was annotated by multiple annotation
schemes to improve accuracy. Used software includes NCBI Prokaryotic Genome
Annotation Pipeline (Tatusova et al., 2016), PROKKA (e = 0.000001) (Seemann, 2014),
RAST (e = 0.000001) (Aziz et al., 2008) and KAAS (Moriya et al., 2007). Annotated genes by
each software were then cross checked for each tool. For the detection of tRNA and tmRNA,
tRNAscan (Lowe & Eddy, 1997) and Aragorn (Laslett & Canback, 2004) software were
used accordingly. Secondary metabolite gene clusters were identified by anti-SMASH version
4.0.2 software (Medema et al., 2011). The SEED viewer (Aziz et al., 2012) was used for
the exploration and comparative analysis of annotated genes. KEGG MGMapper tool
(Kanehisa & Goto, 2000) was used for metabolic pathway reconstruction.

Antibiotic susceptibility assay
Antibiotic susceptibility test was conducted by Kirby–Bauer disk diffusion method
(Bauer et al., 1966). A total of 14 antibiotics belonging to 10 antibiotic groups covering six
different mode of action including oxacillin, ampicillin, cefalexin, cefuroxime, cefotaxime,
cefepime, aztreonam, polymixin B, gentamicin, doxycycline, chloramphenicol,
azithromycin, nalidixic acid, and nitrofurantoin were used for this study. Antibiotic
susceptibility was interpreted referring to the CLSI guidelines and Antimicrobe
Database (Roberts & Lang, 2009; Clinical and Laboratory Standards Institute, 2009).

Accession number
The whole genome datasets generated and analyzed during the current study are
available in the NCBI GENBANK repository (accession number: PZMK00000000.1).

RESULTS
Whole genome sequencing of the arsenite oxidizing isolate BHW-15 identified the
bacterium as A. xylosoxidans. The assembled filtered draft genome of A. xylosoxidans
BHW-15 strain was 6,301,677 bp assembled into 2,049 contigs. The GC content of the
genome was 65%. The genome possessed 8,159 Coding sequences (CDS) by RAST, 7,627
by NCBI, and 6,732 CDS by PROKKA. Using RASTtk (Brettin et al., 2015) annotation
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scheme in the RAST software, 32% of all genes were located in the generated subsystems
and the rest 50% were out of the subsystem list. The genome contained three
incomplete phage site containing phage-associated phage body protein genes indicating

Figure 1 Phage gene distribution and organization within the genome. The circle (A) represents the
concatenated whole reordered genome. In linear representation of regions (B–D), colored shapes indicate
the relative position and type of the genes it contains. Full-size DOI: 10.7717/peerj.6537/fig-1
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multiple phage confrontation (Fig. 1). The basic features of the genome are summarized
in Table 1. Annotation results from subsystem and pathway reconstruction are
depicted in Fig. 2. BLAST and the SEED close strain analysis found that the genome had
similarity with Bordetella along with other Achromobacter strains. Kmer based genomic
comparison and whole genome based phylogeny showed the A. xylosoxidans BHW-15
had the closest proximity to the strain “A8” (Fig. 3A). Further functional gene comparison
between A8 and BHW-15 using SEED (File S1) and localized co-linear block revealed
that the BHW-15 strain differs in metal resistance gene profile to A8 strain. BHW-15
possess a unique genetic island and organization of aio resistance island along with
distinctive ars island that was absent in A8 strain (Fig. 3B).

Metal resistance genes and operon clusters within the genome of
isolate BHW-15
Both metal and antibiotic-resistant genes were present within the genome of BHW-15.
A total of 35 metal resistance genes along with two arsenic operon gene clusters
(arsenite oxidizing aioBA and arsenate reducing arsRCDAB) and a mercury resistance
merRTPCADE operon gene cluster were present where mer operon is at the right end
of aio operon gene cluster. There is a tn21 transposon-like gene to the right end of
mer operon gene cluster. The genome also possessed copper, zinc, and cadmium
resistance-associated genes (Table 2).

Achromobacter xylosoxidans BHW-15 harbored two oxidase genes namely aioA
(arsenite oxidase large subunit and aioB (arsenite oxidase small subunit) preceded by a
phosphate transporter or inorganic arsenic binding, aioX (periplasmic component gene),

Table 1 General features of the Achromobacter xylosoxidans BHW-15 genome.

Feature Value

Draft genome Size 6,306,677

GC content 65%

NCBI (GeneMarkS+)

Number of coding sequences (CDS) 7,627

Number of protein coding genes 5,782

Number of pseudo genes 1,847

Number of RNAs 125

Number of tRNAs 64

Number of rRNAs 7,18,32 (5S,16S,23S)

Number of ncRNAs 4

RAST SOFTWARE (RASTtk)

Genes in subsystem 2,533

Hypothetical 99

Non-Hypothetical 2,434

Genes not in subsystem 5,626

Hypothetical gene 2,102

Non-hypothetical gene 3,524
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and a sensor histidine kinase, aioS (a transmembrane signal transduction gene)
(Wolanin, Thomason & Stock, 2002). Following aioA, there was an electron transporting
Cytochrome c551/c552 gene, a Molybdenum cofactor biosynthesis gene moaA and an
As operon repressor gene. In the island, two version of aioA gene were detected in
two overlapping reading frames. The genome also contained a complete mercury
resistance operonmerRTPADE gene island near to the arsenite oxidizing aio operonic gene
island. The distance between these two islands was 2,304 bp with only one gene
(putative phosphatase) in-between.

The chromosome of A. xylosoxidans BHW-15 also possessed Arsenate reducing
operon gene island arsRCDAB surrounded by ABC transporter and Phosphate transport

Figure 2 Subsystem (A) and Pathway reconstruction KEGG (B) hit distribution for A. xylosoxidans BHW-15.
Full-size DOI: 10.7717/peerj.6537/fig-2
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system genes. Synteny analysis with other metal converting bacteria showed that the
genomic organization of these resistance island has significant distinction and content
similarity with other metal resistant bacteria (Fig. 4).

Figure 3 Genome comparison of closely related Achromobacter species. Whole genome based phy-
logeny (A) and Locally collinear block (LCB) method (B). Full-size DOI: 10.7717/peerj.6537/fig-3

Table 2 Identified metal resistance genes within the draft genome of A. xylosoxidans BHW-15.

Metal resistance genes Genes

Arsenite oxidation aioS, aioX, aioB, aioA

Arsenate reduction arsH, arsR, arsC, arsD, arsA, arsB

Mercury resistance operon merR, merT, merP, merC, merA, merD, merE

Mercuric reductase miR

Chromium resistance chrB, chrA, chrF

Copper homeostasis ciA, copZ, clfA, mO, hL, copG, crB

Copper tolerance cutA, corC

Zinc resistance zraR

Cobalt-zinc-cadmium resistance czcA, czcC, czsB, cusA, czrR, hmhK, tR
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Antibiotic resistance genes within the genome of isolate BHW-15
In A. xylosoxodans BHW-15, several antibiotic-resistant genes co-existed along with
metal resistance genes. Present genes were involved in several different antibiotic resistance
mechanisms by enzymatic degradation and efflux pump systems. According to RAST, the
genome possessed resistance genes against β-lactams, Fluoroquinolones, and

Figure 4 Synteny analysis and gene organization of Metal resistance operonic gene clusters.
(A) Arsenite oxidase aio and Arsenate reductase ars operonic gene clusters. Two red arrows in the aio
operon of BHW-15 indicate two aioA genes in two different overlapping reading frames. (B) Mercury
resistance mer operonic gene cluster. Full-size DOI: 10.7717/peerj.6537/fig-4
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Aminoglycosides antibiotics (Table 3). Using in vitro antimicrobial susceptibility tests, the
bacteria showed resistance showed resistance against beta lactams from narrow spectrum
to broad-spectrum penicillin, 1st generation to 3rd generation cephalosporins,
aminoglycosides, monobactam, andmacrolides, whereas it showed susceptibility to polymyxin
B, tetracycline, nitrofuran and moderate susceptibility to 4th generation ciprofloxacin,
chloramphenicol, and nalidixic acid (Table 4). These resistances suggest the possible
expression of detected antibiotic resistance genes within the bacterium. Several genes for efflux
systems like MDR MAR locus, multidrug-resistant tripartite system and efflux system
complex OM-IM-MFP were also detected which might facilitates active efflux of antibiotic or
metal. Within the genome one pili gene cluster associated with bacterial movement was also
present. In addition to the metal and antibiotic resistance, these bacteria possess several
genes that may be associated with its defense mechanism and bacterial pathogenesis.

Signaling and stress response genes

Metabolic pathway analysis

Pathway reconstruction for the genes of A. xylosoxidans BHW-15 genome produces a
number of complete and incomplete pathways (one or two blocks missing). In the genome

Table 3 Identified antibiotic resistance genes within the draft genome of A. xylosoxidans BHW-15.

Antibiotic resistance genes Genes

β-Lactamases

β lactamase bl

β-lactamase Class C and other penicillin binding proteins blC

Aminoglycoside modefying enzyme

Streptomycin 3″-O-adenylyltransferase adaA1

Spectinomycin 9-O-adenylyltransferase adaA2

Efflux pumps

Outer membrane component of tripartite multidrug resistance system OM

Inner membrane component of tripartite multidrug resistance system IM

Membrane fusion component of tripartite multidrug resistance system MFP

RND efflux system, membrane fusion protein cmeA

RND efflux system, inner membrane transporter cmeB

RND efflux system, outer membrane lipoprotein cmeaC

Transcription repressor of multidrug efflux pump acrAB operon acrR

Transcription regulator of multidrug efflux pump operon, of AcrR family tetR

Probable transcription regulator protein of MDR efflux pump cluster reg

Multi antimicrobial extrusion protein mat_all

Multidrug and toxin extrusion (MATE) family efflux pump ydhE/norM

Type I secretion outer membrane protein, TolC precursor tolC_14

Macrolide-specific efflux protein macA,

Macrolide export ATP-binding/permease protein macB,

Acriflavin resistance protein acrB

MAR locus

Multiple antibiotic resistance protein marC
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these detected pathways are distributed under five major KEGG pathway categories
including cellular process, metabolism, environmental information processing, genetic
information processing, and human diseases (Fig. 2). BHW-15 possesses several genes
that are associated with different type of adaptation supporting pathways that might
help the bacteria being robust in its life span. These pathways include motility, flagellar
assembly, quorum sensing, biofilm formation; biosynthesis of vitamin, co-factors, folate,
one carbon pool, secondary metabolites like terpinoids, polyketides etc. Moreover,
several xenobiotic degradation metabolism pathways like amino benzoate degradation,
cytochrome P450 were also found supported according to the genomic context.

Secondary metabolites analysis
According to AntiSMASH, the genome possesseses five secondary metabolite gene clusters
with 14 putative gene clusters. Detected secondary metabolites include ectoin (osmolites
protective substance) (Bernard et al., 1983), resorcinal, arylopolyene (protects from
reactive oxygen species) (Schöner et al., 2016), and terpene (ecological role), phosphonate
(global phosphorus cycle) (Yu et al., 2013) that supports the bacteria for surviving in
harsh environment (File S2).

DISCUSSION
The genome analysis helps to achieve a pertinent inference for the coexistence of metal
and antibiotic resistance genes. The isolate was retrieved from an arsenic contaminated
tubewell water. Therefore, it can be expected to find some sort of As resistance in the
genome. In genome analysis, two As metabolizing operon like gene clusters aioSXBA
(oxidation) and arsRCDAB (reduction) were detected. Presence of such dual system
was previously reported in highly efficient arsenite oxidizing bacteria Achromobacter

Table 4 Antimicrobial susceptibility test toward different antibiotics for A. xylosoxidans BHW-15.

Antibiotic group Mode of action Generic name Antibiotic Result

Penicillins B-lactamase inhibit Oxacillin (narrow) OX1 R

Ampicillin (broad) AMP10 R

Cephalosporin (1st G) Cefalexin CL 30 R

Cephalosporin (2nd G) Cefuroxime CXM 30 R

Cephalosporin (3rd G) Cefotaxim CTX 30 R

Cephalosporin (4th G) Cefepime FEP 30 MS

Monobactams Aztreonam ATM 30 R

Polymixin B Outer membrane permeability Polymixin B Pb300 S

Aminoglycosides Protein synthesis (30S) Gentamicin Cn10 R

Tetracycline Doxycycline DO 30 S

Chloramphenicol Protein synthesis (50S) Chloramphenicol C 30 MS

Macrolides Azithromycin AZM 15 R

Quinolone DNA Topoisomerase Nalidixic acid NA 30 MS

Nitrofurans DNA damage Nitrofurantoin F 300 S

Note:
R, Resistant; S, Sensitive; MS, Moderately sensitive; G, Generation.
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arsenitoxydans SY8 (Li et al., 2012) suggesting the A. xylosoxidans BHW-15 could also
have a high efficiency in arsenite oxidation. Analysis of synteny found that such
organization of aio was quite distinctive. A possible way for such organization to function
in arsenite oxidation is, AioS sense the As (III) in the environment generating proper
signal to activate other genes, AioX binds and transport the arsenite into the cell, aioBA
encodes the oxidase enzyme which converts arsenite to arsenate, CytC accepts the
electron and transport to the cellular electron transport chain and finally the system is
controlled by the arsenical resistance repressor gene in the right end of the operon.
This scenario supports the aerobic respiratory oxidation of arsenite (Gihring & Banfield,
2001). In arsenate reduction by ars genes, arsC encodes the arsenate reductase and expand
substrate specificity for transporting by efflux transporters ArsB, ArsR, and ArsD
function as primary and secondary regulators of the ars operon accordingly, and ArsA
encodes membrane-associated ATPase protein attached to ArsB energizing the efflux
pump by ATP hydrolysis (Rosen, 1990; Liu & Rosen, 1997; Silver, 1998; Li et al., 2002).
Such arrangement of arsenate reductase was similar to other high arsenate metabolizing
bacteria. Notably, both of the aio and ars operons were similar to high arsenic
transforming Herminimonas sp. While Herminimonas sp. is rare in the environment
and found in highly metal contaminated zone, BHW-15 was found in groundwater but
gained similar genes, indication of high arsenic resistance activity. However, how these
two As oxidation-reduction systems are regulated in the bacterial cell in an aquatic
environment is not clearly understood. Considering the functions and the genetic
organization a possible mechanism for the regulation of these two systems can be deduced.
In which, both operons can either work individually and efflux out converted arsenate
(aio) and arsenite (ars) or work as a unit where environmental arsenite is converted to
arsenate inside the cell by aio operonic genes and then re-converted upon expedition
of deposition tolerance, to arsenite (ArsC), leading to the eviction (ArsB) from the cell by
ars operon. Thus, detoxification of arsenite and arsenate is performed (Carlin et al., 1995).
However, aio operonic island didn’t have any regulator of its own; therefore, these
cluster might work with other functional operon to perform successfully which could be
themer operon existed just upstream to aio operon or may be with ars operon as suggested
above. This mercury resistance mer operon was found juxtaposed to aio (2,304 bp gap
with a putative phosphatase gene in between). At the end of mer operon, a tn21 gene
was found suggesting a transposon-mediated resistance development in the bacterial
genome (Cynthia, Ruth & Anne, 1999). In mer operon, merR and merD act as regulator
and coregulator consecutively, merP encodes for periplasmic mercury (2+) binding
protein, merA encodes for mercuric ion reductase, and merT, merC, and merE encode for
mercury transporting protein (Nascimento & Chartone-Souza, 2003). Along with As
and Hg, the genome also possesses resistance genes against Cu, Zn, Cd, Cr, and Co.
Metals can interfere with several bacterial cellular functions like protein activity, oxidation,
nutrient assimilation, membrane stability, and DNA replication (Nies, 1999; Lemire,
Harrison & Turner, 2013). In response, bacteria develop metal resistance by efflux,
reduction, detoxification, or biofilm formation (Harrison et al., 2008). Although, Cu
and Zn are essential as trace elements others are very toxic to bacteria (Hughes & Poole,
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1989). Detected Cu, Zn, Cd, and Cr resistance genes were found involved in similar
functions for resistance mechanism such as sensing (cusR, czrR, hmhK), efflux (ciA, clfA,
czcA, cusB, chrA, corC), oxidation (mO), resistance (crB, czcA, czcD, chrB), and
repressor (copG, tR, cusR, zraR).

In a similar manner, the genome harbors several antibiotic resistance genes responsible
for beta-lactamase, aminoglycosides, MDR efflux pumps, and MDR tripartite system.
Detected bL and blC genes encode for beta-lactamase and other penicillin binding
protein protecting against beta-lactam ring inhibiting antibiotics (Neu, 1969). Also, in
supportive manner, pathway analysis showed that these genes support a complete beta-
lactam resistance pathway. In the antibiotic susceptibility test, the isolate showed resistance
against almost all beta-lactams such as penicillin, 1st–3rd generation cephalosporin,
monobactam, and moderately sensitive to the 4th generation cephalosporin. The isolate
also found resistant to aminoglycosides with adaA1 and adaA2 adenyl transferase genes
protecting against protein synthesis inhibition, along with moderately sensitive to
chloramphenicol and quinolone. Thus, A. xylosoxidans BHW-15 has developed a
multilayer resistance to membrane modification to protein-DNA synthesis inhibition by
various antibiotic drugs. With some deviation these antibiotic resistance genes were
also found in other A. xylosoxidans strains (Amoureux et al., 2013; Jakobsen et al., 2013).

Therefore, all these antimicrobial resistance genes might have been active within the
genome that satisfy the explanation for such broad range antimicrobial resistance activity
showed by the isolate. This broad metal and antibiotic resistance scenario indicates the
evolutionary adaptation and resistance development of the bacteria by high selective
pressure in the environment. In the genome, presence of pili genes for motility and stress
tolerating genes for heat-cold shock, detoxification, osmotic pressure, carbon starvation,
dormancy, etc. support the bacterial efficacy for thriving in high contamination
(Stevenson, 1977; Thieringer, Jones & Inouye, 1998; Watson, Clements & Foster, 1998;
Mille, Beney & Gervais, 2005; Jones & Lennon, 2010;Maleki et al., 2016; Essa, Al Abboud &
Khatib, 2018; Sun, Liu & Hancock, 2018).

In addition, three phage signatures in the chromosome also indicate bacterial
adaptation and recovery against phage attack. Phage propagation in the environment
can determine the host bacterial diversity and variation (Casjens, 2003; Koskella &Meaden,
2013; Parmar et al., 2017).

These three phage regions (Fig. 1) within the genome can be explained as the survival
of bacteria which also leads to the bacterial robust feature (Koskella & Brockhurst, 2014).
It is not known if these phage immunities have some effect with such high metal—
antibiotic resistance or vice-verse but it shows a possibility that this resistance potential
might somehow facilitate the bacteria to overcome phage attacks.

Hence, considering the co-existence phenomenon, some questions arise like how this
bacterium could have achieved such antibiotic and metal cross resistances in the natural
aquatic environment, how these two different resistance might interact with each other
and is there any impact of one resistance to the regulation of the other one. A whole
genome study of pathogenic strain A. xylosoxidans NH44784-1996 causing cystic
fibrosis revealed almost similar metal-antibiotic resistance genes possession. But there was
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a significant difference in the metal and antibiotic resistome. Such as arsenite oxidizing
genes in BHW-15 were completely absent in NH44784-1996 and antibiotic resistance
genes and developed resistance in NH44784-1996 was much higher than BHW-15 strain
(Tables 2 and 3) (Jakobsen et al., 2013).

Therefore, a possible explanation for this co-existence might be, in the environment
metal exerts a selective pressure that indirectly induces the selection of antibiotic
resistance, especially in the environment contaminated with these two elements (Foster,
1983; McIntosh et al., 2008) or alternatively antibiotics might exert positive selective
pressure on bacteria to acquire metal resistance, thus one resistance might have
promoted the development of others leading to the coexistence phenomenon in bacteria
(Baker-Austin et al., 2006).

While in the aquatic environment, antibiotics from the industrial origin and antibiotic
resistance genes in pathogenic bacteria from animal origin are circulating due to
excessive use of the antibiotics (Walsh, 2006). It has been reported that antibiotic
disturbance in the environment affects primary microbial process such as nitrogen
transformation, methanogenesis, and sulfate reduction (Ding & He, 2010). Likewise, as
antibiotic interferes with the fundamental cellular process it may also impact on metal
resistance gene regulation. Alternatively, the metal may also interfere with antibiotic
resistance gene regulation. Therefore, the presence of antibiotic resistance genes might
have impact on the metal resistance regulation or the vise verse. In the KEGG analysis, a
number of cellular processes like survival and adaptation promoting pathways have
been observed within the genome. It can be inferred from its genetic potential of quite
developed carbon and energy metabolisms that these systems might facilitate the
bacterium to utilize diverse carbon source for energy production and surviving diverse
contaminated environment. Presence of the multiple stress tolerant genes and genes for
defensive efflux pump, signaling, quorum sensing, flagella, anti-toxin metabolism all
together gives an idea that total process in combination might be helping the bacteria to go
on through resistance adaptation process. In genome comparison some arsenic related
genes were not observed in the same species from different source. This indicates the
existence of resistant determinant acquisition mechanism of the bacterium upon necessity.
Also, genomic profile suggests a possible mobilome of metal resistance in the bacteria
(As, Hg) where there was a Tn21, the flagship of transposon on the upstream of the As-Hg
operons. Disease association based on the resistance genes that were found is worth to
study further (Harbottle et al., 2006; Jakobsen et al., 2013; Ventola, 2015; Zaman et al.,
2017). Described association also supports the bacterial pathogenicity as an opportunistic
pathogen indicating it might exacerbate the disease condition of immune suppressed
patient (Newman et al., 1984; Turel et al., 2013; Dupont et al., 2018).

All together the total scenario is alarming to consider the multi-potential ability of
this environmental A. xylosoxidans BHW-15 and cast a new insight on metalantibiotic
resistance proliferation. Further study of the other arsenic or metal metabolizing
bacteria focusing on antibiotic metal cross resistance might reveal the inner mechanism
and the future resistance pattern and risk to the environment.
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CONCLUSIONS
Finally, our data supports the hypothesis that environmental selective pressure of
antibiotic or metal from pollution can lead to the development of multi-metal and
antibiotic-resistant bacteria. It also establishes a possibility for the interaction between
the metal and antibiotic resistance regulation and metabolic potentiality in relation.
Thus, it stands as a basis for further co-existence of resistance and metabolic potential
interaction study to understand the metal-antibiotic resistance interaction in
biogeochemical cycle and its impact on microbiome.
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