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Abstract
Neuronal networks can generate complex patterns of activity that depend on membrane

properties of individual neurons as well as on functional synapses. To decipher the impact

of synaptic properties and connectivity on neuronal network behavior, we investigate the re-

sponses of neuronal ensembles from small (5–30 cells in a restricted sphere) and large

(acute hippocampal slice) networks to single electrical stimulation: in both cases, a single

stimulus generated a synchronous long-lasting bursting activity. While an initial spike trig-

gered a reverberating network activity that lasted 2–5 seconds for small networks, we found

here that it lasted only up to 300 milliseconds in slices. To explain this phenomena present

at different scales, we generalize the depression-facilitation model and extracted the net-

work time constants. The model predicts that the reverberation time has a bell shaped rela-

tion with the synaptic density, revealing that the bursting time cannot exceed a maximum

value. Furthermore, before reaching its maximum, the reverberation time increases sub-lin-

early with the synaptic density of the network. We conclude that synaptic dynamics and con-

nectivity shape the mean burst duration, a property present at various scales of the

networks. Thus bursting reverberation is a property of sufficiently connected neural net-

works, and can be generated by collective depression and facilitation of underlying

functional synapses.

Introduction
Synchronous neuronal activity is determined by intrinsic and synaptic properties of neurons
participating in the network. Patterned stimulation of one of the participating neurons can
lead to reverberations of selective neural elements [1, 2]. The cellular parameters that
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determine the properties of a synchronized network burst are still not fully understood [3, 4].
Earlier studies proposed that membrane currents generated by calcium and calcium-gated po-
tassium channels create plateau potentials which can depolarize neurons for seconds [5, 7]. On
the other hand, synaptic properties are essential for the generation and maintenance of the
bursts [6, 8 9]. Recent studies propose that specific ‘hub’ long range GABAergic neurons in the
hippocampus are the ones to trigger and synchronize network bursts [10]. In hippocampal
neurons grown in microcultures [9], network bursts induced by a single action potential trig-
gered in one neuron of the network, reverberate for several seconds. This reverberating burst is
followed by a long refractory period, assumed to be caused by the depletion of neurotransmit-
ters from presynaptic terminals [9].

In the present study, we investigated this property across networks of various scales. Neuro-
nal network modeling has shown that facilitation-depression networks can underlie reverbera-
tion in large neuronal ensembles [11, 12, 13, 15], suggesting that a few seconds of reverberation
correspond to a burst duration that in another context characterizes short-term memory [15].
Mean-field modeling approaches are constantly used to study the effect of synaptic connection
on network properties [11, 16, 17].

Because the mean-field description of depression-facilitation synapses does not depend on
the number of neurons, small and large neuronal ensembles with similar local connectivity
should produce similar responses. Facilitation and depression are short-term neuronal proper-
ties, detected in electrophysiological experiments as changes in the amplitude of excitatory
postsynaptic currents (EPSCs) evoked by a paired stimulation with short inter-stimulus inter-
vals (tens of milliseconds) [11]. Both mechanisms originate at the synapse and while depres-
sion is associated with depletion of presynaptic vesicles, facilitation reflects an increased
vesicular release probability due to accumulation of residual calcium at the presynaptic termi-
nal. These processes cause modulation of synaptic transmission in the range of milliseconds to
several seconds [18, 19]. From the analysis of the model, we report here collective depression
and facilitation that characterizes the ensemble behavior of many synapses, leading to much
longer time scales than the ones associated with single neuronal of synaptic unit responses.

We investigated the behavior of small neuronal networks (2–20 neurons) growing on per-
missive islands. A single intracellular stimulus evoked a burst epoch marked by synchronous
activity lasting several seconds (reverberation period) that depends on the local synaptic prop-
erties. The depression-facilitation model predicts that the burst duration has a maximum as a
function of the synaptic connectivity (the other synaptic properties are constant) and we also
investigate the effect of changing the main parameters of the model. In addition, the depres-
sion-facilitation model shows that the facilitation variable mediated in part by calcium dynam-
ics defines the duration of the first evoked burst, but not of a second one induced 5 seconds
later. Although the model contains eight variables, five are already fixed from the literature and
three will be extracted from experimental data. The model reproduces the time course of the re-
corded electrophysiological responses. Finally, we show that bursting reverberation is a general
property that can be found in more organized neuronal ensembles such as in pyramidal cells
from acute hippocampal slices. However, the reverberation duration is much shorter compared
to the one we report in neuronal cultures.

We conclude that bursting reverberation is a feature that depends on intrinsic properties of
depression-facilitation synaptic ensembles, which persists in both small and large neuronal net-
work: Bursting reverberation results from synaptic properties and overall network connectivity.
Finally, depression-facilitation properties define the duration of the synchronous
bursting activity.

Bursting Reverberation as a Multiscale Neuronal Network Process
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Results
To study the dynamics of neuronal networks and extract the fundamental properties underly-
ing the network activity, we use two types of experiments with a mean-field neural network
modeling based on depression-facilitation. The first experiments involve hippocampal neurons
in culture, forming a small group of neurons (between 5–30) (Fig 1). In such neuronal ensem-
ble, an action potential evoked at any neuron was able to generate a burst lasting 1–4 seconds.
Furthermore, when two action potentials were evoked at 5 seconds interval, the duration of the
second burst was markedly reduced compared to the first one, while no change was found
when the intervals between the bursts was longer than 35 seconds (Fig 2A) [21]. Synaptic vesi-
cles were required to sustain bursting, and calcium was determinant in defining the duration of
the first burst [9]. In the second experimental setting, we studied reverberation in hippocampal
pyramidal cells from acute brain slices.

Fig 1. Bursting reverberation in small neuronal islands. A illustration of a network island where neurons are recorded, and filled with biocytin for
immunohistochemical identification (red). The island was co-stained with synaptophysin (green dots). B Whole cell recording from a neuron in the island,
illustrating responses to two short current pulses that evoke action potentials in the recorded neuron. The first current stimulation evoked an initial spike
followed by a depolarization and several additional spikes. The second current pulse, applied 2.5 seconds later produced only a single spike, that was
followed by a smaller reverberating network burst, as seen in response to the first stimulus. Scale bar: 20 mV, 1 s.

doi:10.1371/journal.pone.0124694.g001
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Fig 2. The synaptic depression-facilitation model accounts for bursting reverberation. (A) Evoked bursts generated in a microculture hippocampal
neurons, with a single action potential evoked alternately at 5 and 35 seconds intervals, showing a reduction in burst duration when the bursts are generated
at the short interval. (B) Following the experimental protocol, we simulated with Eq 1 and parameters of Table 1 the mean firing rate response, plotted as a
function of time. The corresponding facilitation and depression variables show the level of neuronal activity underlying the overall dynamics. (C) Plot of the
product xy, which accounts for the total synaptic modulation, as a function of time. (D) Burst durations at 35 seconds and 5 seconds intervals. We compare
the burst durations from experimental data (n = 20) with numerical simulations of the model Eq 1.

doi:10.1371/journal.pone.0124694.g002
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0.1 Reverberation is present in a generalized synaptic depression-
facilitation model
Our goal here is to investigate whether neuronal network bursts can originate from synaptic
properties, since neuronal intrinsic properties have recently been suggested not to play an im-
portant role [9]. Thus we investigated whether the depression-facilitation property of synapses
can generate long lasting bursts. We adopt here a general mean-field model, to describe suffi-
ciently connected and homogeneous neural network, where the synaptic dynamics of a single
homogeneous excitatory neuronal population is described by the firing rate h, a facilitation pa-
rameter x and the running fraction of neurotransmitter available (depression) y[11] see also
[20]. Although the depression variable is usually associated with a decay in the vesicular release
probability, the facilitation variable has been suggested to depend on presynaptic calcium dy-
namics. When a short stimulation is generated at a time tstim, the overall dynamics is described
by the generalized equations

t _h ¼ �hþ Jxyhþ þ tHdðt � tstimÞ

_x ¼ X � x
tf

þ Kð1� xÞhþ

_y ¼ 1� y
tr

� Lxyhþ;

ð1Þ

where an experimental population spike stimulation is accounted for in our equation by the
termHδ(t − tstim), which sets at time tstim the average firing rate of the network to the valueH
(� 50 Hz). The model of Eq 1 does not account for neuronal inhibition, which could have be
added using an equation for the inhibitory neuronal voltage. However, depression prevents the
system from generating epileptic type behavior and in the experimental data we analyzed here,
inhibitory neurons were suppressed pharmacologically. Thus we have not taken into account
inhibition. The average population firing rate is given by R(h) = h+ =max(h,0), which is a
threshold linear function of synaptic current [13]. The term Jxy reflects the combined effect of
synaptic short-term dynamics and network activity. The second equation describes the facilita-
tion dynamics, which enters into a depression process described in the third equation [11]. J
measures the mean number of connections (synapses) per neurons, as derived analytically in
[14]. We have here distinguished K and L which describe how the firing rate is transformed
into molecular events that are changing the duration and the probability for vesicular release
respectively. X is the steady state of the facilitation variable x. Thus Eq 1 generalize the classical
depression-facilitation model. More precisely, in a biophysical context, L is the rate at which
vesicles are depleted for a given firing rate and K measures the rate of facilitation. This model
extends the classical equations presented in [15]. The two time scales tf and tr define the recov-
ery of a synapse from the network activity. Although, there are 8 parameters in this model: 5
are almost the same as the one published in [15, 13, 22]. We will be left with three parameters
to identify, which is a significant reduction of the phase space. In that context, we decided to
see whether or not by tuning the three remaining parameters: the two time scales tf and tr and
the functional network connectivity J, we could reproduce the phenomenology of bursting. In-
deed, the initial long phase could be described by facilitation, while the depression will force
the burst to terminate. Finally, we note that the present mean-field approach does not account
for single spikes generated by a single cell, but only for elicited spikes that are recruiting the en-
semble of the neuronal network. Indeed, not all electrical stimulations lead to a burst. Thus the
model starts at a population spike level, when a single spike starting in a single neuron was
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successful in initiating sufficient spikes in all other connected neurons, leading to a
bursting activity.

In that context, we decided to see whether by tuning the two time scales tf and tr and the net-
work connectivity J, we could reproduce the phenomenology of bursting. Indeed, the initial
long phase could be described by facilitation, while the depression will force the burst
to terminate.

Following the experimental protocols described above (see also Material and Methods), we
explore how the synaptic-depression model could reproduce the two bursts at 5 and 35 seconds
intervals. We simulated such dynamics using Eq 1 and identified the corresponding parameters
(J and tf are given in Table 1): the stimuli activates the network which generates a similar be-
havior as observed in the experimental data, i.e. a reduction in the second burst duration when
it was generated at a short interval (5 seconds) after a priming burst (Fig 2B–2D and table A in
S1 File). We show in figure Fig. A in S1 File, the effect of changing the bursting interval: after
10 seconds, the ratio returns to one. In agreement with the experimental result, the model
shows no changes in the burst duration in the second burst when evoked after 35 seconds. To
examine what determines the slow refractoriness of network bursts, we plotted in Fig 2B the
depression and facilitation parameters and found that facilitation allows the initial spike
evoked in a single neuron to activate the full network, which then disappears at a time scale of
tf = 1.3 s, while the slow depression component prevented the neuronal ensemble from reacti-
vation, when a second burst is generated at a short interval. We took 1.3 s for the decay time
constant of facilitation [11], which is larger than the decay of calcium, reported to be order of
the order of 200 ms [24]. This difference shows that the synaptic facilitation time scale we use
is not exactly following the calcium dynamics.

Using the combination of the modeling approach with the electrophysiological recording,
we conclude that the long recovery in the paired pulse network protocol is induced by the net-
work synaptic depression. Although depression decay with a single exponential time scale of tr
= 2 s, it could last for tens of seconds. This decay is compatible with the depletion of synaptic
vesicles, which induces depression. Indeed during vesicle fusion, the readily releasable pool is
depleted with a time scale of less than 100 ms, while long stimulations can activate other pools,
which can take seconds to recover [23]. In addition, the review [23] suggests that the long last-
ing bursting (2 seconds), which was shown to involve asynchronous vesicular release, recruits
several different vesicular pools, leading to an overall recovery of 2 s. In addition, the depletion
is so strong that it takes a total of 30 seconds to recover to the basal state. At this stage, we have
shown that synaptic depression-facilitation accounts for the burst reverberation, which was a

Table 1. Model parameters.

Parameter Islands Acute slices

τ 0.01s [22] 0.01 s

tf 1.3s (compared to 1.5s in [22]) 1.3 s

tr 2 s 20 s

J 1.98 2.06

K 0.004Hz [15] 0.004 Hz

L 0.0054 Hz (compared to 0.005 in [13]) 0.037 Hz

X 0.5 [15] 0.5

H 50 Hz [15] 50 Hz

doi:10.1371/journal.pone.0124694.t001
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possibility left open in [21], while the authors rules out many intrinsic channel properties of
the neurons. While synaptic depression is the dominant factor that prevented the fast recovery,
it is also responsible for shutting down the burst activity as initially reported in [6].

0.2 The spontaneous network activity does not elicit a network burst
comparable to an induced reverberation
Next, we extracted the spontaneous properties of the neuronal ensemble. For that purpose, we
use the fluctuation dynamics of the bursting time. We thus add a source of noise in the first
equation of system Eq 1

t _h ¼ �hþ Jxyhþ þ tHdðt � tstimÞ þ
ffiffiffi
t

p
s _o; ð2Þ

where ω is a Gaussian white noise centered at zero of variance 1. By comparing the fluctuations
of the burst duration obtained in the simulations and the experimental data, we extracted an
amplitude of the neuronal noise of the order of σ = 2Hz. We further obtained (Fig. B (A) in S1
File) the distribution of the burst duration for the first and the second evoked pulses: the distri-
bution of the first stimulation (centered at 2 s) is smaller compared to the second one (centered
at 1s), suggesting that the first stimulation leads to a more robust response. We further found
that the mean burst duration was not much sensitive to the network noise amplitude (Fig. A in
S1 File). However, the duration of the first burst was slightly decreasing as a function of the
noise, because the network was increasingly depressed (Fig. A in S1 File). Finally, we ran nu-
merical simulations to study whether the spontaneous activity of the network (Fig. B in S1 File)
could lead to a spontaneous event with an amplitude comparable to an induced burst. We con-
clude that with the amount of noise we extracted in the neuronal islands, the neuronal network
cannot generate spontaneous bursting in time scale of 10 of minutes. Spontaneous depolariza-
tion generated by the noise is not sufficiently strong to induce a long time burst at a time scale
of minutes, because the noise amplitude is too small. Generating a Burst is a rare event requir-
ing a much longer time scale. This is the reason why we do not see them in the model, nor in
the culture at this time scale. This analysis confirms that for such extracted noise amplitude,
Burst can only be induced here by a local strong depolarization.

0.3 Estimating the reverberation time as a function of the network
parameters
Because the burst duration depends strongly on the synaptic properties, we decided to investi-
gate the effect of changing the total synaptic connections (variable J). For that purpose, because
the model 1 could reproduce the bursting dynamics as observed experimentally, we decided to
estimate analytically the reverberation time TR by analyzing the equations. Thus, following the
experimental protocol, an induced spike at time t = 0 sets the firing rate h to a valueH and the
reverberation time TR is thus defined as the first time the firing rate h reaches a threshold value
that we set equal to hT = 10Hz, after which, we consider that there is no more any synchronous
bursting activity. Thus, we define the reverberation time as

TR ¼ inf ft > 0; hðtÞ ¼ hT when the stimulation is given at time t ¼ 0g: ð3Þ

By definition, the burst occurs between 0 and TR. To estimate TR, we approximate during
the early bursting period t� TR the firing rate h(t)� H by a constant in the last two equations
of system (Eq 1) (Figs. C and D in S1 File). Although this approximation affects the dynamics
of the depression x and facilitation y variable, the decay phase of h is not much impacted. With-
in these approximations, we obtain (see Supplementary material) that the firing rate can be
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expressed as the depression and facilitation variables

hðtÞ ¼ H exp � t
t
þ J

Z t

0

xðsÞyðsÞds
� �

: ð4Þ

The integral
R t

0
xðsÞyðsÞds can be estimated in terms of the variable�trLHXð1þ KH

1=tfþKH
Þ. By

inverting equation h(TR) = hT (the details are given for completeness in the S1 File), we obtain
that new formula

TRðJÞ ¼
y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 2JtXHðK � LXÞt ln H

hth

� �s

JtXHðK � LXÞ
y ¼ 1� JXt:

ð5Þ

showing that the reverberation TR is a sub-linear function of the synaptic connectivity J
(Fig. E-F in S1 File). This formula synthesize the role of various parameters in shaping the
bursting time. In particular, as J increases, the reverberation time starts increasing slowly,
which was an unexpected property.

To investigate how the reverberation time TR changes in a larger interval of synaptic con-
nection, we use a numerical method and solve the complete system of Eq 1. We obtain a sub-
linear regime and interestingly, found that the slow increasing phase is followed by a quick
decreasing phase, separated by a unique maximum value (Fig 3). Such a bell shape behavior
can be interpreted as follows: when the network is not connected enough through synapses, fa-
cilitation cannot sustain a strong reverberation time, while in a network showing too many
connections, synaptic depression dominates, preventing a long reverberation time. Thus we
found an optimal reverberation time, occurring for a single value of the mean connectivity J.

Surprisingly, for the network parameters that accounted for the experimental data (Fig 2),
we found that the parameters associated with the bursting time TR are located close to the
optimal value (Fig 3). It is not clear whether this is a pure coincidence or the optimum corre-
sponds to an attractor in the development of the neuronal islands. We conclude that to obtain
a maximal bursting time, the network should not be too much connected and this optimal re-
verberation time depends on the biophysical properties of the synapses and on the network
connectivity.

0.4 The model could also account for decreasing extracellular calcium,
that alters differentially and sequentially evoked bursts in small networks
Changes in extracellular calcium levels (from 2 to 1 mM) in cultured hippocampal neurons led
to a reduction of the mean duration time of the first burst, but not the second (Fig 4A and 4C
and table B in S1 File). Thus to analyze the underlying mechanism, we used the present depres-
sion-facilitation model. Indeed, synaptic vesicular release is mediated in large by calcium-de-
pendent mechanisms and is correlated with calcium transients in presynaptic terminals [25].
In our model, as synchronous EPSCs are generated, synaptic facilitation (variable x in system
1) increase reflects that calcium concentration is built up in the presynaptic terminal and as a
result, it increases the vesicular release probability. Thus, in principle, changing the extracellu-
lar calcium concentration should affect the steady state facilitation steady state (parameter X in
Eq 1), such that X ¼ XðCa0ex Þ þ aðCaex � Ca0ex Þ, where Ca0ex is the initial extracellular calcium
concentration and Caex is the new one.

To account for the extracellular calcium decay, we diminished the parameter X (from 0.5 to
a value 0.4925), which led to a reduction of the first mean duration time, while the second
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burst time was not affected, in agreement with the experimental data. The effect of changing
the parameter X on the release probability becomes clear when comparing the dynamics of the
facilitation variable x(t) (the probability is proportional to x(t)), during the bursts: in control
conditions, the facilitation variable x(t) varies in the range [0.5–0.75] (Fig 2b), while after
changing X to 0.4925, it varies in the range [0.49–0.53], this large difference explains that a
small change in X affects drastically the second burst duration. The parameter X is singular: a
small variation leads to a large change in the network dynamics. This effect is intrinsic to all de-
pression-facilitation models. The interpretation of X is certainly link to calcium, where it is

Fig 3. Reverberation time as a function of synaptic connectivity. (A) Burst duration time as function of the network connectivity (parameter J) for different
values of the facilitation parameter K and (B) the depression parameter L, (other parameters are described in Table 1). We indicate the position of variable
extracted for the experimental datas, which lie close to the maximum. (C) Burst shapes at three different stages of the bell shape curve (parameter L* and
K*).

doi:10.1371/journal.pone.0124694.g003
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Fig 4. Calcium-dependence of reverberation bursts in small networks. (A) Evoked bursts recorded after exchanging the medium from 2 mMCaCl2 and 1
mMMgCl2 to 1 mMCaCl2 and 2 mMMgCl2. (B) Simulated response to evoked bursts: the extracellular concentration change is modeled by adjusting the
parameter X to approximate the burst duration variation within the calcium concentration decrease. (C)Comparison of the burst durations demonstrating a
reduction in the duration of the 1st burst (35 seconds interval burst) but not the 2nd burst (5 seconds interval burst), when [Ca2+] was reduced and [Mg2+]
increased. We compare the first and second burst durations of the model for value of X = 0.50 given in Table 1 and X* = 0.4925, which account for the burst
durations variations due to calcium concentration changes observed in left.

doi:10.1371/journal.pone.0124694.g004
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known that small fluctuations in the residual calcium affect the release probability. Thus in
that context, the models reflects this specific non-robust property. New modelings and analysis
at a biophysical level are certainly needed to better understanding how the parameter X is
linked to biophysical quantities such as the residual calcium.

To conclude, this change on only one parameter allows to account for three constraints (his-
togram of the first, second (after 5s) and third burst(35s)), demonstrating the robustness of the
model. Finally, the very small change in the variable X shows that it is certainly a singular pa-
rameter with respect to the steady calcium concentration, the dependency of which should be
certainly studied in future works. In Fig 4B–4C, we show an agreement between the simulated
and experimental burst duration. Indeed, we have shown here that the duration of the first
evoked burst is predominantly controlled by synaptic facilitation, which is regulated by the ex-
tracellular calcium concentration.

0.5 Reverberation in larger scale neuronal network
To confirm that bursting reverberation was not only present in small neuronal islands, but
could also be generated in integrated networks taken from brain tissue, we recorded pyramidal
cells from acute hippocampal slices. By stimulating Schaffer collaterals, we were able to gener-
ate a burst that lasted 283.6 ± 26.9 ms (n = 22) (Fig 5A and table S1), which matched (Fig 5B–
5C) the numerical simulations from the depression-facilitation model (Eq 1), where the new
parameters are defined in Table 1. We compared in Fig 5D, the statistics of experimental data
and numerical simulations of bursting durations at the initial stimulation times 5 and 35 s. The
model reveals the higher degree of connectivity J and the longer depression time tr = 20s.

0.6 The bursting duration depends on synaptic AMPA receptors
To confirm the synaptic origin of the reverberation, we used CNQX (AMPA receptor antago-
nist, 1 μM) that eliminated the bursting reverberation (Fig 6A and 6B). Thus the reverberation
time involves AMPA receptors. Finally, to confirm the role of presynaptic neurons in generat-
ing the reverberation, we directly injected a current of 100 pA into the patched pyramidal neu-
ron to trigger bursting, thus bypassing presynaptic activation. This did not induce depression
in bursts evoked at 5 and 35 s intervals (Fig 6). Hence bursting duration requires both AMPA
receptor dynamics and activation of presynaptic neurons.

0.7 Bursting reverberation is dependent on extracellular calcium levels in
large networks
To further investigate the properties of the reverberation, we evoked a burst triggered by a sin-
gle synaptic stimulation at 5 and 35 s intervals in the presence of low extracellular calcium (1.3
mM [Ca2+] and 2.5 mM [Mg2+]). We found a reduction in the duration of the first burst, but
not the second one, as reported in the islands of neurons (Fig 7). A similar reduction is ob-
tained in the depression-facilitation model when we change the associated parameter X (as dis-
cussed in section 4) which reflects the change in the steady state calcium concentration (Fig 7
and table B in S1 File), confirming that changes in burst reverberation due to a change in the
extracellular calcium concentration affects facilitation.

0.8 Blocking energy metabolism of astrocytes does not affect bursting
reverberation
Astrocytes have been proposed to contribute to postburst depression of release probability at
CA3-CA1 excitatory synapses [26, 27]. Hence, we first investigated whether astrocytes respond
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to the evoked neuronal bursting. We found that astrocytes display depolarization of their mem-
brane potential synchronously to neuronal bursting (Fig. C in S1 File). We then tested whether
the burst long-lasting depression that we found in hippocampal slices was due to astrocytes, by
evoking bursts before and after application of the astroglial metabolic poison FAC (fluoroace-
tate, 5 mM). However, neuronal bursting was unchanged by inhibition of astroglial metabo-
lism. Hence, these data suggest that astrocytes are not directly involved in controlling
bursting reverberation.

Discussion

Synaptic properties shape synchronous neuronal bursting and
reverberation time
The physiological data obtained from small neural networks and the computational simula-
tions reveal that the bursting reverberation essentially depends on synaptic properties. The

Fig 5. Reduction of burst duration in hippocampal slices and facilitation-depression synaptic model. (A) Bursts (1,2 and 3) in pyramidal cells from
hippocampal acute slice evoked by a single stimulation of Schaffer collaterals alternately at 5 and 35 seconds intervals, showing a reduction in burst duration
when the bursts are generated in shorter intervals. (B) Following the experimental protocol, we simulated the mean firing rate response (Eq 1), and generating
bursts at similar time intervals (a, b and c) as in the intracellular recordings. The facilitation and depression variables show the level of neuronal activity
underlying the overall dynamics. (C)Magnification of the evoked bursts (from A1, 2 and 3) and the simulated response (B a, b and c). (D) (Up) Comparison
between experimental data and numerical simulations of bursting durations at the initial stimulation time, 5 and 35 s intervals. (Down) Burst duration ratios of
the 2nd and 3rd to the initial burst (experimental data and numerical simulations).

doi:10.1371/journal.pone.0124694.g005

Bursting Reverberation as a Multiscale Neuronal Network Process

PLOS ONE | DOI:10.1371/journal.pone.0124694 May 27, 2015 12 / 20



contribution of the neuronal electrical property (involving channels, membrane capacity,.) in
shaping the bursting time was already ruled out in [9]. From our modeling, we found here that
synaptic facilitation at synapses is responsible for prolonging the network activation and it de-
cays with a time scale of τf = 1.3 s, while with further stimulation, synaptic depression domi-
nates the network recovery with a decay time of the order of tr = 2 s (culture) and tr = 20 s
(slices). These parameters could vary with neuron types and for cortical neurons, the depres-
sion rate was estimated to be 10 times slower τd = 0.2 s [15], suggesting that various neurons
are characterized by specific facilitation-depression parameters. Finally, the time course of the
depression variable we have reported here is in agreement with fluorescence imaging and
electrophysiology data [28, 29].

Fig 6. Calcium-dependence of reverberation bursts in large networks. (A) Evoked burst triggered by a single stimulation of Schaffer collaterals in
hippocampal slices at 5 and 35 s intervals in the presence of low [Ca2+] solution (1.3 mM [Ca2+] and 2.5 mM [Mg2+]). (B)Comparison of the burst durations for
two different calcium concentrations, leading to a reduction of the 1st burst duration (35 seconds interval burst) but not the 2nd burst (5 seconds interval
burst), after low [Ca2+] solution application. (*P < 0.05, compared with 0 s, Student’s paired t-test). (C)Calcium reduction is modeled by changing the
parameter X, which determines the steady state value of the facilitation variable x. (D) First and second burst durations for value of X = 0.50 (control Table 1)
and X = 0.4925, which describes the burst duration variations due to calcium concentration changes observed in A and B.

doi:10.1371/journal.pone.0124694.g006
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From the depression-facilitation synaptic properties, we found that there is an optimal net-
work connection, which sustains optimal burst duration (Fig 3). This prediction remains to be
tested experimentally. We summarized in Fig 8 changes with neuronal connectivity of burst
durations obtained for neural network in slices. The ratio of the second to the first burst with
respect to the total synaptic connectivity is shown in Fig 9 and present clear differences of evo-
lution between Culture and slices.

Furthermore, synaptic facilitation seems to be triggered by calcium dynamics, since chang-
ing the extracellular calcium concentration in both culture and slices (Figs 4 and 7) affected
the first burst duration, but not the second one. Using our modeling approach, we conclude
that this change in external calcium alters the steady state facilitation (X variable) in the second
equation in 1. This internal state, which is calcium dependent, determines the length of the
first burst duration, but does not influence the depression properties. This variable is very
sensitive, suggesting that it depends on singular perturbation manner on the real physical
parameters.

Fig 7. The bursting duration in slices depends on synaptic AMPA receptors. (A) CNQX (1 μM) eliminated the bursting reverberation. (B) Bursting
duration at 0, 5, and 35 s before and after CNQX application. (*P < 0.05, compared with 0 s, Student’s paired t-test). Ratio of bursting duration at 5 s before
and after CNQX application (*P < 0.05, compared with control, Student’s paired t-test, n = 4). (C) Injection of 100 pA positive current into the patched
pyramidal neuron triggered bursting without depression in 5 and 35 s interval, confirming that the bursting duration is synaptically dependent.

doi:10.1371/journal.pone.0124694.g007
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We confronted here the classical depression-facilitation model 1 [15] to experimental data
recorded from network at various sizes, from which we estimated the associated parameters. In
previous studies, this model was studied either theoretically [15] or applied to characterize syn-
aptic properties of directly connected neurons. Using this framework, we have now found
some parameters for depression, facilitation and network connectivity that can reproduce
bursting for different size neural networks. We conclude that the depression-facilitation dy-
namics can describe bursting in neural networks of various sizes. It is possible that intrinsic
properties interact with the network mechanism in bursting and depression, but the present
study, as well as experimental evidence [21], indicate that depletion of synaptic vesicles is the
primary reason for the time dependent suppression of network bursts.

Bursting Reverberation is an intrinsic property of sufficiently connected
neuronal networks
Because the mean-field system of equations (system 1) does not depend on the number of neu-
rons, but rather on the density of synapses per neurons, we conclude that the bursting reverber-
ation present in our model does not depend on the size of the neuronal ensemble, but rather on
its degree of connectivity (parameter J), a prediction that we found in culture and slices. In-
deed, we found that the bursting reverberation occurs also for large ensemble of connected
neurons (slices). In addition, a similar model was recently used to analyze working memory be-
havior, which enables the temporary holding of information in the brain for several seconds. It
was suggested that calcium mediates synaptic facilitation in the recurrent connections of neo-
cortical networks [15], and here we confirm this property in small and larger neural networks.
Furthermore, we use the invariance by scaling of our model to infer that reverberation should
further persist in any larger networks, possibly underlying higher brain function.

Fig 8. Reverberation time as a function of the synaptic connectivity (Slices). (A) Burst duration time as function of the network connectivity (parameter J)
for different values of the facilitation parameter K and (B) the depression parameter L, (other parameters are described in Table 1). We indicate the position of
variable extracted for the experimental datas, which lie close to the maximum.

doi:10.1371/journal.pone.0124694.g008
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The average synaptic connectivity determines the bursting reverberation
time
Using the present modeling, we have found that increasing synaptic strength J in Eq 1 (Fig 3
and C in S1 File), which reflects the number of functional synapses between neurons, is associ-
ated with increasing the reverberation time duration in a certain range, before the maximum is
achieved. Synaptic plasticity is also associated with an increase in synaptic strength and in the
mean number of connections. Our result suggests that although synaptic formation might in-
crease linearly in a long-term learning process, the bursting window, which characterizes flash
memory, is first small and the size increases sublinearly before it reaches a maximum, where a
large number of synapses are required to observe a significant change in the bursting response
time (Fig 3 and C in S1 file). This is certainly reminiscent of the nonlinear process associated
with learning.

Fig 9. Ratio(2nd/1st) of Reverberation duration time as a function of the synaptic connectivity. (A) Culture (B) Slices.

doi:10.1371/journal.pone.0124694.g009
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It is also intriguing that the islands of neuronal network that we have characterized operate
in a regime close to the optimal burst response (Fig 3) and it would be interesting to determine
what are the mechanisms that ensure the stability of the neural network at this value. This can
either be due to internal neuronal dynamics or maintained by the network spontaneous activi-
ty. Furthermore, although the spontaneous activity did not contribute much in small neurons,
it could have much more consequences in larger neuronal ensemble leading to spontaneous
Up-states for example.

Finally, changing the depression and facilitation properties of synapses drastically affects
the network connectivity, leading to a change in the amount of synapses associated with the
maximal burst duration. We propose that pathological synapses, where the facilitation-depres-
sion properties are modified, will affect the neural network properties, especially associated
with a significant change in bursting duration for small neuronal ensembles and with the opti-
mal working memory response time for larger groups. It would be interesting to test whether
such depression-facilitation properties are modified in some brain disorders and how it affects
the burst duration.

Materials and Methods
Electrophysiology in hippocampal microcultures. The methods are detailed elsewhere [9]. In
brief, dissociated hippocampal neurons, diluted to 5–7 × 104 cells per ml, were plated on aga-
rose-covered glass coverslips sprayed with fine droplets of substrate solution containing rat tail
collagen (BD biosciences) at 1 mg/ml and poly-D-lysine (Sigma) at 0.3 mg/ml. These permis-
sive islands allow the growth of networks of 5–30 neurons, which make extensive
intrinsic connections.

At 2–3 weeks in culture, neurons were recorded in standard HEPES-buffered medium, con-
taining 2 mM CaCl2 and 1mMMgCl2. Patch pipettes contained biocytin (0.4%) to visualize the
neurons after termination of the experiments. In some experiments Alexa-Fluor 555 was added
to the internal medium to visualize live neurons. Bursts were evoked either by injecting 5 ms
depolarizing current pulses sufficient to evoke a single action potential in one neuron in cur-
rent-clamp mode or by a 5 ms depolarization to 0 mV in voltage-clamp mode.

Network burst duration was estimated empirically as the time from the onset of the evoked
action potential generating the burst to the time point when the falling phase of the polysynap-
tic current (PSC) crossed the threshold (at half of the averaged PSC amplitude). Signals were
amplified with a Multiclamp-700B amplifier and recorded with Clampex 9.2 software (Axon
Instruments, Union City, CA). Experiments were approved by the Weizmann Institutional An-
imal Care and Use Committee in accordance with EU directives Protocol Number:02740413-2

Electrophysiology in acute brain slices Experiments were carried out according to the
guidelines of the European Community Council Directives of January 1st 2013 (2010/63/EU)
and were approved by the local animal welfare committee (certificate A751901, Ministere de
l’Agriculture et de la Peche). All efforts were made to minimize the number of animals used
and their suffering. Experiments were performed on 17- to 25-day old C57BL6 mice. For all
analysis, mice of both genders and littermates were used. Acute transverse hippocampal slices
(400 μm) were prepared as previously described ([30]). Slices were maintained at room temper-
ature in a storage chamber perfused with an artificial cerebrospinal fluid (ACSF) (containing
119 mMNaCl, 2.5 mM KCl, 2.5 mM CaCl2, 1.3 mMMgSO4, 1 mMNaH2PO4, 26.2 mM
NaHCO3, and 11 mM glucose, saturated with 95% O2 and 5% CO2, pH 7.4, 320–330 mOsm)
for at least 1 h. Slices were transferred to another storage chamber with the same ACSF with
additional 100 μM picrotoxin at least 30 min before recording. Slices were then transferred to a
submerged recording chamber mounted on an Olympus BX51WI microscope equipped for
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infrared-differential interference (IR-DIC) microscopy and were perfused with ACSF at a rate
of 1.5–2 ml/min at room temperature. All experiments were performed in the presence of pic-
rotoxin (100 μM). Somatic whole-cell recordings were obtained from visually identified hippo-
campal CA3 and CA1 pyramidal cells, using 5–8 MO glass pipettes filled with 105 mM
Kgluconate, 30 mM KCl, 10 mMHEPES, 10 mM phosphocreatine, 4 mMMg2-ATP, 0.3 mM
Tris-GTP, and 0.3 mM EGTA (pH 7.4, 280 mOsm). Synaptically-evoked action potential
bursts were triggered by a stimulation of Schaffer collaterals (10 mA, 50 μs) with an ACSF-
filled glass pipette. Bursts were recorded in the presence of 100 μM picrotoxin at a resting
membrane potential of -70 ± 2 mV. The whole-cell recording pipette was placed 50–100 μm
away from the stimulation pipette. In the experiment of low [Ca2+]o, to keep extracellular diva-
lent ion concentration constant, CaCl2 was reduced to 1.3 mM while MgSO4 was increased to
2.5 mM. Recordings were acquired with Multiclamp-700B amplifiers, digitized at 10 kHz, fil-
tered at 2 kHz, and stored and analyzed on a computer using pClamp 10 and Clampfit 10 soft-
ware. All data are expressed as mean ± SEM. Statistical significance for comparisons was
determined by Student’s paired t-test. Picrotoxin was obtained from Sigma and CNQX was
from Tocris.

All simulations were run with Matlab. The computation of the reverberation time is pre-
sented in the S1 File.

Supporting Information
S1 File. The Supporting Information contains:

• Table A: Burst durations in island cultures and acute slices.

• Table B: Comparison of burst durations for different extracellular calcium concentrations

• A derivation section for formula [5]: Analytical estimation of the reverberation time TR

• 5 figures described below:

Figures in the Supporting Information file

• Figure A. Reverberation bursting ratio when the interval between pulses varies. Using the pa-
rameters for culture (see table A in S1 File, the ratio converges to one after ten seconds.

• Figure B. Effect of noise on the reverberation burst.(A) Burst duration after the first and
the second pulse as a function of the noise amplitude σ, for each value of the noise amplitude
σ (500 runs). (B) Numerical simulations of the evoked bursts, generated at 5 and 35 seconds
intervals with a source noise, extracted from the experimental data (σ = 2 Hz). Spontaneous
activity is not enough to generate a response comparable to the evoked one.

• Figure C. Blocking astroglial metabolism does not affect the bursting reverberation.(A)
Evoked burst triggered by a single synaptic stimulation with a 5 s interval in the presence of
fluoroacetate (FAC, 5 mM). (B) Simultaneous depolarization of astrocyte during the bursting
pulse. (C) Bursting duration at 0 and 5 s before and after FAC application. (**P< 0.01, com-
pared with 0 s, Student’s paired t-test). (D) Ratio of bursting duration at 5 s before and after
FAC application (P> 0.05, compared with control, Student’s paired t-test, n = 4).

• Figure D. Comparison of system of Eq 1 (continuous line) and the approximated system 2
(dashed line). We use three different values of the connectivity parameter J. The firing rate h,
the facilitation x and the depression y variables are plotted as functions of time. For a low
enough connectivity parameter J, the firing rate is well approximated.
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• Figure E. Comparison between the depression variable y estimated by equation 8 (blue)
and the exact one obtained by numerical simulation of system 2 (black).

• Figure F. Comparison between numerical simulations and estimates of the reverberation
time TR. The reverberation time is plotted as a function of J for the exact model (solid line),
the approximated model (dash black line), and the estimates given by equations 37 (dash red
line) and 39 (blue dash line).
(PDF)
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