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OBJECTIVE—To investigate potential mechanisms of oxidative
DNA damage in a rat model of type 1 diabetes and in murine
proximal tubular epithelial cells and primary culture of rat
proximal tubular epithelial cells.

RESEARCH DESIGN AND METHODS—Phosphorylation of
Akt and tuberin, 8-oxo-7,8-dihydro-2�-deoxyguanosine (8-oxodG)
levels, and 8-oxoG-DNA glycosylase (OGG1) expression were
measured in kidney cortical tissue of control and type 1 diabetic
animals and in proximal tubular cells incubated with normal or
high glucose.

RESULTS—In the renal cortex of diabetic rats, the increase in
Akt phosphorylation is associated with enhanced phosphoryla-
tion of tuberin, decreased OGG1 protein expression, and 8-ox-
odG accumulation. Exposure of proximal tubular epithelial cells
to high glucose causes a rapid increase in reactive oxygen
species (ROS) generation that correlates with the increase in Akt
and tuberin phosphorylation. High glucose also resulted in
downregulation of OGG1 protein expression, paralleling its effect
on Akt and tuberin. Inhibition of phosphatidylinositol 3-kinase/
Akt significantly reduced high glucose–induced tuberin phos-
phorylation and restored OGG1 expression. Hydrogen peroxide
stimulates Akt and tuberin phosphorylation and decreases OGG1
protein expression. The antioxidant N-acetylcysteine signifi-
cantly inhibited ROS generation, Akt/protein kinase B, and
tuberin phosphorylation and resulted in deceased 8-oxodG accu-
mulation and upregulation of OGG1 protein expression.

CONCLUSIONS—Hyperglycemia in type 1 diabetes and treat-
ment of proximal tubular epithelial cells with high glucose leads
to phosphorylation/inactivation of tuberin and downregulation of
OGG1 via a redox-dependent activation of Akt in renal tubular
epithelial cells. This signaling cascade provides a mechanism of
oxidative stress–mediated DNA damage in diabetes. Diabetes
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S
ystemic complications are the major causes of
morbidity and mortality in patients with diabetes
(1). Oxidative stress leads to protein, lipid, and
DNA modifications that cause cellular dysfunc-

tion and contribute to the pathogenesis of macro- and
microvascular complications of diabetes, including dia-
betic nephropathy (2–6). Mitochondrion and nucleus, two
major targets of oxidative stress, contain a variety of DNA
repair enzymes to repair oxidant-induced DNA modifica-
tions (7,8). Damage most likely occurs when the endoge-
nous antioxidant network and DNA repair systems are
overwhelmed (9–11). However, it is essential for the cell
to repair DNA damage induced by oxidants.

8-Oxo-7,8-dihydro-2�-deoxyguanosine (8-oxodG) is a
sensitive marker of reactive oxygen species (ROS)–in-
duced DNA damage (12,13). There is an increase in
8-oxodG levels in tissue of diabetic rats and in the urine of
patients with type 1 and type 2 diabetes (13–15), with the
levels being significantly higher in patients with albumin-
uria or with other diabetic complications (16). The steady-
state level of 8-oxodG in DNA reflects its rate of generation
and of repair. 8-OxodG in DNA is repaired primarily via the
DNA base excision repair pathway (17). The DNA repair
enzyme that recognizes and excises 8-oxodG is 8-oxoG-
DNA glycosylase (OGG1) (18). Deficiency in DNA repair
enzyme OGG1 has important functional consequences,
compromising the ability of cells to repair DNA. The
steady-state levels of 8-oxodG are significantly higher in
tissues of OGG1 knockout mice compared with wild-type
animals (19). OGG1 expression in the kidney of rats
heterozygotes for tuberin is lower than that in wild-type
rats (20). Moreover, treatment of tuberin-deficient rats
with an oxidative DNA damaging agent greatly decreases
renal OGG1 expression, with concomitant increase in
8-oxodG levels compared with wild-type rats (20). We
have recently shown that OGG1 is regulated by tuberin,
the product of the tumor suppressor gene, TSC-2 (21).
Tuberin normally exists in an active state physically bound to
hamartin, the product of TSC-1 gene, to form a stable
complex (22). These two proteins function within the same
pathway(s) regulating cell cycle, cell growth, adhesion,
and vesicular trafficking (23,24). Activation of phosphati-
dylinositol 3-kinase (PI 3-kinase) and phosphorylation of
serine/threonine kinase Akt/protein kinase B (PKB) by
certain agonists lead to inactivation of tuberin (25–28).
The PI 3-kinase/Akt pathway is activated in diabetes (29),
and there is evidence that this activation is redox depen-
dent in different cell types (30–32), including renal cells.
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Little is known about DNA repair disturbances poten-
tially contributing to DNA damage in diabetes. In the
present study, we determined a potential mechanism by
which ROS result in 8-oxodG accumulation and explored
the role of tuberin phosphorylation and OGG1 in the
kidney cortex of rats with type 1 diabetes. We also
investigated the effect of high glucose on tuberin phos-
phorylation, OGG1 expression, and 8-oxodG accumula-
tions in proximal tubular epithelial cells.

RESEARCH DESIGN AND METHODS

Two-month-old male Long Evans rats, weighing between 200 and 225 g, were
purchased from Charles River Laboratories (Wilmington, MA). The animals
were allowed food and water ad libitum before and during the experiments.
The rats were divided into two groups of six rats per group. Group 2 was
injected intravenously via the tail vein with 55 mg/kg body wt streptozotocin
(STZ) (Sigma, St. Louis, MO) in sodium citrate buffer (0.01 mol/l, pH 4.5) under
isofluorane inhalation anesthesia (Abbott, Abbott Park, IL) to induce type 1
diabetes. Group 1 (controls) was injected with an equivalent amount of
sodium citrate buffer alone. Average serum glucose levels and body weight of
both groups were measured at 4 weeks of diabetes. Animals were killed at 4
weeks, and the kidneys were removed rapidly. Cortical tissue was used for
isolation of primary proximal tubular epithelial (RPTE) cells, and samples of
cortical tissue were used for biochemical analysis.
Isolation and culture of RPTE cells. Primary RPTE cells were isolated and
cultured following the method of Glynne (33) with minor modifications. Renal
cortical tissue was collected in cooled Hanks’ balanced salt solution (HBSS)
containing 50 units/ml penicillin, 50 �g/ml streptomycin, and 0.125 �g/ml
amphoterecin B. After the capsule was removed, the cortex was cut into small
pieces, and the tissue fragments were suspended in 1 mg/ml (in HBSS) of type
II collagenase (Worthington Biochemical) and incubated for 1 h at 37°C. The
cells were centrifuged (200 � g, 5 min, 4°C) and seeded into 75-cm2 tissue
culture flasks that had been coated with collagen S. The cells were grown in
serum-free medium (Dulbecco’s modified Eagle’s medium [DMEM]/F-12;
glucose concentration, 17 mmol/l) containing 15 mmol/l HEPES buffer,
L-glutamine, and pyridoxine hydrochloride. The medium was supplemented
with 10 ng/ml epidermal growth factor, 10 �g/ml insulin, 5 �g/ml transferrin,
5 ng/ml selenium, 36 ng/ml hydrocortisone, 4 pg/ml triodothyronin, 50 units/ml
penicillin, 50 �g/ml streptomycin, and 0.125 �g/ml amphoterecin B. The cells
were incubated at 37°C in humidified 5% CO2 in air.
SV-40 immortalized murine proximal tubular epithelial cells. The mu-
rine proximal tubular epithelial (MCT) cells (provided by Dr. Eric Neilson,
Vanderbilt University, Nashville, TN) were grown in DMEM containing 7%
fetal bovine serum, 5 mmol/l glucose, 100 units/ml penicillin, 100 �g/ml
streptomycin, and 2 mmol/l glutamine. Confluent cells were growth-arrested
for 24 h in serum-free DMEM before experiments. MCT cells express in vivo
properties of proximal tubular epithelial cells (34).
Reagents. N-acetylcysteine (NAC), hydrogen peroxide, and Wortmannin
were purchased from Sigma. LY294002 and Akt inhibitor IV were obtained
from Calbiochem (La Jolla, CA).
In vivo experiments. Homogenates of kidney cortex were prepared in
radioimmune precipitation assay buffer (1� PBS, 1% Nonidet P-40, 0.5%
sodium deoxycholate, 0.1% SDS containing phenylmethylsulfonyl fluoride,
aprotinin, sodium orthovanadate, and protease inhibitor tablet [complete
Mini; Boehringer-Mannheim] containing 50 mg/ml antipain dihydrochloride, 40
mg/ml bestatin, 60 mg/ml chymostatin, 10 mg/ml E-64, 0.5 mg/ml leupeptin, 0.7
mg/ml pepstatin, 300 mg/ml phosphoramidon, 1 mg/ml pefabloc SC, 0.5 mg/ml
EDTA disodium salt, and 2 mg/ml aprotinin).

The tissue was centrifuged at 14,000 � g for 30 min at 4°C, and protein
concentrations were determined with the Bradford assay (35) using BSA as a
standard. For immunoblotting, 100 �g protein was subjected to 8% SDS-PAGE.
Proteins were transferred to polyvinylidene difluoride (PVDF) membranes at
a constant voltage of 200 V for 16 h. The PVDF membranes were blocked for
1 h in 5% nonfat dried milk in Tris-buffered saline-0.1% Tween buffer (25
mmol/l Tris-HCl, 0.2 mmol/l NaCl, and 0.1% Tween 20 [vol/vol] pH 7.6; TBST).
The membrane was washed twice with TBST and then incubated overnight at
4°C with the respective primary antibodies. Phospho-tuberin, phospho-Akt,
and Akt antibodies were from Cell Signaling (Beverly, MA), OGG1 antibody
was from Novus Biologicals, and tuberin and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) antibodies were obtained from Santa Cruz Biotech-
nology. After extensive washing of membrane with TBST buffer, anti-rabbit
immunoglobulin conjugated with horseradish peroxidase was added at a
1:5,000 dilution and incubated for 1 h at room temperature. An enhanced
chemiluminescence kit (Amersham, Piscataway, NJ) was used to identify

protein expression. Expression of each protein was quantified by densitome-
try using NIH Image 1.62 software and normalized to a loading control.
In vitro experiments. MCT and primary RPTE cells were seeded at a density
of 0.5 � 106 cells on 60-mm Petri dishes in 5 mmol/l glucose (normal glucose).
When cells reached 90% confluency, serum was withdrawn for 24 h, and cells
were treated with high glucose (25 mmol/l glucose), hydrogen peroxide,
and/or PI 3-kinase and Akt inhibitors under serum-free conditions for various
time points as indicated. The cells were lysed in radioimmune precipitation
assay buffer.
Measurement of intracellular ROS production. The peroxide-sensitive
fluorescent probe 2�,7�-dichlorodihydrofluorescein diacetate (DCF-DA; Molec-
ular Probes, Carlsbad, CA) was used to assess the generation of intracellular
ROS as described previously (30). This compound is converted by intracellu-
lar esterases to DCF, which is then oxidized by hydrogen peroxide to the
highly fluorescent DCF. MCT cells were grown in chamber slides. Serum-
deprived cells were washed with HBSS loaded with 10 �mol/l DCF-DA and
incubated for 30 min at 37°; 25 mmol/l glucose was added for the indicated
time periods. Differential interference contrast images were obtained simul-
taneously using an Olympus inverted microscope with �40 Aplanfluo objec-
tive and an Olympus fluoview confocal laser-scanning attachment. The DCF
fluorescence was measured with an excitation wavelength of 488 nm of light,
and its emission was detected using a 510- to 550-nm band pass filter.
Alternatively, cells were grown in six-well plates and serum-deprived for 24 h.
Immediately before the experiments, cells were washed with Hanks’ balanced
salt solution without phenol red and then incubated for 30 min in the dark at
37°C with the same solution containing the peroxide-sensitive fluorophore
DCF-DA (Molecular Probes) at 5 �mol/l. They were then incubated with 25
mmol/l glucose for various time points. DCF-DA fluorescence was detected at
excitation and emission wavelengths of 488 and 520 nm, respectively, as
measured with a multiwell fluorescence plate reader (Wallac 1420 Victor2;
Perkin-Elmer Life Sciences), as described previously (31).
Immunostaining of OGG1. OGG1 expression was also assessed by immu-
nofluorescence histochemistry as previously described (36). Acetone-fixed
frozen kidney sections (4 �m) were incubated with nonimmune donkey IgG to
block nonspecific binding and then incubated with rabbit anti-OGG1 primary
antibodies followed by fluorescein isothiocyanate (FITC)–labeled donkey
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FIG. 1. Diabetes increases Akt and tuberin phosphorylation and de-
creases OGG1 protein expression. A–C: Representative immunoblot
shows an increase in phospho-Akt (p-Akt) (A) and phospho-tuberin
(p-tuberin) (B) and a decrease in OGG1 expression (C) in homoge-
nized kidney cortex of diabetic (D) compared with control (C) rats.
GAPDH was used as a loading control.
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anti-rabbit IgG (Chemicon International, Temecula, CA) as secondary anti-
bodies for signal detection. All incubations of primary and secondary antibod-
ies were for 30 min, with three washes with PBS containing 0.1% BSA and 5
min each between steps. Controls consisted of PBS/BSA in place of primary
antibody followed by detection procedures as outlined above. Kidney sections
were viewed and photographed using an Olympus Research microscope
equipped for epifluorescence with excitation and band pass filters. FITC red
signals for OGG1 were detected using a filter with excitation at 535 nm.
Immunostaining of 8-oxodG. A double fluorescent labeling method was
used as previously described (20) with minor modifications. MCT cells in
chamber slides were serum-starved for 24 h and incubated with 25 mmol/l
glucose for indicated time periods. The cells were washed with PBS, fixed, and
stained with mouse antibody against 8-oxodG (Biodesign International)
followed by treatment with anti-mouse IgG (1:200) conjugated with FITC. The
slides were reacted with Vectashield mounting medium with propidium iodide
(Vector Laboratories, Burlingame, CA). In this assay, DNA was labeled with
propidium iodide, and 8-oxodG was identified by the primary monoclonal
antibody and FITC-conjugated secondary antibody. FITC green signals for
8-oxodG were detected using a filter with excitation range 450–490 nm and
propidium iodide red signals for nuclear DNA using a filter with excitation at
535 nm. FITC and propidium iodide were detected using Olympus FV-500
Laser Scanning Confocal microscopy. To demonstrate staining specificity,
control cells were stained without primary antibody.
8-OxodG assay. Mitochondria and nuclear DNA fractions were isolated from
rat kidney cortex using a mitochondria and nuclear fractionation kit according
to the manufacturer’s instructions (Pierce, Rockford, IL). Detection of deox-
yguanosine and 8-oxodG was performed on DNA hydrolyzed with nuclease P1
and alkaline phosphatase as previously described and validated (20). Aliquots
(90 �l) of DNA hydrolysates were injected onto a Partisil 5-�m ODS-3
reverse-phase analytical column for high-performance liquid chromatography
(HPLC) analysis with the eluate monitored with a UV photodiode array (SPD
M10A; Shimadzo) and electrochemical detectors (ESA Coul Array). Authentic
standards of 8-oxodG and deoxyguanosine were analyzed along with every
batch of samples. Salmon sperm DNA (5–50 �g) was used as a positive control
for DNA digestion reactions. Standard curves for deoxyguanosine and
8-oxodG were prepared and quantitation was performed by linear regression
analyses. Data were expressed as picomoles 8-oxodG/dG � 10�5 in 90 �l DNA
hydrolysate.

Statistics. Data are presented as mean � SE. Statistical differences were
determined using ANOVA followed by Student Dunnett’s (experimental vs.
control) test using one trial analysis. P values �0.05 and �0.01 were
considered statistically significant.

RESULTS

Diabetes is associated with an increase in Akt and
tuberin phosphorylation and OGG1 downregulation
in the renal cortex. Akt is known to phosphorylate
tuberin on Thr 1462, resulting in its inactivation (25).
Recent studies suggest that high glucose activates Akt in
various cell types, including renal cells (37). To test the
hypothesis that hyperglycemia stimulates Akt and tu-
berin phosphorylation and downregulation of OGG1 in
vivo, we used a rat model of type 1 diabetes. Type 1
diabetes was induced in rats by intravenous injection of
55 mg/kg body wt STZ. Blood glucose levels were 108 �
5.9 and 426.8 � 49.3 mg/dl and body weights were
391.7 � 22.7 and 284.0 � 9.6 g in control and diabetic
animals at 4 weeks after STZ injection, respectively.
Rats were killed at 4 weeks after STZ or vehicle
injection. Phosphorylation of Akt on the Ser 473 and the
Akt-dependent phosphorylation site on tuberin, Thr
1,462, were assessed in kidney cortex homogenates by
Western blotting analysis (Fig. 1A and B). Akt phosphor-
ylation on Ser 473 results in Akt activation, whereas
phosphorylation of tuberin on Thr 1,462 results in its
inactivation. Data in Fig. 1 show an increase in phos-
phorylation of Akt and tuberin in diabetic animals
compared with controls. Partial deficiency in tuberin
causes a decrease in OGG1 expression, suggesting that
OGG1 is downstream of tuberin (20). To investigate the
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FIG. 2. Diabetes causes a decrease in OGG1 protein expression and
increases 8-oxodG levels. A: Kidney cortex sections were stained
with anti-OGG1 antibody. There is a decrease in OGG1 staining in
kidney cortex of diabetic animals compared with the controls. B:
8-OxodG levels are higher in mitochondrial DNA fraction of kidney
cortex of diabetic rats compared with control rats. Data are
expressed as picomoles 8-oxodG/dG � 10�5 in 90 �l DNA hydroly-
sate. Significant difference from wild-type cells is indicated by
**P < 0.01. (Please see http://dx.doi.org/10.2337/db07-1579 for a
high-quality digital representation of this image.)

MECHANISM OF OXIDATIVE DNA DAMAGE IN DIABETES

2628 DIABETES, VOL. 57, OCTOBER 2008



HG (1h)

NG

HG (2h)

HG (4h)

8-OxodG PI

A

Akt

P-Akt

GAPDH

NG

HG

min155 30 45 602.5 10

Ser473

HG

NG  52.5 15  30  4510

(A
rb

it
ra

ry
 u

ni
ts

)
   

P
A

kt
/G

A
P

D
H

min 60
0

0.1

0.2

0.3

0.4

0.5

B

p-Tuberin

NG

HG

min155 30 45 602.5 10

Tuberin

GAPDH

Thr1462

NG  52.5 15  30 4510
(A

rb
it

ra
ry

 u
ni

ts
)

 P
tu

be
rin

/G
A

P
D

H
min60

0
0.1

0.2

0.3

0.4

0.5

HG

**
**

*

**
** **

*

** ** **
** ** **

NG

HG

min 15 5   30   45   602.5  10

OGG1

GAPDH

C

NG  52.5 15  30 4510

HG

(A
rb

it
ra

ry
 u

ni
ts

)
O

G
G

1/
G

A
P

D
H

   min60
0

0.1

0.2

0.3

0.4

0.5 ** **
**

**
**

D

FIG. 3. Effects of high glucose (HG) on Akt/PKB and tuberin phosphorylation and OGG1 expression in MCT cells. A–C: Representative
immunoblot shows an increase in phospho-Akt (p-Akt) (A) and phospho-tuberin (p-tuberin) (B) in MCT cells treated with high glucose (25 mmol/l
glucose D-glucose) for the time periods indicated. GAPDH was used as loading control. Histograms in the bottom panel represent means � SE of
three independent experiments. Significant difference from nontreated cells is indicated by *P < 0.05 and **P < 0.01. D: Immunoflourescence
shows an increase in mitochondrial and nuclear 8-oxodG staining in MCT treated with high glucose for 1 h—an effect that was more intense at
2 and 4 h compared with normal glucose. FITC for 8-oxodG (green color) and propidium iodide for nuclear staining (red color) were detected with
excitation wavelengths at 450–490 nm and 535 nm, respectively. NG, normal glucose. (Please see http://dx.doi.org/10.2337/db07-1579 for a
high-quality digital representation of this figure.)
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effect of hyperglycemia on OGG1 expression, we evalu-
ated OGG1 protein expression in the kidney cortex of
diabetic and control animals. The increase in tuberin
phosphorylation is associated with a decrease in the
expression of OGG1 protein in the diabetic animals
compared with control animals (Fig. 1C).
Diabetes is associated with a decrease in OGG1
expression and with an increase in 8-oxodG levels.
OGG1 is the major DNA base excision repair enzyme that
recognizes and excises 8-oxodG. Therefore, we deter-
mined whether the change in OGG1 abundance influenced
the accumulation of 8-oxodG in vivo. Immunohistochem-
ical analysis of OGG1 shows that diabetes caused a
decrease in OGG1 staining in kidney cortex of diabetic rats
compared with control rats (Fig. 2A). In addition, mito-
chondria and nuclear DNA fractions were isolated from
the renal cortex, and 8-oxodG levels were analyzed by
HPLC with electrochemical detectors. Mitochondrial
8-oxodG levels were significantly higher in the kidney
cortex of diabetic animals compared with the kidney
cortex in the control group. There was very little increase
in nuclear 8-oxodG levels in diabetic rat kidney cortex
compared with kidney cortex from the control group (Fig.
2B). These data suggest that the low levels of OGG1
observed in the kidney cortex of diabetic animals may not
be sufficient to repair the generated 8-oxodG.
High glucose induces Akt and tuberin phosphoryla-
tion, increases 8-oxodG, and downregulates OGG1 in

MCT cells. To investigate the role of high glucose in Akt
and tuberin phosphorylation, MCT cells were incubated
for the indicated time periods in serum-free medium
containing either normal glucose or high glucose. High
glucose caused a rapid increase in Akt and tuberin phos-
phorylation in a time-dependent manner, with effects that
peaked at 2.5–5 min and subsided by 60 min (Fig. 3A and
B). To assess the effect of high glucose on OGG1 expres-
sion, we evaluated OGG1 protein expression and 8-oxodG
accumulation in MCT cells treated with high glucose for
different time periods. A decrease in OGG1 protein expres-
sion was observed in MCT cells incubated with high
glucose (Fig. 3C) with a maximum effect at 60 min.
Consistent with OGG1 downregulation, immunohisto-
chemical fluorescence staining of 8-oxodG was increased
predominantly in mitochondria and to a much lower
extent in nuclei after 60 min and more so after 2 and 4 h of
exposure of the cells to high glucose (Fig. 3D). Mitotraker
was used as a mitochondrial marker to confirm mitochon-
drial localization (data not shown). Collectively, these data
demonstrate that high glucose induces Akt and that tu-
berin phosphorylation results in downregulation of OGG1
and an increase 8-oxodG levels.
PI 3-kinase/Akt pathways mediate high glucose–
induced Akt phosphorylation and OGG1 protein down-
regulation in MCT cells. Activation of PI 3-kinase has been
shown to be necessary and sufficient for growth factor–
induced increase in Akt phosphorylation (38). PI 3-kinase–
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dependent activation of Akt in response to glucose has been
demonstrated in MCT cells (37). The correlation between
high glucose–induced Akt and tuberin phosphorylation and
OGG1 downregulation led us to test the hypothesis that the
PI 3-kinase/Akt pathway activated by glucose results in
tuberin phosphorylation and OGG1 downregulation. Serum-
starved MCT cells were pretreated with two structurally
unrelated PI 3-kinase inhibitors, 50 �mol/l LY294002 and 100
nmol/l Wortmannin, before exposure of the cells to high

glucose for 60 min. Figure 4A shows that glucose-induced
Akt phosphorylation is prevented by both inhibitors. More-
over, a decrease in Akt phosphorylation in the presence of
LY294002 (Fig. 4A) and Wortmannin (Fig. 4C) significantly
attenuated the downregulation of OGG1 by high glucose (Fig.
4B and D). These data indicate that PI 3-kinase is an
upstream mediator of Akt activation and OGG1 downregula-
tion in response to high glucose.

We next studied whether glucose-stimulated Akt is in-
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volved in OGG1 downregulation. MCT cells were preincu-
bated with Akt inhibitor IV (25 �mol/l) for 1 h before
exposure to high glucose. Inhibition of Akt prevented tuberin
phosphorylation and restored the levels of OGG1 to those of
cells incubated in normal glucose (Fig. 5A and B). These
findings demonstrate that Akt mediates high glucose–in-
duced downregulation of OGG1 in MCT cells.
Phosphorylation of tuberin and downregulation of
OGG1 are redox sensitive in MCT cells. We next
investigated a potential role for ROS in Akt and tuberin
phosphorylation and downregulation of OGG1. Hydrogen
peroxide has recently been shown to activate Akt in
various cell types, including renal proximal tubular epithe-
lial cells or mesangial cells (30–32,39,40). However, the
effect of ROS generation on tuberin phosphorylation and
OGG1 expression has not been investigated. MCT cells
were treated with 100 �mol/l hydrogen peroxide for the
indicated time periods in serum-free medium. Hydrogen
peroxide induced Akt and tuberin phosphorylation with an

effect seen as early as 2.5 min and a peak effect occurring
at 5–15 min (Fig. 6A and B), whereas the maximum
decrease in OGG1 was observed at 60 min (Fig. 6C). The
time course kinetics of phosphorylation of Akt and tuberin
paralleled those of downregulation of OGG1 by high
glucose. These data demonstrate that phosphorylation of
Akt and tuberin and downregulation of OGG1 are redox
sensitive in MCT cells.
ROS are required for high glucose–induced Akt and
tuberin phosphorylation and OGG1 downregulation
in MCT cells. High glucose increases ROS production in
vascular cells and in renal cells, including tubular epithe-
lial cells or mesangial cells (2,4,41). The fact that oxidant-
induced effects on Akt and tuberin phosphorylation
correlate well with those of high glucose suggests that
ROS may mediate the action of high glucose on Akt,
tuberin, and OGG1. First, we evaluated the role of high
glucose in the generation of intracellular ROS. MCT cells
were incubated for the indicated time periods in serum-
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free medium containing either normal glucose or high
glucose. High glucose significantly increased the fluores-
cence of DCF, a peroxide-sensitive probe, with a maximal
effect apparent 60 min after treatment, as measured by
confocal microscopy (Fig. 7A). Additionally, measure-
ments were performed with a multiwell fluorescence plate
reader to provide a better quantification of high glucose–
induced ROS generation. Incubation of MCT cells with
high glucose resulted in a rapid and time-dependent in-
crease in DCF fluorescence seen as early as 5 min after
treatment (Fig. 7B). These findings demonstrate that high
glucose increases intracellular ROS generation in MCT
cells. Next, we assessed whether ROS generation mediates
the effect of high glucose–induced Akt and tuberin phos-

phorylation and OGG1 downregulation in MCT cells. Se-
rum-starved cells were pretreated with the antioxidant
NAC, a ROS scavenger. Pretreatment with 20 mmol/l NAC
significantly inhibited ROS generation measured by DCF
fluorescence in cells exposed to high glucose for 30 min
(Fig. 7C). Moreover, pretreatment of the cells with NAC
inhibited Akt and tuberin phosphorylation and upregula-
tion of OGG1 protein expression in cells exposed to high
glucose (Fig. 7D). Furthermore, pretreatment of the cells
with NAC significantly reduced 8-oxodG staining com-
pared with cells treated with high glucose alone (Fig. 7E).
These data indicate that ROS are critical for high glucose–
induced Akt and tuberin phosphorylation and downregu-
lation of OGG1. High glucose increases Akt and tuberin
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phosphorylation and downregulates OGG1 in primary
proximal tubular epithelial cells. To confirm the validity of
these data obtained in the MCT immortalized cells, we
studied the effects of high glucose on the phosphorylation
of Akt and tuberin and on OGG1 protein expression in
RPTE cells. Serum-deprived RPTE cells were treated with
25 mmol/l glucose for different periods of time. High
glucose concentration caused an increase in phosphoryla-
tion of Akt and tuberin, with a peak at 30 min and
subsiding by 60 min, compared with cells incubated with 5
mmol/l glucose (Fig. 8A). Moreover, the increase in phos-
phorylated Akt and phosphorylated tuberin is associated
with a decrease in OGG1 expression in the cells incubated
with 25 mmol/l glucose for 60 min (Fig. 8A). These data
confirm our observation in the MCT immortalized cells.

To confirm that high glucose also increases the intracel-
lular ROS generation in RPTE cells, the production of
intracellular ROS was measured by quantification of the
DCF fluorescence with a multiwell fluorescence plate
reader. Stimulation of RPTE cells with 25 mmol/l glucose
resulted in a rapid and time-dependent increase in DCF
fluorescence, with the maximal effect (a threefold increase
over control) apparent at 60 min after treatment (Fig. 8B).
Collectively, these results confirm that high glucose elicits
an increase in ROS in primary proximal tubular epithelial
cells as well. Furthermore, it appears that the time course
of intracellular hydrogen peroxide generation in response
to high glucose is consistent with a potential role of ROS
in downstream signaling events, particularly the regulation
of redox-sensitive protein kinases and DNA repair.

DISCUSSION

In this study, we provide evidence that diabetes is associ-
ated with enhanced phosphorylation and inactivation of
tuberin via the redox-dependent activation of Akt. We also
demonstrate that diabetes-induced Akt and tuberin phos-
phorylation are associated with a decrease in OGG1
expression and accumulation of 8-oxodG in kidney cortex
of diabetic rats. Our data also indicate that this pathway is
activated in cultured renal tubular epithelial cells, the
major cell type in the kidney cortex, after exposure of the
cells to high glucose concentration. These findings indi-

cate that the PI 3-kinase/Akt/tuberin/OGG1 pathway is
highly relevant in the diabetic kidney and may contribute
to oxidative stress–induced renal injury observed in dia-
betes. In diabetes, the renal tubule is subject to both direct
and indirect insults. Tubular and interstitial lesions are
prominent in diabetic patients (42). In a number of cells,
high glucose promotes an increase in Akt phosphorylation
(43,44). We show that high glucose phosphorylates tuberin
on Thr 1,462, a site known to be targeted by Akt. High
glucose activates the PI 3-kinase/Akt/mTOR signaling cas-
cade to stimulate protein synthesis (37). Our data confirm
these observations and show an early and sustained
increase in Akt phosphorylation after exposure of the cells
to high glucose. Thus, activation of Akt represents a very
proximal step in the intracellular signaling pathway trig-
gered by high glucose. The observation that PI 3-kinase
and Akt inhibitors block the effect of high glucose on
tuberin phosphorylation indicates that the PI 3-kinase/Akt
pathway mediates the action of high glucose on tuberin. Of
interest is that insulin- or IGF-I–induced tuberin phosphor-
ylation is also inhibited by the PI 3-kinase inhibitor
LY294002 (45). The concept that the PI 3-kinase/Akt path-
way regulates tuberin is supported by other observations
that the expression of a constitutively active PI 3-kinase or
active Akt, including Akt1 or Akt2, induce tuberin phos-
phorylation (27). Phosphorylation of hamartin and/or tu-
berin may play an important role in the regulation of the
tuberin-hamartin complex (46). Deficiency and/or en-
hanced phosphorylation of tuberin on Thr 1,462 results in
its inactivation (26–28). Akt is known to phosphorylate
tuberin at this site and results in its inactivation (26–28).
Phosphorylation of tuberin by Akt affects its function
through at least two mechanisms: first, phosphorylation
decreases the activity of tuberin; second, phosphorylation
destabilizes tuberin by disrupting the complex formation
between hamartin and tuberin, resulting in ubiquitination
of free tuberin and its degradation by the proteosome (27).
Our data show that high glucose causes a rapid Akt-
dependent increase in tuberin phosphorylation in MCT
cells. The fact that the acute exposure of cells to high
glucose is sufficient to elicit proliferation and then apopto-
sis of human proximal tubule epithelial cells suggests that
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episodes of increases in glucose may contribute to cell
injury and to epithelial cell dysfunction (47).

We also found that high glucose–induced tuberin phos-
phorylation by Akt is associated with biological conse-
quences, namely a decrease in OGG1 expression and
increased 8-oxodG levels. The decrease in tuberin protein
expression is associated with a decrease in OGG1 expres-
sion (20). Therefore, tuberin deficiency, through its phos-
phorylation, is upstream of OGG1 in the pathway linking
high glucose to DNA damage. Collectively, the data indi-
cate that glucose acts through the PI 3-kinase/Akt/tuberin
pathway to downregulate OGG1, resulting in the accumu-
lation of oxidized DNA. 8-OxodG is a product of oxidative
DNA damage following specific enzymatic cleavage after
the ROS-induced 8-hydroxylation of guanine bases in the
mitochondrial and nuclear DNA (11,12). 8-OxodG is
known to be a sensitive marker of oxidative DNA damage
and of the total systemic oxidative stress in vivo (13).
Importantly, 8-oxoG appears to play a role in tissue cell
injury via the induction of apoptotic cell death (48).
Increased number of 8-oxodG–positive islet cells was
found in the human pancreas from type 2 diabetic subjects
(49). In addition, our data confirm a previous report of the
accumulation of 8-oxodG primarily in the mitochondrial
DNA and to a lesser extent nuclear DNA in kidney cortex
of diabetic rats. 8-OxodG levels were rapidly normalized
by insulin treatment, suggesting the involvement of hyper-
glycemia in oxidative DNA damage (50).

It is known that Akt is activated by oxidative stress in a
variety of cell types, including renal cells. Importantly, we
show that ROS, and specifically hydrogen peroxide, di-
rectly induce Akt activation and tuberin phosphorylation,
resulting in downregulation of OGG1 in MCT cells, indi-
cating that ROS are potential upstream mediators of the
effects of high glucose on oxidative DNA damage. We also
show that exposure of MCT to high glucose elicits a rapid
increase in intracellular ROS production. This rapid effect
supports the contention that ROS mediate early signaling
events, such as Akt activation in response to high glucose.
Moreover, the effect of high glucose on ROS generation,
Akt/tuberin phosphorylation, OGG1 downregulation, and
8-oxodG accumulation is markedly reduced by the antiox-
idant NAC. This is in agreement with a recent study
showing that pretreatment of human proximal tubule
epithelial cells with NAC reversed glucose-mediated ROS
production (51). Collectively, our data indicate that ROS
are signaling molecules responsible for Akt phosphoryla-

tion initiated by high glucose leading to tuberin phosphor-
ylation and OGG1 protein downregulation. To confirm and
validate our observations in the immortalized MCT cells,
we isolated primary RPTE cells from rat kidney cortex.
Similar to MCT cells, glucose enhances ROS generation
in primary RPTE cells and is associated with an increase
in Akt and tuberin phosphorylation and downreguation
of OGG1. These data show that MCT cells are a relevant
model and confirm that phosphorylation and inactiva-
tion of tuberin via the redox-dependent activation of Akt
play a major role in OGG1 downregulation and 8-oxodG
accumulation.

In summary, our data provide the first evidence that
hyperglycemia and high glucose lead to phosphorylation/
inactivation of tuberin and downregulation of DNA repair
enzyme OGG1 via the redox-dependent activation of Akt
(Fig. 9). This signaling cascade may play a role in oxidative
stress–mediated DNA damage induced by hyperglycemia
during diabetic nephropathy. Recurrent acute exposure of
renal cells to high glucose during diabetes has been
recently proposed to be involved in renal injury (51). Our
data shed light on the molecular mechanisms implicated in
these events. The present study provides additional ratio-
nale for maintaining tight control of plasma glucose to
prevent oxidative DNA damage in diabetes.
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