
HYPOTHESIS ANDTHEORY ARTICLE
published: 18 June 2012

doi: 10.3389/fphys.2012.00207

The blue-collar brain
Guy Van Orden1*, Geoff Hollis2 and Sebastian Wallot 3

1 CAP Center for Cognition, Action and Perception, Department of Psychology, University of Cincinnati, Cincinnati, OH, USA
2 Department of Psychology, Grant MacEwan University, Edmonton, AB, Canada
3 MINDLab, Aarhus University, Aarhus, Denmark

Edited by:

Tjeerd W. Boonstra, University of
New South Wales, Australia

Reviewed by:

Didier Delignieres, University
Montpellier 1, France
Cees Van Leeuwen, Katholieke
Universiteit Leuven, Belgium

*Correspondence:

Guy Van Orden, CAP Center for
Cognition, Action and Perception,
Department of Psychology, University
of Cincinnati, Cincinnati, OH
45221-0376, USA.
e-mail: guy.van.orden@uc.edu

Much effort has gone into elucidating control of the body by the brain, less so the role of the
body in controlling the brain. This essay develops the idea that the brain does a great deal
of work in the service of behavior that is controlled by the body, a blue-collar role compared
to the white-collar control exercised by the body. The argument that supports a blue-collar
role for the brain is also consistent with recent discoveries clarifying the white-collar role of
synergies across the body’s tensegrity structure, and the evidence of critical phenomena
in brain and behavior.
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INTRODUCTION
Lloyd Olsen shared fame in the 1940s with Mike the celebrity
headless chicken. Mike’s head was lost when he was five and a
half months old while being prepared by Lloyd to become chicken
dinner. Mike lived on without a head for 18 months, fed through
an eyedropper and growing from two pounds, at his beheading,
to eight pounds at his death. In the mean time he traveled widely
performing in New York City, Los Angeles, Atlantic City, and else-
where. Our interest in Mike is the demonstrated coordination
among the processes of his body, despite lacking a head. What was
left of Mike’s brain – he probably still had a brainstem – would have
marked a handkerchief somewhat less than a healthy sneeze. But
he nonetheless retained the coordination among peripheral ner-
vous system, organ systems, facia, muscles, and tendons, producing
locomotion apparently indistinguishable from intact locomotion,
even walking around and “pecking” right after losing his head.

To us Mike demonstrates that high-level control of the body has
sources in addition to the central nervous system. An environment
of constant red light, in a different demonstration, created feck-
less chickens. The steady-state environment obviated the chickens’
connection to the daily cycles of sunrise and sunset, and the pace
markers or zeitgebers of the body’s circadian rhythm. Conse-
quently the chickens suffered a breakdown of healthy coordination
among the rhythms of physiology, including heart rate and cycles
of deep body temperature, and the coupling of physiology with
locomotor activities (Winget et al., 1968). Apparently, chicken
physiology and behavior include necessary sources of control in
the daily cycles of a circadian environment.

A sea squirt starts life as a rather simple tadpole-like creature,
possessing a simple nervous system, and capable of locomotion
and light detection. However, finding a surface upon which it can
affix itself, the sea squirt will do so, and promptly ingest its ner-
vous system (Birkeland et al., 1981). This sea squirt example, like
the chicken examples, speaks again to sources of control of the

body and behavior in addition to and distinct from the central
nervous system. Deprivation of sleep cycles or nutrients illustrates
this idea in human behavior. These deprivations destabilize human
emotional control, increasing emotional lability. The effect is suffi-
ciently reliable to have become a mainstay of the weekend initiation
rituals of cults and extreme self-help programs. Initiates are kept
awake in a common room without food for 24 h, which opens
them up emotionally, becoming more receptive to the program
being sold.

These examples all bear relationships to general theories of
control, whether that of cybernetics or non-linear dynamics of
self-organization (cf. Simon, 1973; Haken, 1977; Newell, 1990;
Schiepek and Haken, 2006, respectively). The feckless chickens
probably illustrate this relationship best. The faster changing
processes of physiology are constrained in their coordination by
the more slowly changing circadian rhythm – generally speaking,
more slowly changing dynamics constrain faster dynamics, not
vice versa. In self-organization, a key distinction between con-
trol and order parameters versus state dynamics is based on how
fast one changes with respect to the other. Order parameters are
defined to be particular configurations of state dynamics, which
means they must change more slowly than state dynamics.

Thus the pacing of the phenomena of the body and brain, with
respect to behavior, can tell us which processes constrain which in
enacting behavior. Nonetheless, the idea that the body or behavior
might control the brain, when first heard, may sound outrageous,
depending on what you already believe about control, the brain,
and behavior. The most widely held conventional belief is that the
brain controls behavior, not the other way around. Yet, when com-
pared with the lightening fast changes in the brain, the typically
more slowly changing body suggests the exact opposite broad-
stroke outline of control. The brain appears to take direction from
the body, just as old school blue-collar workers took direction from
white-collar counterparts in the front office.
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This issue of Frontiers of Fractal Physiology is about critical
phenomena of the brain. A close look at the critical phenome-
non of fractal time suggests that the brain serves the blue-collar
role in broad circumstances of on-going behavior. To understand
this claim, we must first make explicit the links among related
concepts of fractal physiology, criticality, non-linear dynamics,
tensegrity, synergy, and control. The integrated ideas are that con-
trol of behavior originates in constraints on behavior changing
on different timescales, and that constraints simultaneously sus-
tain and are sustained by the emergent phenomena in which they
participate.

HUMAN PERFORMANCE DATA
To begin we require an understanding of fractal time. Fractal time
is a performance phenomenon, so in this section we re-examine
the basic idea of measurement of human performance together
with the idea of critical states separating qualitatively different
modes of behavior. Following that we describe how fractal time
appears in brains and behaviors and how the body has been pro-
posed to be an excitable medium of self-organizing synergies. It
is the synergies of the body that also constrain the brain during
behavior. Finally, we summarize conclusions that appear to us to
be the logical consequences of a blue-collar perspective on the
brain.

Cognitive scientists may tell you that they study human perfor-
mance of specific cognitive functions such as memory, language,
or motor control. In actual practice we study the measurements
of a person performing a “memory” task, a “language” task, or a
“motor” task. Yet all task performances are motor performances
and language is ubiquitous in the instructions to participants,
which must tax memory to be remembered when performing
the somewhat arbitrary laboratory task. So most of the time, and
maybe all of the time, the scientists who study cognitive activities
study the coordination over time among memory, language, and
motor activities.

In particular, scientists are concerned with the reliable changes
that they observe in the measurements that they take, which is
true of cognitive scientists as well. The measurements that we
take in cognitive science range from millisecond-precise durations
of event times in human activities to nominal measurements that
tally which category an observed behavior is assumed to represent.
In all cases it is patterns of change or variation in the measured
values that are scrutinized and interpreted to motivate interesting
conclusions and to test the hypotheses that stem from scientific
theories.

Early in the twentieth century scientists derived powerful sta-
tistical tools with which to carve out the patterns in data, based
on idealized assumptions about the central tendencies of data and
uniform dispersion of data values around a central tendency – as
though an average behavior of a system could be found reliably at
the center of the noisily dispersed measured values, falling equally
on all sides, though less densely, outward from the center. With
hindsight as a crystal ball, the twentieth century the picture of
data was neatly generalized to become chaos theory or non-linear
dynamical systems theory. Linear patterns of change in data, in
which related changes were also proportional changes, one to
another, were neatly absorbed as special cases of broader categories

of non-linear disproportional change and discontinuous
change.

In bifurcation theory, a tiny external change can break a bal-
anced symmetry of possible outcomes, resulting in a qualitative
change called a bifurcation. Bifurcation theory concerns the rela-
tion between locally continuous or incremental changes in control
parameters and the abrupt fast qualitative restructuring that they
may provoke. The tipping point of a bifurcation is a critical point
and the behavior of systems near critical points is called critical-
ity. The empirical foci of this essay are the observed scale-free
behaviors of body and brain, predicted to occur near the critical
bifurcation points of complex systems.

SCALE-FREE BEHAVIOR OF THE BRAIN AND THE BODY
Multicellular living things comprise nested structures. The toes
and fingers at the small-scale periphery of the human skeleton are
composed of small toe and finger bones coupled by small artic-
ulating joints. Toes and fingers are nested within the next scale
of rigid bones of arms and legs that are coupled by larger articu-
lating joints. Arms and legs in turn sprout from the trunk of the
human body and are connected to the trunk by rotating joints
at the hips and shoulders. Similarly, viewing a tree we can see
that leaves are nested within the structure of small branches that
are nested, in turn, within the structure of larger and yet larger
branches that culminate in its largest branches, sprouting from
the tree trunk.

The anatomy of blood vessels throughout the body, the detailed
anatomy of a kidney, and the airways of a lung all comprise nested
tree-structures across multiple scales – an arrangement called frac-
tal structure that is studied using the mathematical tools of fractal
geometry. The scaling relations that define the spatial organization
of living things indicate their fractal composition. In a scaling rela-
tion, the size of a structure is inversely proportional to how often
structures of that same size recur. For example, within limits, the
diameter of each blood vessel is inversely proportional to the total
number of blood vessels of that same diameter that will be found
in the body (West, 2006).

The structure of the body provides specific physical limits on
possible behavior. Scaling relations seen in the body are accom-
panied by scaling relations in the temporal unfolding of behav-
ior. However, these constraints are not unidirectional. Physical
structure and temporal behavior are mutually dependent. Typi-
cal physiological and neural development in young children (e.g.,
Hausdorff et al., 1999; Thelen et al., 2001) and change due to
neurodegenerative disorders (e.g., Schmit et al., 2006), as well as
musculature change in adults (e.g., Schmit et al., 2005), all shape
the temporal structure of behavior. Likewise, behavior shapes
both small-scale neural structure (e.g., Maguire et al., 2000) and
larger scale muscular and cardiovascular structure, with exercise
for instance.

Event times of both human physiology and human behavior
compose temporal scaling relations. In the scaling relations of
event times, the magnitude of changes in the duration of event
times is inversely proportional to how often a change of that mag-
nitude recurs. Figure 1 portrays a physiological data series of brain
activity to illustrate a scaling relation of fractal time. Across the
top of Figure 1 we present raw electroencephalogram (EEG) data
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FIGURE 1 |The ordered series of a single EEG-electrode record, sampled

at 500 Hz (top) and the illustration of a spectral analysis of this record

(bottom, right). Specific frequencies and magnitudes of change (bottom, left)
are used to approximate the rough graph of the EEG data (top), and the

outcome is the spectral portrait (lower right) on log–log axes. The spectral
slope −α = −1.08 is close to idealized 1/f noise (−α = −1.00). The Y-axes in the
illustrated sine waves have been adjusted to make smaller amplitude sine
waves visible.

from a volunteer, collected from an electrode on his scalp while he
performed the task of repeatedly estimating a 1 s time interval.

The bottom, left side of Figure 1 portrays a subset of the peri-
odic sine waves used to simulate the aperiodic EEG signal. Arrows
extend from each sine wave to its paired coordinate point in a
power spectral graph, appearing below the raw EEG data. The
amplitude and frequency of each sine wave become the two coordi-
nates of a single point in the power spectral graph. The amplitude
of the sine wave (squared) corresponds to the power or magnitude
of changes in the data values that the sine wave simulates. The fre-
quency of the sine wave estimates how often the changes of that
magnitude recur.

Frequency of change and magnitude of change are the coor-
dinate X- and Y-axes of the power spectral graph (after logarith-
mic transformations). Thus the power spectral graph presents a
relation between the magnitude, or power, of the changes and
the corresponding frequency of changes of that magnitude. The
regression line, also portrayed in Figure 1, summarizes this rela-
tionship. The slope of the line in Figure 1 indicates scale-free
behavior because power is proportional to frequency. Data like

these are called scale-free because the data pattern will look simi-
lar whether the vantage point of the analysis zooms in, to a finer
scale, or zooms out, to a coarser scale.

The scale-free pattern of the data in Figure 1 is further illus-
trated in Figure 2 by repeatedly zooming in to examine the middle
half of the time-series of the EEG data. Each tighter frame on the
EEG data reveals another self-similar pattern in the variation. This
self-similar pattern is the predominant pattern of variation in EEG
data and begs to be explained with a high priority. An explanation
may begin with the apparent fact of the fractal pattern, that the
same pattern is observed whether the focus is one half of the origi-
nal data, one fourth of the original data, one eighth of the original
data, and so on.

Another fact begging for explanation is that, similar to the
brain data, human performance data reveal a scale-free pattern
(cf. Gilden, 2001), although it is possible to manipulate both pat-
terns, to become more like white noise or brown noise (Van Orden
et al., 2011; van Rooij and Van Orden, 2011). The performance
data of the same volunteer, whose brain data appear in Figures 1
and 2, are portrayed in Figure 3. Each Y-value of a data point in
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FIGURE 2 | Ordered series of the single EEG-electrode recording from

Figure 1 (top, left) and the resulting spectral plot (right) on log–log axes.

The top panel includes 16 min of continuous EEG recordings. All other panels
are subsets of the original data series. The first and last quarters of each data

series are both deleted in each iteration, yielding eventually a data series that
ran for 2 min (bottom). The scaling relation remains very similar for each
nested series, close to idealized 1/f noise, and demonstrating the statistical
self-similarity of the data series.

the raw data series of Figure 3 is the estimate produced by the
volunteer of the duration of 1 s – the volunteer pressed a key to
mark the time of each second’s passing. The raw data are por-
trayed across the top of Figure 3. Each datum is portrayed in the
order in which it was collected; the data value from the first esti-
mated event time is leftmost on the X-axis of the raw data and
the data value of the last estimated event time is rightmost on the
X-axis.

A subset of the sine waves that were used to simulate the raw
behavioral data series is portrayed on the left side of Figure 3. Each
sine wave yielded two coordinates defining a point on the power
spectral graph, again below the data series graph. Arrows connect
each sine wave to its point coordinates. The amplitude of each
sine wave (squared) estimates the size of changes in data values,
and the frequency of the sine wave estimates how often changes
of that size recur. The logarithms of frequency and size of change

(power) are again the respective coordinate X- and Y-axes of the
power spectral plot, and the summary regression line again has
a slope near minus 1, which translates into a scaling exponent a
close to positive 1.

Repeatedly measured data values, whether from brain activity
or behavior, are generally scale-free with exponents a ∼ 1, consis-
tent with our examples (for brain see Buzsáki, 2006; for behavior
see Newell and Slifkin, 1998; Gilden, 2001, 2009; Riley and Turvey,
2002). This fact, plus the idea of intuitive brain-to-body control,
has led to speculation that the scale-free behavior of the brain
causes the scale-free variation in behavior, in whole or in part
(Raichle and Gusnard, 2005). The speculation is likely false how-
ever because the priority of control, as we mentioned already
rests on relatively slowly changing constraints and the scale-
free behavior of the body includes several orders-of-magnitude
slower changes than the co-occurring brain activity. However, it
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FIGURE 3 |The ordered trial-series of 1000 intervals between the button

presses defining time estimates of 1 s (top) and an illustration of a

spectral analysis of this time-series (bottom, right). Specific frequencies
and magnitudes of change (lower left) are used to approximate the rough

graph of the behavioral button-press data (top), and the outcome of the
spectral analysis (lower right) on log–log axes. The spectral slope −α = −0.99
is close to idealized 1/f noise (−α = −1.00). The Y-axes in the illustrated sine
waves have been adjusted to make smaller amplitude sine waves visible.

is precisely these fast time scales of brain activity that have been
emphasized in the control of behavior. For control to flow this way,
from faster to slower time scales, control would require an extra
source of influence, in addition to brain dynamics, to amplify the
activity of the brain in such a way that it could affect the dynamics
of behavior.

Brain activity in the EEG record displays scale-free properties.
This means at least two things: first, the magnitude of fluctuations
of fast time scales in nervous activity is not sufficient to single-
handedly account for behavioral control. Second, the faster time
scales in the brain are constrained by its slower time scales (i.e.,
long-range traveling waves and neuroplasticity) as well as by the
slower time scales on which behavior unfolds. Since the dynamics
of brain and behavior both display scaling over a certain temporal
range, this might indicate they are measures of the same process
at different granularities. Although there is a relevant distinction
between behavior and brain activity insofar as our measurement
tools allow us to sample their changes at different rates, the issue
of a fundamental distinction between “behavior” and “brain activ-
ity” is less important than the point that slower changes constrain
faster changes.

We created an idealized illustration of how the range of sale-
free behavior observed across the time scales of behavior and brain
might look together on the same graph, using the duration of the
sine wave periods that would suffice to simulate the time scales of
variation in repeated measurements of behavior and brain. The
idealization appears in Figure 4. The behavioral data fill out the
slower region of low-frequency high-power change on the log-
arithmic X- and Y-axes; the longest data set, to our knowledge,
coming from a study lasting over a year (Delignieres et al., 2004).
The powerful amplitudes of change in the behavioral data are
several orders-of-magnitude larger than those of the brain data.
The low amplitude changes of the brain are thus too weak and
change too fast to be the causes of the much slower and more
strongly varying changes of the body in behavior. Perhaps then
the activities of the body somehow “cause” those of the brain.

PRESENCE OF MIND
Low amplitude changes of the brain are too weak and change too
fast to be causes of the much slower and much more strongly
varying changes in the body. This claim might sound odd when
adopting an overly exclusive “brain controls the body” way of

www.frontiersin.org June 2012 | Volume 3 | Article 207 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive


Van Orden et al. Criticality and control

FIGURE 4 |Time scales of behavior and brain were estimated from

the time scales implicated in sine wave simulations of variation

across repeated measurements (as in Figure 4). Landmarks of
durations (day, week, etc.) or brain activity (Alpha, Gamma) are placed
near their values in log10(Sec). This figure also includes the span of
brain activity observed in the BOLD signal of brain metabolism used in
fMRI studies, all to give context to the contrast between the span of

time scales observed of behavior and the span of time scales observed
of the brain (for reviews see Gilden, 2001; Buzsáki, 2006; Van Orden
et al., 2011; van Rooij and Van Orden, 2011). The question mark to the
right of the behavioral span symbolizes the fact that no upper bound
short of death has yet been discovered in longitudinal studies
estimating the presence of scaling relations in the variation across
measurements of behavior.

thinking. But it is not odd at all from an engineering perspective.
Some engineered systems produce scaling relations in their behav-
ior and the scaling relation characterizes a kind of marriage among
different functions of “memory” and “context.” The consequences
concern how engineered processes on very different timescales
constrain each other in their interaction.

Very slowly changing constraints could appear to be static if
seen from the perspective of a very rapidly changing process. But
the slow and fast changes are of course concurrent. On the one
hand, concurrence allows very slowly changing constraints to serve
a kind of memory function for more rapidly changing constraints.
Slowly changing constraints remind a rapidly changing process
of the constraints coming from the slow timescale, which may
change only slightly, or not at all, from the constraints on previous
cycles. Slower changes are in this way a means for faster changes
to “remember” what they need to know about the status of all the
more slowly changing constraints in the system (Keshner, 1982).

On the other hand, very slowly changing constraints also func-
tion as a relatively stable context, a slowly changing platform on
which rapidly changing dynamics are staged. In this emphasis,
the very slowly changing constraints limit the degrees of free-
dom available to a faster changing process, thus restricting the
degrees of freedom for what can happen on faster time scales. The
faster changing dynamics must evolve within the limited degrees
of freedom that the context leaves available.

The crucial importance of memory and context is reflected in
how the brain consumes energy. The brain alone accounts for 20%
of the body’s energy consumption (Clarke and Sokoloff, 1999). Yet
in a task performance the range of changes in energy consumption
in the brain’s activity spans less than 1% of total bodily energy
consumption (Raichle, 2010). In other words, our present state

of knowledge about energy consumption implies that a complex
brainy task requires little- or no-more energy than simply relaxing
with eyes closed. This pattern of energy use is consistent with a
brain that is primarily about updating and maintaining predictive
aspects of history and current events from the lived perspective of
the actor.

The facts about energy consumption make clear the importance
of the brain “knowing” its place in the world, at any given time.
This knowledge could be sustained in positive feedback loops of
glutamate cycling (Davia, 2005), and it is estimated that between
60 and 80% of the overall energy consumption of the brain occurs
in glutamate cycling (Raichle, 2010). If an actor’s history and
context – presence of mind – are sustained in the energy pat-
terns of feedback loops, then the amount of energy dedicated to
this blue-collar task is consistent with the importance of support
for on-going perception and action. Whether viewed as history
or context, the slower the change, the more constant, or stably
constraining is the influence of the past.

Slower dynamics thus constrain faster dynamics, which allows
the flow of visible or audible,or otherwise available, context to con-
strain the dynamics the brain. The flow of invariants across percep-
tion occurs on the slower time scales of change in brain activity (see
Figure 4), supplying constraints that reduce the degrees of free-
dom for what may happen next. The residual degrees of freedom
allowed by a visible checkerboard, for example, slowly changing
its position across the visual field on which flickering rings create
expanding or contracting traveling waves (1/32 or 1/48 Hz), gives
structure to the activity in visual cortex. These slowly changing
constraints reveal a more spatially precise picture of retinotopic
organization, compared to previous attempts (Engel et al., 1993,
1994, 1997).
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We suggest that the brain is primarily about maintaining pres-
ence of mind. In our meaning, “presence of mind” includes the
present configuration of the body as it is currently entwined in
meaningful relations with the present configuration of the world.
Relations among configurations are all themselves changing rel-
atively slowly (compared to the brain). Slower changes provide
constraints to the brain in the shape of the pattern of energy flow in
the brain. Constraints provide knowledge about possible futures,
and they are had for free in the immediate status of relations
between the body and the world (Stepp and Turvey, 2009).

A THIRD CATEGORY OF PHENOMENA
Behavior and brain share the same scaling relation, which they
also share with other measured signals of physiology such as heart
rate, colon contraction, transduction at the retina, neural firing,
and many others (Glass, 2001). We believe there are fundamental
consequences of this shared scaling relation. There are practical
advantages for a system to maintain scaling relations in its pat-
terns of change, these advantages place practical constraints on
the development of species and organisms, and have staggering
consequences for cognitive science.

An empirical scaling relation with scaling exponent a ∼ 1 is
approximately the mathematical scaling relation called fractal
time, 1/f scaling, or pink noise. It is called pink noise due to a
resemblance to the empirical spectral portrait of pink light, which
concentrates power in the lower frequencies of red light relative
to the higher frequencies of blue light. Pink noise is observed of
complex systems near the critical points of bifurcations. By staying
near to its critical points, a system sustains a poised attitude, ready
at any moment to change the organization of its behavior.

Subtle changes in the relation between the task and the per-
former are often met by qualitative changes in the organization
of performance. The relation between task and performer even
shapes the expression of learning disabilities (Hendriks and Kolk,
1997). Encouraged to read aloud very quickly, developmental
dyslexics make errors consistent with a deficit in the “lexical”
process in reading, producing symptoms of a type of dyslexia
that is defined by visual/phonological errors and semantic errors
(e.g., POND → /pool/, BUSH → /tree/). When encouraged to read
aloud accurately, the same dyslexics produce symptoms of a differ-
ent type of dyslexia, exhibiting the ponderous letter-by-letter, or
syllable-by-syllable reading associated with a “non-lexical” process
of reading.

Human performance may undergo a bifurcation between speed
versus accuracy conditions, self-organizing a different dynamical
system suited for speed than for accuracy (cf. Dutilh et al., 2011;
Wijnants et al., in press). This hypothesis is consistent with the two
types of dyslexic performance, one under speed conditions and
the other under accuracy conditions. These speed-versus-accuracy
types also closely parallel the two types of acquired dyslexia that
were featured conspicuously in a double dissociation of read-
ing processes that kicked off modern cognitive neuropsychology
(Marshall and Newcombe, 1973, 1977). And extreme speed condi-
tions also induce errors by intact readers that resemble the errors
defining acquired dyslexias (Kello and Plaut, 2000).

Different task demands elicit the symptoms of different types of
aphasia from the same brain-damaged individual(s) (Kolk et al.,

1985; Kolk and Heeschen, 1992; Hofstede and Kolk, 1994; Kolk
and Hofstede, 1994). This would seem to require brain-to-body
control, if only to guarantee performance will satisfy the task
requirements described in instructions to a brain-damaged indi-
vidual. Brain-to-body control could occur if the weaker and faster
changes of the brain could be susceptible locally, as when a weak
external perturbation can change the next stronger source of con-
straint. Local susceptibility of this sort could be passed up the
hierarchy of constraints, each pace of change in turn, to usurp the
stronger and slower dynamics of the body and change the course
of behavior.

This is a reasonable way to imagine the white-collar control
of behavior by the brain, capitalizing on the relatively unstable
dynamics near critical points. But brain-to-body control is not the
focus of this essay. Our goal is to shine more light on the blue-
collar work of the brain. Blue-collar work exploits the relatively
stable dynamics near critical points, which may at first seem to
contradict what we just supposed to be the basis for white-collar
control – that is, susceptibility stemming from relatively unstable
dynamics near critical points.

Yet a critical state has the unique feature of being simultane-
ously the locus of stability and instability, regular and random
variation, universal and singular structures – both together or nei-
ther alone – a third kind of behavior (Keshner, 1982; Ulanowicz,
2006; Nicolis and Rouvas-Nicolis,2007; Sporns,2007; Tsonis,2008;
Van Orden et al., 2011). Before complexity science the variation
in measured values was divided exclusively between the regular
changes of explainable variance and the random changes of mea-
surement error, signal versus noise. But pink noise is neither signal
nor noise, or it is both, as already noted, and so it cannot be clas-
sified within the conventional dichotomy. Pink noise is a third
category of behavior, a widely acknowledged game-changing phe-
nomenon of complexity science. It is the simultaneous presence
of instability together with stability that defines a critical state.

Thus our thesis: if white-collar control can be said to exploit the
instability of a critical state then blue-collar work depends upon
stability. Brain-to-body control by the faster changing dynamics
of the brain exploits the instability near a critical state to change
the course of the slower dynamics of the body. Blue-collar work
exploits constraints supplied by the more slowly changing “ghost”
parameter dynamics of criticality that lend stability to the faster
changing dynamics of the brain.

Additional sources of constraints for brain dynamics include
the repetitively similar behavioral trajectories of organ systems, the
expressed modes of physiological processes, the repetitive move-
ments of human gait, as well as cognitive problems that persist
over time or constraints due to intentions that remain unsatisfied.
These few examples illustrate the reservoir of constraints present
in the generally more slowly changing dynamics of behavior com-
pared to brain. We next describe the structural composition of the
body that self-organizes as movement trajectories of the body in
behavior.

TENSEGRITY STRUCTURE OF THE BODY
A mollusk’s body naturally self-organizes survivable relationships
with its environment. While slowly treading water, for instance,
the mollusk abruptly recruits interneurons within a self-ordering
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central pattern generator, allowing a rapid escape from a predator
(Nishikawa et al., 2007). In doing so, the central pattern generator
illustrates the soft-assembly of a synergy.

Synergies are “softly” (temporarily) assembled dynamical
processes. Temporary soft-assembly allows changes in control to
stay apace with the changing demands for reorganization of behav-
ior. Perpetually changing demands exist at the perpetually chang-
ing interface of an organism with its environment. Central pattern
generators stay apace by re-organizing their network connectiv-
ity (Harris-Warrick and Marder, 1991; Morton and Chiel, 1994;
Hooper, 2001). The changing relationship with an environment is
sometimes served by previously inhibitory connections that now
become excitatory connections, by neurons that are recruited into
networks in which they did not participate before, or by the fusion
of previously separate networks.

The spontaneous dynamics of the brain’s so-called default net-
work will change depending on what the participant just heard.
The volunteer’s investment of attention to a task and other task
demands can also change the soft-assembled organization of brain
activity among the regions of the default network (Hasson et al.,
2009). Almost any change pertaining to ordinary standing around
will yield uniquely soft-assembled postural dynamics (Riley et al.,
2012). The body and brain thus create of themselves unlimited
solutions, apace with the idiosyncratic local contexts in which they
find themselves.

The organism at its changing interface with the environ-
ment requires this flexible self-control, and context-sensitive soft-
assembly appears to be the vital organizing principle of brain
architecture (Nikolić, 2010). Organism-wide synergies emerge
across a tensegrity structure. The tensegrity structure is formed
by a taught web of muscles and fascia to fully connect the parts of
the skeleton, appearing to wrap it like a mummy. Similar to tenseg-
rity structures in architecture (e.g., Tomassian, 1997) or robotics
and biology (e.g., Tur and Juan, 2009), the skeleton supplies the
struts while the muscles, ligaments, and fascia form the tension
lines eliminating slack from the tensegrity structure (Levin, 2002).
The taught web of tension lines ensures that movement at any
one place in the tensegrity structure has consequences through-
out the structure, creating a robust mechanical holism that even
survives damage that has left the body paralyzed (Carello et al.,
2008). The neuromusculoskeletal structure of the body, in the
guise of this tensegrity structure, is an excitable medium of self-
organizing constraints to sustain the coordinated movements of
the body.

Synergies allow the tensegrity structure to behave in some ways
but not others, and control works as a process of elimination. Syn-
ergies are webs of constraints that limit how the body can change
in coordination. Respiratory and cardiovascular processes change
together with a change of locomotor gait, for example, ensuring
the right amount of oxygen to the cells at the right time (e.g.,
Gonzales et al., in press). Behavioral processes in a skilled tennis
player are constrained to run for the ball and make forehand shots,
backhand shots, and to serve and return serves. A swimmer is con-
strained by synergies to breath out through the nose and breath in
through the mouth apace with the strokes of swimming. A web of
constraints in each case delimits the possibilities for coordination
among the processes of the body, in the actions at hand.

Synergies and tensegrity structure also harvest energy from the
temporary contexts of the body (Kugler and Turvey, 1987). Some
good configurations of the body with its environment exploit
potential energy from inertial forces or from gravity in on-going
movement (Bernstein, 1967; Kugler and Turvey, 1987; Dickin-
son et al., 2000; Turvey, 2007; Wijnants et al., in press). Other
good configurations knit the body together, head to foot, in the
endlessly novel solutions of postural control (Riccio and Stoffre-
gen, 1988). We are two legged creatures who must balance a large
heavy head on a thin neck and, to maintain balance, our center
of mass should not exceed its base of support, approximately cir-
cumscribed within a perimeter around the feet. Lest we tip over,
remote preflexes must anticipate all overt movements (Belen’kii
et al., 1967). And yet walking is also falling because the body moves
outside of its center of mass in each step, utilizing the potential
energy from gravity in the process.

EVIDENCE OF SYNERGY
The taught tension-line coupling across the tensegrity structure
allows the body to perform as a single functional unit. To do so,
synergies tailor the available degrees of freedom for coordinated
changes among the processes of the body. In a classic example,
the lips must be in contact to say the/b/in/bob/ (Kelso et al., 1984).
Synergy ensures this contact by coupling neuromuscular processes
to exclude all non-contact relations between the lips at the time
that contact is required. As we already noted, the taught web of
tension lines ensures that change at any one place in the tenseg-
rity structure has consequences throughout the structure, allowing
synergies to contribute to presence of mind, supplying a way of
knowing about the body and brain penultimate to an action itself.

Prior to saying the/b/in/bob/, the exclusion of unlikely con-
figurations retains sufficient degrees of freedom prior to action,
to allow the lips to compensate for each other, if something goes
wrong (e.g., Scholz and Schöner, 1999; Latash et al., 2002; Riley
et al., 2012). Thus, to test for control by synergy, simply perturb
on-going speech and look whether compensation occurs in the
coupled articulators. In the classic study, a speaker’s attempt to say
the/b/in/bob/was perturbed by a sudden, unexpected, downward
tug on the speaker’s jaw. Ultrafast compensation began within 5–
10 ms – faster than the brain can compute and return a new plan
of articulation (Wallot and Van Orden, in press) – and the lower
lip, not the jaw, stretched upward to form a new configuration of
contact, producing a fully intelligible pronunciation of/bob/with
no audible distortion (Kelso et al., 1984; see also Folkins and
Zimmermann, 1982; Abbs and Gracco, 1984).

Ultrafast compensation reconfigured the bilabial and laryngeal
gestures (at least), producing compensatory lip gestures to respect
abstract phonology as well as compensations in the kinematics of
the larynx (Saltzman et al., 1998; see also Bauer et al., 1995). In
the theoretical language of cognitive psychology, bi-level coupling
of kinematic micro-dynamics and linguistic macro-dynamics is
a coupling between body and mind. Synergies in speech gener-
ally include coupling across different levels of organization (van
Lieshout, 2004) and coupling across multiple levels of organization
solves the essential problem of speech production – the on-line
coordination of about 70 muscles to stay within narrow trajectories
of legible meaningful speech (e.g., van Lieshout et al., 2007).
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In other evidence of synergetic control, the perturbation is
again sufficient to prompt a change in degrees of freedom for
reorganization of human performance. Dual-task paradigms can
be interpreted according to whether performing one task per-
turbs the performance of another task (Riley et al., 2012). For
instance, pressure to respond quickly in a cognitive task can per-
turb and decrease the stability of motor-task performance, com-
pared to performing the motor task by itself (Temprado et al.,
1999, 2001). Other times, a concurrent cognitive task is sufficient
to change the organization of the motor performance (Pellecchia
et al., 2005; Shockley and Turvey, 2005, 2006). In the latter case,
dynamical models suggest that a higher-order synergy envelops
cognitive and motor performance (Fuchs et al., 1996). However,
the motor task of walking on a treadmill takes priority over a con-
current cognitive performance, lest the participant fall, yielding a
reorganization of cognitive performance. The same dynamics of
locomotion are present with or without the cognitive task, while
cognitive dynamics are reorganized in the dual-task (Kiefer et al.,
2009).

In concurrent observations of brain and behavior, changes that
anticipate reorganization are seen in the repeated measurements
of both brain and behavior, and the coincident changes strictly
resemble those that precede known physical examples of bifurca-
tions called phase transitions (Fuchs et al., 1992; Kelso and Fuchs,
1995). Reorganization across a bifurcation point is preceded by
patterns of change called critical slowing, critical instability, and
eventually the sudden-jump in a bifurcation. The time delay from
the sudden-jump reorganization of the brain to the sudden-jump
reorganization of behavior is also about right, given our spec-
ulation about brain-to-body control, occurring within the time
required for a single jolt of activation running from brain to behav-
ior (Fabre-Thorpe et al., 2001; Thorpe, 2002; Riley et al., 2012;
Wallot and Van Orden, in press).

The coupling of processes in synergy is a refinement of the idea
of coordinative structures in motor coordination, the previous
solution to the notorious degrees of freedom problem of behavior
(Turvey, 2007): there exist incalculably more possible configura-
tions of the possible states of the body than there are smoothly
and appropriately coordinated ways to make behavior (Bernstein,
1967). Tensegrity structure and synergies reduce the degrees of
freedom of the body, limiting the possible configurations to task,
and context appropriate “symphonies” of movement for coordi-
nated change in behavior (Haken, 1977; Kugler et al., 1980, 1982;
Kelso, 1995, 1998, 2009; Juarrero, 1999; Van Orden et al., 2011;
Riley et al., 2012).

Another test for the presence of a synergy is to look for reduced
degrees of freedom in the processes that are entailed in a behavior
(e.g., Riley et al., 2011). For instance, the reduced degrees of free-
dom observed of one process may anticipate the reduced degrees
of freedom of another process not yet enacted. Raising an arm
requires anticipation by remote muscles on the opposite side of
the body prior to any change in the arm’s position – else the body
would tip over. If the arm movement were made to signal a cogni-
tive choice then the preflex of the remote muscles would “signal”
the same choice. If so then the fact of the reduced degrees of
freedom in the anticipatory preflex corroborates the synergy of
the soft-assembled choice response.

One widely used cognitive task includes a judgment of whether
a visually presented letter string correctly spells a word in a ref-
erence language – that is, standing before a screen on which
letter-strings will appear, raise one arm for each American Eng-
lish “word” and the other arm for “non-words.” Event times as
“response times” by anticipatory preflexes can be measured in the
onset of change in electromyographic activity in the right or left
thigh, the right or left paraspinal muscles of the lower back, or the
right or left shoulder muscles. If the preflexes reliably distinguish
words from non-words instead of leaving the available degrees of
freedom open, to accommodate either arm response, then the pre-
dicted, anticipatory, synergetic reduction in the degrees of freedom
would be confirmed.

Moreno et al. (2011) conducted this experiment, and the side
of the body of the preflex reliably distinguished the word from
the non-word letter-strings. The observed reduced degrees of
freedom in the corresponding preflexes corroborated synergetic
control. Otherwise, they observed typical average “word” deci-
sion times of about 649 ms in the arm movement data and an
identical advantage for “word” over “non-word” response times in
each of the anticipatory preflexes. On average, the preflex “word”
response times preceded the arm “word” response time by 120 ms
at the shoulder, 189 ms at the trunk, and fully 225 ms at the thigh.
Synergies appear to have soft-assembled a multilevel whole-body
“American English word versus non-word judgment device” (cf.
Fowler and Turvey, 1980; Turvey, 1990, 2007; Hollis et al., 2009;
Kello and Van Orden, 2009; Kloos and Van Orden, 2009).

Synergies self-organize apace with the flow of context and
behavior. This is sufficient to update on-going constraints that
anticipate the requirements for oncoming behavior. Invariant
or smoothly changing aspects of the world yield invariant or
smoothly changing constraints at a pace that is slower than brain
dynamics. These constraints inform behavior by limiting the
degrees of freedom about what can happen next, leaving open
the possible kinematic changes that the body may enact in behav-
ior. A muscle contraction here or a postural adjustment there are
nonetheless always constrained by, and constraining of, the total
configuration of the behaving body – the organism as an integrated
whole.

SUMMARY CONCLUSIONS
We began this essay with several examples of control that did
not require an intact central nervous system. Mike the celebrity
chicken may now be seen to illustrate the importance of tensegrity
as an organizing principle of behavior. Taught tension lines across
skeletal struts imbue the body with the self-organizing properties
of excitable media. Chickens who lose their circadian coordina-
tion among physiology and behavior illustrate a coupling to the
environment that contributes to control and regulation of health
and wellbeing. The sea squirt is perhaps the ultimate illustration of
how a nervous system can be necessary (although not sufficient)
for some aspects of being, and dispensable for other aspects.

The blue-collar contribution brings together the concepts of
timescale, constraint, synergy, and criticality to understand how
the brain supports on-going behavior, to anticipate forthcoming
behavior. Constraints that reduce the degrees of freedom for
behavior unfold on different timescales, and the more slowly
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changing constraints have priority over faster change constraints.
Control in this sense in non-specific, a practically unlimited set
of possible actions is reduced to a smaller subset, shaped by the
contemporary states of physiological processes, environmental
regularities, and the idiosyncratic history of the organism. The
smaller subset is sustained in a state of criticality, lacking only a
contingent discriminating circumstance to enact one of the possi-
ble actions (Järvilehto, 1998; Hollis et al., 2009; Van Orden et al.,
2011; Riley et al., 2012; Wallot and Van Orden, in press).

Criticality is thus essential; it is no accident that the body and
the brain stay near to critical states. Systems that stay near critical
states are called metastable systems and the advantages of metasta-
bility are legion. A metastable system can commit to a region of the
state space of possibilities for action, without otherwise narrow-
ing its options. This allows a healthy codetermination of action
by the actor’s history and context together with the momentary
contingencies that choose the behavior that is enacted. This code-
termination is also another pairing of regularity and randomness
or order and disorder, like those that characterize pink noise and
other aspects of complex systems.

Cognitive science is well underway as complexity science, with
wide implications for how to conceptualize and investigate human
nature. Already, changes in the organization of behavioral activ-
ity, as evidenced by the measured dynamics, are revealing of the
nature of an organ or organism (e.g., Lipsitz and Goldberger, 1992;
Vaillancourt and Newell, 2002; Van Orden et al., 2011; Dixon
et al., 2012; Riley et al., 2012). Regarding investigation, how-
ever, all aspects of widely applied measurement protocols must be
reconsidered, given the capacity of the participant to mirror our
protocols in soft-assembly. In other words, for distinct compo-
nent functions of memory, language, or motor control, substitute
constraints that can create or pick out the behaviors that we give
these names to. Practically, this way of thinking promotes research
that systematically varies a hierarchy of time scaled contexts. A

systematic understanding of control, and how it changes in differ-
ent contexts, will be had by observing changes in the organization
of behaviors estimated by scaling relations or order parameters.
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Guy Van Orden’s journey into complexity science started with
the question, “How would I ever know that I am wrong?” This
statement was aimed at what is today called classical cognitive sci-
ence. Guy reasoned that the answer was not found in particular
outcomes of studies, but in how mathematics was used to describe
observations. In particular, the identification of components of
the mind hinges on independent sources of variability, which can
be identified using linear statistics. However, the pervasiveness of
interaction effects in behavioral data suggested to him that inde-
pendent sources of variability are an exception case of human
behavior.

In his later work, complexity science provided Guy with an
alternative framework, and in particular the concepts of pink noise
and criticality were of twofold importance. Pink noise showed
what violations of independent contributions of variability look
like and criticality offered an alternative set of concepts and statis-
tics to build a science of phenomena that deviate from the classical
assumptions. This article highlights some of his last thoughts on
the role of critical fluctuations in brain and behavior, and sketches
out new routes for a complexity science of cognition.

Guy passed away on May 11th 2012. Guy was unique and won-
derful in his roles as scientist, mentor, and colleague. He will be
sorely missed.
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