
Hindawi Publishing Corporation
ISRN Bioinformatics
Volume 2013, Article ID 361321, 8 pages
http://dx.doi.org/10.1155/2013/361321

Research Article
Transcriptome Analysis of Spermophilus lateralis and
Spermophilus tridecemlineatus Liver Does Not Suggest
the Presence of Spermophilus-Liver-Specific Reference Genes

Bryan M. H. Keng,1 Oliver Y. W. Chan,1 Sean S. J. Heng,1 and Maurice H. T. Ling2,3

1 Raffles Institution, One Raffles Institution Lane, Singapore 575954
2Department of Zoology, The University of Melbourne, Genetics Lane, Parkville, VIC 3010, Australia
3 Department of Mathematics and Statistics, South Dakota State University, SD 57007, USA

Correspondence should be addressed to Maurice H. T. Ling; mauriceling@acm.org

Received 25 March 2013; Accepted 23 April 2013

Academic Editors: A. Bolshoy and D. Labudde

Copyright © 2013 Bryan M. H. Keng et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The expressions of reference genes used in gene expression studies are assumed to be stable under most circumstances. However,
studies had demonstrated that genes assumed to be stably expressed in a species are not necessarily stably expressed in other
organisms. This study aims to evaluate the likelihood of genus-specific reference genes for liver using comparable microarray
datasets from Spermophilus lateralis and Spermophilus tridecemlineatus. The coefficient of variance (CV) of each probe was
calculated and there were 178 probes common between the lowest 10% CV of both datasets (𝑛 = 1258). All 3 lists were analysed
by NormFinder. Our results suggest that the most invariant probe for S. tridecemlineatus was 02n12, while that for S. lateralis was
24j21. However, our results showed that Probes 02n12 and 24j21 are ranked 8644 and 926 in terms of invariancy for S. lateralis
and S. tridecemlineatus respectively. This suggests the lack of common liver-specific reference probes for both S. lateralis and S.
tridecemlineatus. Given that S. lateralis and S. tridecemlineatus are closely related species and the datasets are comparable, our
results do not support the presence of genus-specific reference genes.

1. Introduction

Gene expression analysis is examining the variations in gene
expression by measuring DNA expression levels over time.
These variations may be a result of many factors, such as
environmental, developmental, and metabolic changes, or
treatments. Quantitative real-time polymerase chain reaction
(qRT-PCR) is one such used technique to quantify and
analyse gene expressions [1, 2]. However, qRT-PCR requires
a stably expressed gene under a wide variety of conditions
[3, 4], known as a reference gene, as a standard to produce
accurate and reliable results on transcriptional differences of
various genes of interest.

Candidate reference genes, which are commonly assumed
to be invariant, can be identified using statistically based
algorithms, such as geNorm [5], NormFinder [6], and Best-
Keeper [7], or descriptive statistics, such as regression [8].

Microarrays, which usually contain thousands of probes,
present a good source of data for identifying reference genes
[9]. Reference genes had been successfully identified from
microarrays in a number of studies [10, 11].

However, several studies had refuted the possibility of
universal reference genes [10–14] that can be used in every
organ in every organism. This corroborates several stud-
ies demonstrating that genes commonly considered to be
expressionally invariable may vary under different exper-
imental conditions [15–17]. Some studies had verified the
applicability of commonly used reference genes such as
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) [18] or
UBQ (ubiquinone) [18]. However, other studies had demon-
strated that the expressions of GAPDH [19] and UBQ [20]
vary in some conditions. Polr32 has been suggested to be
stably expressed in mouse heart [21], but Mamo et al. [22]
had shown that Polr32 is not stably expressed in mouse
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oocytes and embryos. GAPDH and PPIA are suitable refer-
ence genes for the human heart [23], but these genes were
found to be unsuitable reference genes [24] for the human
brain, dura mater, and meningiomas. These suggest that
established reference genes for a particular organism may
not be suitable for other organisms [25]. Using expressionally
variable genes as reference genes will confound the results
as it will be impossible to attribute the variation of the
reference gene from the gene of interest. Given the lack of
universal reference genes and the unlikelihood of organism-
specific reference genes for multicellular organisms, the
possibility of reference genes that are both organ specific and
lineage-specific had been proposed [11]. In bacteria, lineage-
specificity reference genes referred to suitable reference genes
across different species, such as across genus (known as
genus-specific reference genes) or across different families
(known as family-specific reference genes). Hence, reference
genes both lineage-specific and organ specific (known as
lineage-organ specific reference genes) referred to suitable
reference genes for a particular organ across different species.
For example, a suitable spleen reference gene suitable for all
species of mammals would be known as mammal-spleen-
specific reference gene. However, if the reference gene was
only suitable for marsupial spleen, then it would be known
as a marsupial-spleen-specific reference gene.

In this study, we evaluated 2 liver transcriptome microar-
ray datasets from S. lateralis and S. tridecemlineatus to draw
conclusions as to whether there are reference genes that are
both genus specific and liver specific.The liver transcriptomes
of Spermophilus lateralis, a ground-roaming golden-mantle
ground squirrel, and Spermophilus tridecemlineatus, a tree-
habiting 13-lined ground squirrel, under different states of
feeding and hibernation had been studied using the same
microarray platform (GPL 1706; [26]). This allows for tran-
scriptome comparison between two closely related species as
the experimental conditions were largely similar.

2. Materials and Methods

2.1. Microarray Data. Two datasets were obtained from
publicly available microarray database, Gene Expression
Omnibus, National Centre for Biotechnology Information,
of which one of them was from S. lateralis consisting of
35 samples (GSE2024) and another was from S. tridecem-
lineatus consisting of 26 samples (GSE2021). Briefly, these
gene expression datasets represent the liver transcriptome for
animals sampled during summer, interbout arousal, and late
torpor [26].

2.2. Normalization across Data Sets. The intensity of each
probe was calculated as the log-ratio of liver reference
against sample. After which, each original probe log-ratio
value in the original dataset was normalized using Z-score
transformation based on the method previously described
[11, 27]. Briefly, 𝑍-scoreProbe = (ProbeInitial× (𝜇InitialProbe/
𝜇Assumed)−𝜇Assumed)/SDDataset, where ProbeInitial is the origi-
nal probe log-ratio intensity value in the dataset, 𝜇InitialProbe is
the mean of the initial probe log-ratio values for a particular
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Figure 1: Summary of materials and methods. Two datasets,
GSE2021 and GSE2024, were obtained fromNCBI GEO, and probes
were ranked by coefficient of variation (CV). Probes with the lowest
decile in terms of CV were identified from each dataset as CV10-
2021 and CV10-2014, respectively. The set of probes found in both
CV10-2021 and CV10-2014 was identified as CV10-common. All 3
sets: CV10-2021, CV10-2014, and CV10-common, were analyzed by
NormFinder [6].

sample, 𝜇Assumed is mean of both datasets consisting of 61
samples, and SDDataset is the standard deviation for each
initial dataset. The Z-scores for each probe across different
original datasets will then be comparable.The absolute values
for Z-scores were used for further analyses.

2.3. Determining Correlation between Datasets. The coeffi-
cient of variation (CV) of every probe was calculated as
the quotient of standard deviation and arithmetic mean.
From 12575 probes, the probes were ranked in ascending
CV for each dataset, and the rank difference was calculated.
Spearman’s correlation was used to determine the correlation
between the CV values between GSE2021 and GSE2024.
From 12575 probes, the data was separated into groups of
10% each. The top 10% of probes in GSE2021 and GSE2024
were identified. These were called CV10-2021 and CV10-
2024, respectively (Figure 1). A third list, CV10-common, was
defined as common probes between CV10-2021 and CV10-
2024. All three lists were analysed using NormFinder version
0.953 [6] to rank the stability of these probes separately
by estimating the expressional variation of the probe with
respect to the overall variation in the entire dataset. The
resulting NormFinder outputs from CV10-2021, CV10-2024,
and CV10-common were referred to as NF-2021, NF-2024,
and NF-common, respectively. Spearman’s correlation of the
NormFinder stability index values between all sets was calcu-
lated and evaluated for the null hypothesis of no correlation
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between the data sets using Z-test for correlation coefficient
[8, 28].

2.4. Bootstrap Statistics. The significance of overlap, CV10-
common, was determined using bootstrapping method [29]
where the percentage of overlap is the test statistic. The boot-
strap distribution was generated by the percentage overlap
of 2000 repetitive resampling from the original data with
replacement to yield samples of the same sizes as that used to
calculate test statistic (seeAppendix A).Z-testwas performed
on the test statistic using the mean and standard deviation of
the bootstrap distribution.

2.5. Expression Correlation of Invariant Probes. The expres-
sion correlations of the invariant probes with other probes
in GSE2021 were found. This tests the hypothesis that the
expressions of invariant probes were less correlated to the
transcriptome compared to randomly selected probes. Ten
least variant probes (10 most expressionally stable probes)
were identified from NF-2021 and denoted as NF-10. Ten
probes which were not in NF-10 were randomly selected
from GSE2021 (𝑛 = 12565) and denoted as Random-10.
The rest of the 12,555 probes that were not in NF-10 or
Random-10 were denoted as Others-2021. Pair-wise Pearson’s
correlation is performed between each of the probes in NF-10
and each of the probes in Others-2021 to give a sample of the
expression correlation of invariant probes and other probes
(total correlations = 125, 550). The random correlations
were estimated by pair-wise correlation between each probe
in Random-10 and Others-2021. To prevent biasness, the
process of randomly selecting 10 probes that were not in NF-
10 and pair-wise correlation calculation was repeated 5 times.

3. Results

The two datasets used in this study, GSE2021 and GSE2024,
were of the same microarray platform (GPL1706), examining
differential gene expressions in the liver of 2 species of
squirrels in similar states of hibernation and activity. This
allows for a comparative study to evaluate potential genus-
specific and organ-specific reference genes. The microarray
consists of 12575 probes. Spearman’s correlation coefficient of
the coefficient of variation (CV) of the probes inGSE2021 and
GSE2024 after Z-normalization was 0.141 (P value = 1𝑒 − 56),
suggesting correlation between both datasets.

Among the lowest 10% of CV in both datasets (CV10-
2021 and CV10-2024, 𝑛 = 1258), 178 probes (14.2%) were
common in both datasets, which is statistically significant
from a bootstrap mean of 43.11% with a bootstrap standard
deviation of 1.33% (𝑃 value < 1𝑒 − 300) as resampled from
the lowest 10% of CV in both datasets. However, Spearmans
correlation for the NormFinder ranks of these 178 common
probes between GSE2021 and GSE2024 was 0.322, and Z-test
suggests that the ranks are correlated (𝑃 value = 1𝑒 − 5).

CV10-2021, CV10-2024, and CV10-common were anal-
ysed by NormFinder. There is one common probe (Probe
ID 07I20, Table 1) between the 20 most invariant probes of
NF-2021 and NFC-2021 (S. tridecemlineatus). NFC-2021 is

Table 1: Top 20 invariant probes of GSE2021 (S. tridecemlineatus)
by NormFinder. NF-2021 is the result of NormFinder analysis of
CV10-2021. NFC-2021 is the result of NormFinder analysis of CV10-
common, using data from GSE2021. There is one common probe
between NF-2024 and NFC-2024 as marked by asterisks.

NFC-2021 NF-2021
Probe Stability index Probe Stability index
12g21 0.230 02n12 0.167

07l20 0.230(∗) 13d19 0.195

01h05 0.245 05p15 0.197

12c07 0.247 02g16 0.201

01g24 0.259 03o23 0.206

15d12 0.267 03j13 0.208

12c08 0.272 13d08 0.208

01k05 0.281 28h07 0.219

12h15 0.282 13o12 0.220

01o21 0.282 12p20 0.221

12o20 0.291 28h10 0.225

23k15 0.291 28n23 0.229

15k15 0.292 26h02 0.233

12d19 0.295 13b20 0.237

12k13 0.296 07l20 0.243(∗)
23p12 0.299 15b12 0.246

23l15 0.319 13c20 0.249

26h04 0.322 01k09 0.251

12g19 0.323 03o04 0.251

28h04 0.328 12o11 0.252

the result of NormFinder analysis of CV10-common, using
data from GSE2021. Coversely, NFC-2024 is the result of
NormFinder analysis of CV10-common, using data from
GSE2024. When ranked by NormFinder stability indices, the
ranks of Probe ID07I20 are 926 and 127 inNF-2024 andNFC-
2024 (S. lateralis), respectively.

However, there are 6 common probes in the 20 most
invariant probes of NF-2024 and NFC-2024 (S. lateralis;
Table 2), including the top 2 invariant probes, 24j21 and 12c07.
The NormFinder stability ranks of Probe IDs 24j21, 12c07,
24n06, 12g19, 15b23, and 12j13 inNF-2021 (S. tridecemlineatus)
are 8644, 84, 321, 225, 654, and 650, respectively. Similarly, the
NormFinder stability ranks of Probe IDs 24j21, 12c07, 24n06,
12g19, 15b23, and 12j13 in NFC-2021 (S. tridecemlineatus) are
127, 4, 53, 19, 101, and 89, respectively.

There is no common probe found within all 4 lists,
namely, NF-2021, NFC-2021, NF-2024, and NFC-2024.

The average coefficient of determination (𝑟2) between 10
of the most invariant probes of GSE2021 (NF-10) and Others-
2021 (those probes not found in NF-10 or Random-10) was
0.055with standard deviation of 0.136.The average coefficient
of determination (𝑟2) of the 5 replicates between (Random-
10) and Others-2021 ranged from 0.115 to 0.147 with standard
deviation ranged from 0.133 to 0.167 (Figure 2). Using t-test
with unequal variance, the 𝑟2 between NF-10 and Others-
2021 was significantly lower than the 𝑟2 between Random-
2021 and Others-2021 (𝑃 value < 1𝑒 − 300). By calculating
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Table 2: Top 20 invariant probes of GSE2024 (S. lateralis) by
NormFinder. NF-2024 was the result of NormFinder analysis of
CV10-2024. NFC-2024 was the result of NormFinder analysis of
CV10-common, using data from GSE2024. Common probes in NF-
2024 and NFC-2024 were marked by asterisks.

NFC-2024 NF-2024
Probe Stability index Probe Stability index
24j21 0.269(∗) 24j21 0.359(∗)
12c07 0.298(∗) 12c07 0.391(∗)
12g21 0.324 27j16 0.406

15k15 0.328 26b14 0.415

24n06 0.334(∗) 24n06 0.422(∗)
12g19 0.339(∗) 14p14 0.427

12j13 0.355(∗) 18o04 0.441

27o22 0.363 12g19 0.454(∗)
15b23 0.374(∗) 23n15 0.455

13k06 0.379 23n05 0.466

12c11 0.380 23h06 0.476

13k07 0.383 24h23 0.477

13j13 0.383 13l15 0.479

33p05 0.383 02o05 0.480

33p07 0.393 23n04 0.485

15g15 0.406 26g06 0.486

24n07 0.424 15b23 0.488(∗)
23j20 0.428 27c12 0.490

33e16 0.431 12f02 0.492

13b14 0.432 12j13 0.503(∗)

Pearson’s correlations of the expression of a probe with itself,
the floating-point error in calculation can be estimated to be
zero with a standard deviation of 2.79𝑒 − 12. Hence, we reject
the null hypothesis that the correlations between invariant
probes and random variant probes are equal and accept the
alternate hypothesis that they are significantly lower.

4. Discussion

Reference genes play a crucial role as standards for nor-
malizing expression values in quantitative gene expression
experiments. Common reference genes such as GAPDH
[19] and UBQ [18] can be used over a very wide range of
organisms, but individual studies suggested that these genes
are not optimal and there exist more reliably stable genes
within each single species [10, 21]. Genes that are suitable
as reference genes for one organism may not be suitable
for another [25]. However, the possibility of lineage-organ-
specific reference genes had been proposed [11]. Using 2
microarray datasets from squirrel liver of 2 species under the
same genus obtained under comparable conditions [26], this
study aims to identify and evaluate potential genus-specific
and liver-specific reference genes suitable for use in both S.
lateralis and S. tridecemlineatus, as well as to draw a general
conclusion to the similarity of the general gene expression
levels in both species.
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Figure 2: Average correlation of Top 10 invariant probes by
CV/NormFinder (NF-10) against random (Random-10). Five repli-
cates of correlations between Random-10 and Others-2021 were
performed. Error bars denote standard error.

Spearman’s correlation (𝑃 value = 1.00 × 10−56) for
the entire dataset (𝑛 = 12575) based on CV ranks showed
correlation between GSE 2021 and GSE 2024, suggesting
transcriptional similarities between the livers of S. lateralis
and S. tridecemlineatus. This supports Williams et al. [26].
Their paper found consistency in gene regulation between
squirrel species, relating to different biological classes of
genes. Such correlation in our data is expected as the two
squirrel species are from the same genus. In addition, the
data was collected from the same organ with the same
experimental conditions [26]. Thus, the expression profiles
are assumed to be largely similar. Moreover, Spearman’s
correlation for the 178 probes in NF-common also revealed
a high correlation (𝑃 value = 1.10 × 10−5). This is also
expected, due to the overall correlation of the whole dataset.
In addition, Natale et al. [30] found similar gene expressions
after brain trauma in mice and rats of different genera.
Albert et al. [31] found less than 1% differences between gene
expression of dogs and wolves and other domesticated and
wild animals. These results support our hypothesis.

The ratio of overlap between the 10% lowest CV of both
datasets (CV10-common) is 14.2%, which is much lesser
than the expected 43.1% from bootstrapping. This result is
significant (P value < 1𝑒 − 300), showing that there is little
correlation between the invariance of a gene in S. lateralis
and its invariance in S. tridecemlineatus, which suggests that
genus-specific reference genes are unlikely. Moreover, our
results demonstrated a lack of commonality between the top
20 probes in NF-2021 and NF-2024. This implies that the
suitable liver reference probes identified by NormFinder for
S. tridecemlineatus (GSE2021) are not suitable for S. lateralis.

However, there are 6 probes in the top 20 of NF2024 that
also fall in NFC-2024 (NF-common of GSE2024), but these
probes are ranked poorly inNF2021 (S. tridecemlineatus) with
84 the best rank.This suggests that there are 83 more suitable
reference probes for S. tridecemlineatus if Probe 12c07 is to
be used as a reference probe across both species. In addition,
our results showed that the most stable probe for S. lateralis
(Probe 24j21) is ranked 8644 in S. tridecemlineatus. Similarly,
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import random

from sets import Set

population = <total list of probes, n = 12575>

sample size = 1258

def sample wr(population, k):

# Chooses k random elements (with replacement) from a population

# From http://code.activestate.com/recipes/273085

n = len(population)

random, int = random.random, int

result = [None] ∗ k

for i in xrange(k):

j = int( random() ∗ n)

result[i] = population[j]

return result

distribution = range(2000)

for x in range(2000):

sample1 = Set(sample wr(population, sample size))

sample2 = Set(sample wr(population, sample size))

intersect = sample1.intersection(sample2)

distribution[x] = float(len(intersect)) / float(len(sample1))

mean = sum(distribution) / len(distribution)

variance = sum([(x −mean)∗∗2 for x in distribution]) / len(distribution)

print ‘Population size: ’, len(population)

Print

print ‘Bootstrap distribution: ’, distribution

print ‘Bootstrap cycles: ’, len(distribution)

Print

print ‘Bootstrap mean: ’, str(mean)

print ‘Bootstrap standard deviation: ’, str(variance∗∗0.5)

Algorithm 1: Python codes for overlap analysis by bootstrapping.

the common probe for NF-2021 and NFC-2021 (S. tridecem-
lineatus), Probe 07l20, is ranked lowly for S. lateralis (ranked
926 and 127 respectively). This is supported by our findings
that there are no common probes in the top 20 NormFinder
identified reference probes of NF-2021 (S. tridecemlineatus)
and NF-2024 (S. lateralis). A suitable reference probe for S.
lateralis and S. tridecemlineatus, by extension, a genus-liver-
specific reference probe for S. lateralis and S. tridecemlineatus,
should have low ranks in both datasets. Taken together, these
results show that the reference probes suitable for one species
may not be suitable for other closely related species, which
also suggests that genus-specific reference genes are unlikely.

A plausible explanation for the previous results is gene
function degeneracy across different species. It has been
suggested that redundant genetic networks may be present
to maintain network robustness of cellular function [32–
34]. This indicates that not all genes may be critical because
certain functional overlaps allow interchanging of functions
due to functional degeneracy. Furthermore, it has also been
suggested that cells have some buffer in genetic expressions
[35–37].Thus, when expression of a particular gene is altered,
such a buffering mechanism enables different genes to fulfil
a similar function. This is a possible explanation why the
transcriptome of invariant genes between the S. lateralis
and S. tridecemlineatus has a poor overlap for the genes of
lowest invariance while there is significant correlation for

the datasets as a whole, indicating that a particular function
is not performed by the same genes in both species. Yet a
previously conducted study [26] has stated that the overall
liver functions of the 2 squirrels are similar. Therefore, this
corroborates the hypothesis that different genes can serve a
similar function.

There is discrepancy in the overlap of the sets of dif-
ferentially expressed genes in the two hibernating species,
implying that the overlaps are not as significant as expected.
In other words, the genes are not closely related. This may
be attributed to difficulties in the statistical detection of
the modest transcriptional changes between the summer
and winter animals, changes that may be masked due to
interindividual variation and the difference in the number of
individuals analyzed for each species (26 samples in GSE2021
and 35 samples in GSE2024) [26]. However, interindivid-
ual variation and different numbers of animals studied by
Williams et al. [26] are unlikely to be substantial enough
to result in a lack of suitable reference probes between 2
closely related species of squirrels. A possible explanation
to reconcile the observation that overall liver functions of
the 2 squirrels is similar [26] and yet demonstrating the
lack of suitable common reference probes may be a situation
whereby the topology of the gene expressions between the
2 species are similar but individual gene expressions may
vary. Moreno-Sánchez et al. [38] and Ling et al. [28] had
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Datafile = ‘normalized GSE2021.csv’
sample output = ‘NF correlation.csv’
random output = ‘random correlation.csv’
sample list = [‘02n12’, ‘13d19’, ‘05p15’, ‘02g16’, ‘03o23’,

‘03j13’, ‘13d08’, ‘28h07’, ‘13o12’, ‘12p20’]
import math

import random

def process(x, y):

mean x = float(sum(x)) / len(x)

mean y = float(sum(y)) / len(y)

covariance = sum([((x[i]− mean x) ∗ (y[i]− mean y))

for i in range(len(x))])

error x = [i − mean x for i in x]

error y = [i − mean x for i in y]

sd x = math.sqrt(sum([i∗i for i in error x]))

sd y = math.sqrt(sum([i∗i for i in error y]))

gradient = sum([error x[index] ∗ error y[index]

for index in range(len(error x))]) / \

sum([error x[index] ∗ error x[index]

for index in range(len(error x))])

intercept = mean y − (gradient ∗ mean x)

return (float(covariance), float(sd x), float(sd y),

float(gradient), float(intercept))

fdata = [x[:−1].split(‘,’) for x in open(datafile, ‘r’).readlines()]
# Sorting out the full data (fdata) into 3 parts

# sdata - contains data for IDs in sample list

# rdata - contains data (n = number of IDs in sample list)

# for IDs not in sample list

# data - contains data for IDs not in sample list or rdata

sdata = [x for x in fdata if x[0] in sample list]

data = [x for x in fdata if x[0] not in sample list]

rdata = [random.choice(data) for x in range(len(sample list))]

data = [x for x in data if x[0] not in [r[0] for r in rdata]]

sout = open(sample output, ‘w’)
rout = open(random output, ‘w’)
print str(len(sdata)), ‘number of samples in sample list’
print str(len(rdata)), ‘number of samples in random list’
print str(len(data)), ‘number of samples in data list’
sout.write(‘,’.join([‘sample x’, ‘sample y’, ‘covariance’,

‘sd x’, ‘sd y’, ‘gradient’, ‘intercept’]) + ‘\n’)
rout.write(‘,’.join([‘sample x’, ‘sample y’, ‘covariance’,

‘sd x’, ‘sd y’, ‘gradient’, ‘intercept’]) + ‘\n’)
def run correlation(sample data, other data, outfile):

count = 1

for s in sample data:

ID1 = s[0]
d1 = [float(x) for x in s[1:]]

for x in other data:

ID2 = x[0]
d2 = [float(y) for y in x[1:]]

result = process(d1, d2)

result = [ID1, ID2, str(result[0]), str(result[1]),
str(result[2]), str(result[3]), str(result[4])]

outfile.write(‘, ’.join(result) + ‘\n’)
count = count + 1

print str(count), ‘processed. ID =’, ID1

outfile.close() print ‘Processing sample list’
run correlation(sdata, data, sout)

Print

print ‘Processing random list’
run correlation(rdata, data, rout)

Algorithm 2: Python codes for expression analysis.
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demonstrated that if 2 genes are expressionally correlated,
there is a strong chance that these 2 genes are functionally
related. Further studies examining the coexpression networks
from these 2 datasets may be able to elucidate the impact of
the expressional variation of individual genes on the topology
of expression.

Our results demonstrate that the correlation between the
NF-10 probes (invariant) and the Others-2021 (variant) is
low (𝑟2 = 0.055), whereas the coefficient of determination
(𝑟2) between the randomly selected probes (Random-10)
and probes from Others-2021 ranges from 0.115–0.147. This
result is significant (𝑃 value < 1𝑒 − 300), rejecting the null
hypothesis that correlation between invariant probes (NF-
probes) is equal to correlation between variant (random)
probes. This supports the use of correlation as a method to
identify reference probes/genes, which had been previously
reported [39].

The data used in this study is from these two closely
related species under the same experimental conditions and
from the same organ. However, our results suggests that
reference probes found in one species may not be suitable in
other as we are not able to conclusively determine suitable
genus-specific reference genes even in such closely related
species and for the same organ. Despite having similar organ
transcriptomes [26], our results do not support the presence
of highly stable genus-organ-specific reference genes or
probes even though we found several candidates of potential
reference probes for both species using a lowest denominator
approach. However, this also suggests that the suitability
of potential reference genes or probes across more diverse
species will be questionable. Therefore, it can be extrapolated
that reference genes that are stable over an even wider range
of organisms across genus and families would be unlikely
to exist. This shows that for accurate experimentation, new
reference genes should be identified for each organism and
for each organ individually.

5. Conclusion

In conclusion, our results do not suggest the presence of
a liver-specific reference gene/probe by analysing transcrip-
tome profiles of 2 closely related species under similar
conditions despite evidence supporting previous studies on
the similarity of the transcriptomes. Hence, this study does
not support the presence of genus-organ-specific reference
gene.Therefore, reference genes should be identified for each
organism and for each organ individually.

Appendices

A. Python Codes for Overlap Analysis by
Bootstrapping

For more details, see Algorithm 1.

B. Python Codes for Expression Analysis

For more details, see Algorithm 2.
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