
Hindawi Publishing Corporation
Advances in Hematology
Volume 2012, Article ID 494758, 16 pages
doi:10.1155/2012/494758

Review Article

A Role for RNA Viruses in the Pathogenesis of
Burkitt’s Lymphoma: The Need for Reappraisal

Corry van den Bosch

Research Facilitation Forum, Pilgrims Hospices, Canterbury, Kent CT2 8JA, UK

Correspondence should be addressed to Corry van den Bosch, cavandenbosch@yahoo.co.uk

Received 11 November 2011; Accepted 11 November 2011

Academic Editor: Lorenzo Leoncini

Copyright © 2012 Corry van den Bosch. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Certain infectious agents are associated with lymphomas, but the strength of the association varies geographically, suggesting that
local environmental factors make important contributions to lymphomagenesis. Endemic Burkitt’s Lymphoma has well-defined
environmental requirements making it particularly suitable for research into local environmental factors. The Epstein-Barr virus
and holoendemic Malaria are recognized as important cofactors in endemic Burkitt’s Lymphoma and their contributions are
discussed. Additionally, infection with Chikungunya Fever, a potentially oncogenic arbovirus, was associated with the onset of
endemic Burkitt’s Lymphoma in one study and also with space-time case clusters of the lymphoma. Chikungunya Virus has
several characteristics typical of oncogenic viruses. The Flavivirus, Hepatitis C, a Class 1 Human Carcinogen, closely related to
the arboviruses, Yellow Fever, and Dengue, is also more distantly related to Chikungunya Virus. The mechanisms of oncogenesis
believed to operate in Hepatitis C lymphomagenesis are discussed, as is their potential applicability to Chikungunya Virus.

1. Introduction

It has been estimated that approximately 20% of all cancers,
worldwide, are attributable to infectious agents [1]. This is
likely to be an underestimate because of under-reporting and
under-ascertainment, particularly in resource-poor coun-
tries, where the burden of infection-related cancers is almost
four times that of the more prosperous countries [1]. A
number of infectious agents, comprised of a variety of dif-
ferent types of organisms, have been shown to be associated
with lymphomas. It is highly probable that this number will
continue to expand as diagnostic methods improve, new or-
ganisms emerge and general advances in knowledge are
made.

Some of the organisms which have been linked with
different types of lymphomas have already been designated
Class 1 Human Carcinogens by the World Health Organi-
sation. They are the DNA Herpes viruses, the Epstein-Barr
virus [2] and Kaposi Sarcoma Herpesvirus [2, 3], the retro-
viruses Human Immunodeficiency Virus type 1 and Human
T Cell Lymphotropic Virus Type 1 [4], the Hepatitis viruses,
Hepatitis B, a DNA virus, and Hepatitis C, an RNA virus
[5], and the bacterium, Helicobacter pylori [6]. In addition,

the bacteria Campylobacter jejuni [7], Chlamydia psittaci
and pneumoniae [8, 9], Borrelia burgdorferi [10, 11] and
the RNA Alphavirus Chikungunya virus [12], an arbovirus,
have been found to be associated with various different
forms of lymphoma. The Epstein-Barr virus (EBV) [2], the
protozoon, Malaria [13], and the vector-borne Alphavirus,
Chikungunya virus (CHIKV), have been linked specifically
with endemic Burkitt’s Lymphoma (eBL), perhaps the best
studied of all lymphomas. Studies of associations between
lymphomas and different infectious organisms often show
considerable geographic differences in the strength of the
association, suggesting that local environmental factors,
including lifestyle-related ones, as yet unidentified, may play
important roles in lymphomagenesis [9, 14, 15].

The infectious agents linked with lymphomas are
thought to promote lymphomagenesis by processes linked
with chronic antigenic stimulation. They establish persistent
infections, accompanied by overt or silent chronic inflam-
mation, leading to cytokine activity, the activation of cyto-
oncogenes, with or without chromosomal abnormalities,
and the inactivation of tumour-suppressor genes [16–18].
Some viruses, including EBV and Hepatitis C (HCV) [19],
can cause a polyclonal B cell proliferation, a risk factor
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for Non-Hodgkins Lymphomas. Immunosuppression may
be important, as with HIV-associated Lymphomas [18].
Oncogenic viruses may or may not appear to co-operate: in
HIV infection, the incidence of EBV-positive Burkitt’s Lym-
phoma is increased [18], whereas that of HCV-associated
lymphomas is reduced [19, 20].

As we learn more, our understanding of the process of
oncogenesis is changing from the view that it is confined to
a series of irreversible genetic changes in the cell, culminat-
ing in full-blown malignancy, to an appreciation of the im-
portant contribution made by epigenetic changes and the
balance of forces promoting or opposing apoptosis, many
driven by infectious agents. Some of these changes are re-
versible, and, in a few cases, and under certain conditions, the
process of oncogenesis can be reversed, as will be discussed
later.

This paper will concentrate on those aspects of lym-
phomagenesis, particularly apparent co-operation between
cofactors, which are best exemplified in endemic Burkitt’s
Lymphoma (eBL), often described as the “Rosetta Stone” of
cancer [21]. It will discuss, drawing on research into lym-
phomagenesis in HCV infection, how the arbovirus, CHIKV,
shown to be associated with the onset of eBL [12, 22], might
contribute to lymphomagenesis.

2. Burkitt’s Lymphoma

Burkitt’s Lymphoma (BL), an aggressive non-Hodgkins
Lymphoma (NHL), has an extremely rapid doubling time of
24–48 hours as almost all the cells are cycling at one time
[23]. It has been calculated, based on the phenomena of
seasonality and time-space case clusters sometimes observed
in the endemic form of Burkitt’s Lymphoma (eBL), that the
latent period for this lymphoma is likely to be as short as one
year [24]. The rapid growth, coupled with a short induction
period could, theoretically, make the train of events involved
in lymphomagenesis easier to unravel.

There are three types of BL: endemic or “African,”
sporadic and HIV-associated. BL can also arise in association
with severe immunosuppression as in organ transplants [25,
26]. All BLs have one of three translocations, of which t(8:14)
is by far the commonest. They involve the C-MYC oncogene
on the long arm of chromosome 8, and an immunoglobulin
chain gene [27]. The C-MYC gene, which plays an import-
ant role in cellular proliferation, becomes deregulated and
activated as a consequence of the BL translocation. This
occurs due to proximity to Ig transcriptional enhancers [28]
or to structural alterations within C-MYC [29]. The linking
of C-MYC to immunoglobulin sequences leads to consti-
tutive MYC expression and the cell is unable to leave the
cycling phase [30]. Although a deregulated C-MYC plays an
important role in lymphomagenesis in eBL [31], working in
conjunction with the EBV [32], it cannot institute tumorige-
nesis unaided [33]. The TP53 mutations, commonly found in
BL, may be accompanied with a gain in transforming ability
and loss of growth suppression [34, 35], but are thought to
contribute to tumour progression rather than lymphoma-
genesis.

Endemic and sporadic forms of BL have different break-
points within both the MYC locus on chromosome 8 and
the Ig heavy-chain locus on chromosome 14. There are also
clinical, molecular, and cytological differences and varying
degrees of EBV positivity, which exhibit a geographic gra-
dient [14]. These differences, together with the well-defined
climatic requirements for the endemic form, highlight the
probable importance of as yet unrecognised lymphomagenic
environmental factors, which may differ throughout the
world.

BL cells are B lymphocytes with rearranged immuno-
globulin genes, secreting immunoglobulin chains which cor-
relate with the site involved in the translocation, suggesting
that an active immunoglobulin locus is directly involved
[36]. Cloning of translocation breakpoints from endemic
cases has revealed evidence of V-D-J (variable diversity
joining) recombinase involvement in the genesis of the
translocations [37] strongly suggesting that eBL arises while
the cell is actively arranging its IgG genes. It appears that the
deletions and insertions seen in Ig VHDJH mutations occur as
the result of an antigen-driven selection process and that the
C-MYC/Ig translocation happens due to hypermutation in
B-cells entering or transiting Germinal Centres [35, 38, 39].

2.1. Lymphomagenesis of Endemic Burkitt’s Lymphoma. It is
thought that lymphomagenesis in eBL begins in infancy.
Heavy primary EBV infection results in a degree of im-
mune tolerance. EBV-infected cells proliferate and some
are immortalised and transformed [40]. Heavy malarial
infection further stimulates expansion of the B-cell pool and
suppresses T cells involved in EBV control. The final stage
of lymphomagenesis is the development of the characteristic
translocation, leading to deregulation of C-MYC and the
development of a malignant clone.

2.1.1. EBV and Lymphomagenesis. Much has been learned
about the mode of action of EBV in oncogenesis, but much
remains to be learned [41]. EBV is associated with various
forms of Non-Hodgkins Lymphoma (NHL), including Post-
transplant lymphomas, some AIDS-related large-cell lym-
phomas, BL, and also Hodgkins Lymphoma. The extent of
the association varies geographically by type of lymphoma
and location. The evidence for a causal relationship is the
strongest with eBL where the EBV genome is incorporated
into 90% or more of cases in the African Lymphoma
Belt [42]. No preferential integration site in the human
chromosome [43] has been shown, the virus being integrated
into the genome at a number of different sites in cell lines,
but human-mouse hybrid cell studies suggest that the EBV
genome is consistently associated with Chromosome 14 [44].

2.1.2. EBV-Antibody Studies. EBV seems to be actively in-
volved in all stages of eBL development, as judged by EBV-
antibody responses. The association between eBL and raised
levels of EBV-VCA (Viral Capsid Antigen) and EBV-EA
(Early Antigen) antibodies, both associated with actively
replicating virus, is one factor implicating EBV as an active
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participant in lymphomagenesis. In a Ugandan prospec-
tive study, children who subsequently developed BL had
significantly higher titres of EBV-VCA IgG antibodies up
to 6 years before the onset of the lymphoma [45, 46],
and these were the only antibodies showing a significant
increase. There was no further rise after the onset of BL.
Chronic rather than acute EBV infection appeared to be
relevant to lymphomagenesis. EBV-EA antibody levels were
shown to increase as the tumour grew, and to decline after
treatment [47], again implicating an active rather than a
latent phase of EBV infection. Additionally, EBV-specific
antibody-mediated cellular cytotoxicity appeared to have a
prognostic significance for BL patients [48].

Raised levels of antibodies to EBV-VCA and EBV-EA
antigens were also found in the relatives of BL patients
[49], those exposed to chronic malaria [50, 51] and users
of herbal remedies [52], which included plants producing
tumour-promoter substances with EBV-potentiating activity.
Euphorbia tirucalli is one of a number of such plants growing
commonly in Africa and, more notably, around the homes
of BL patients [53, 54]. It is possible that exposure to these
plants, which secrete their active principles into the soil
[55, 56], thus potentially contaminating environmental air
and water, could account for some of the rises in EBV-
antibodies seen in eBL. It has been suggested that the relatives
of BL patients have raised EBV-antibody titres [49] because
they share a similar immune dysfunction, due to similar
exposures to environmental factors.

2.1.3. Potential Contributions of EBV to Lymphomagenesis.
The EBV could potentiate lymphomagenesis in several ways.
EBV is able to stimulate and maintain B-cell proliferation
because of CD40 and B Cell Receptor (BCR) mimicry, in-
creasing the size of the B cell pool, and, thereby, the chances
of translocations and other cytogenetic changes occurring
[57]. EBV can immortalize and transform lymphocytes and
may also collaborate, in as yet unidentified ways, with the
changes induced by the C-MYC translocation [32, 58]. EBV
proteins such as EBNA1 may induce epigenetic changes, with
subsequent cellular dysregulation [59, 60]. EBV also encodes
products which can interact with, or mimic, a variety of cel-
lular molecules, signals, and cytokines, many of which have
antiapoptotic actions, and which promote lymphomagenesis
[18, 30, 57, 61–63]. EBV infection also protects cells damaged
by mutations from destruction by apoptosis, thus allowing
them to replicate [62] and this function may be extremely
important in lymphomagenesis [63, 64].

2.1.4. EBV Infection and Immunological Control. Over 90%
of the world’s population is infected with EBV. Once infected,
people become lifelong carriers of the virus which persists
in two main forms: circulating latently infected cells and
a localized lytic infection in epithelial cells in the mouth
and pharynx, possibly also the urogenital tract and salivary
glands [65]. In generalized immunodeficiency states such
as HIV infection and transplant patients, or the more
specifically EBV-linked Duncan’s Syndrome, proliferation of
B-cells can proceed unchecked [42, 66] and may evolve from

a polyclonal reactive process to a monoclonal malignant
lymphoma [67]. The polyclonal activation and proliferation
subsequent upon primary EBV infection is normally con-
trolled by inhibitory immunological mechanisms, as it is
usually followed by the development of cellular immunity
and antibodies to the various EBV antigens. Killer cells and
EBV-specific cytotoxic lymphocytes are also generated, the
latter playing a crucial role in controlling circulating EBV-
infected cells [68]. It has also been suggested that, because BL
cells have a “resting” rather than B-blast phenotype, together
with the accompanying changes in expression of certain EBV,
HLA and adhesion molecules, the BL cell is not rejected by
the EBV-specific immune response [30].

2.1.5. EBV Latency. After the acute infection has subsided, a
type of EBV latency is found where most latency transcripts
are undetectable [65]. However, BL cell lines display a unique
Type I latency where the EBV nuclear protein, EBNA1, and
the EBV RNA transcripts, the EBERs, and BART (BamA
rightward transcripts) are expressed [69, 70]. However, some
authorities believe that the concept of BL cells predominantly
exhibiting type I latency is an oversimplification [71–73].

EBNA1 is responsible for maintaining the EBV episome
in latently infected cells [74]. There are EBNA1 binding
sites in the human genome and, as EBNA1 can bind both
RNA and DNA, it could influence the expression of viral or
cellular genes [75], possibly by eliciting demethylation and
subsequent activation or dysfunction of cellular functions
[59]. EBNA1 can up regulate the recombinase-activating
genes which mediate V-D-J combination and are usually
only expressed in immature lymphoid cells [76]. EBNA1
is indispensable for B cell transformation and can enhance
B cell immortalization several thousandfold [77]. Although
EBNA1 does not appear to be oncogenic on its own, as
it is consistently expressed in EBV-infected cells, including
latently infected cells, without oncogenic sequelae, EBNA1
transgenic mice can develop monoclonal B-cell lymphomas
similar to those induced by transgenic C-MYC expression
[78]. EBNA 1 and MYC, the murine analogue of the human
oncogene C-MYC, seemed to cooperate in lymphomagenesis
in a transgenic mouse model, suggesting the possibility of a
similar action in man [32].

The RNA transcripts, EBERs 1 and 2, appear to produce
resistance to apoptosis, conferring a malignant phenotype
[79, 80]. They can modulate expression of LMP1 considered
to be the EBV oncogene [81], upregulate BCL-2, inhibit
apoptosis by binding protein kinase, block apoptosis due to
Interferon-α signalling, stimulate production of Interleukin
(IL)-10, an autocrine growth factor for BL cells, induce
colony growth of cells in agar, and are tumorigenic in
immunodeficient mice [58, 82, 83]. In addition, a binding
site for C-MYC, found in the promoter for EBER 1, permits
cooperation with C-MYC and a role in lymphomagenesis
[58]. LMP1, only found in a small minority of BLs, but
uniformly present in Naso-Pharyngeal Carcinoma, has trans-
forming ability, is tumorigenic in nude mice [84], inhibits
apoptosis in B lymphocytes, and induces expression of the
antiapoptotic BCL2 oncogene [85].
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Table 1: Reports of Case clustering in endemic Burkitt’s Lymphoma.

Location Dates Space only Space and time Author

West Nile, 1961–65 +
Williams et al. [97, 98], Pike
1972,

Uganda 1972-73 Siemiatycki et al. [104]

Mengo District and Bwamba County,
Uganda

1966–68 + Morrow et al. [103, 106], 1974

Aliba, Uganda 1962-63 + Pike et al. [101]

Malawi 1987–90 + van den Bosch [22, 109]

West Kenya 1999–04 + Not tested Rainey et al. [99]

Cameroon 2003–2006 + Not tested Wright et al. [100]

2.2. Role of Malaria. In sub-Saharan Africa, 90% of children
are infected with EBV by the age of 2 years and have a
degree of immune tolerance to it [86] which is exacer-
bated by the immunomodulatory effects of chronic malaria.
Holoendemic malaria undoubtedly contributes to the greatly
increased numbers of BL cases, nearly all EBV-positive, seen
in the Lymphoma Belt. Malaria produces polyclonal B cell
activation [87], a five-fold increase in EBV-positive cells dur-
ing acute malarial infection [88], inhibition of EBV-specific
cytotoxic T cells [89], an increase in EBV-transformed B cells
[89], and higher circulating levels of EBV-positive cells in
children [51]. The combination of EBV and holoendemic
malaria has been credited with amplifying the incidence of
BL in African children approximately a hundred-fold. Rates
of BL are 0.04–0.08/100,000 in Western Europe, increasing to
1-2/100,000 in countries of intermediate prevalence such as
Algeria, and up to 10/100,000 in the African Lymphoma Belt
[86]. Similarly, BL EBV-positivity ranges from 10–15% in
France, up to 85% in Algeria and over 90% in the Lymphoma
Belt of Africa [86].

2.3. Arboviruses and the Epidemiology of Endemic Burkitt’s
Lymphoma. While it is recognized that EBV and malaria
make important contributions to BL endemicity, yet the
sporadic form of BL can occur in the absence of both of
these infections and, if early EBV infection and Holoendemic
malaria are the only prerequisites for eBL, then the tumour
should be much commoner than it is within the African
Lymphoma Belt, where malarial transmission is intense. The
Belt lies between the latitudes 10◦ north and south of the
equator with an extension along the eastern coastal margin
of Mozambique. BL is endemic within the Lymphoma Belt
wherever mean minimum temperatures exceed 15.5◦C and
annual rainfall is above 50 mls [90, 91]. The lymphoma
appears to be associated with water and is absent from
arid areas [92]. The climatically defined Lymphoma Belt
coincides with the geographic distribution of holoendemic
malaria, vectors of certain arboviruses such as Chikungunya
Virus (CHIKV) [93], and EBV-activating plants such as
Euphorbia tirucalli [54], all of which conform with one of
Chapin’s zones of flora and fauna [90, 91, 94].

Endemic BL exhibits unusual features such as seasonality
[95, 96], shifting foci, or lymphoma “hot-spots” which

change location from year to year [97, 98] and both spatial
[99, 100] and space-time case clusters [95, 97, 98, 101–
104]. The clustering was very striking when it occured; in
the Aliba outbreak, four of the five cases from this small
village presented within one year [101] and unrelated cases
in clusters in Malawi were often very close in space and
time, with one unrelated case-pair living in neighbouring
huts. Statistically significant clustering at intervals of less
than 2.5 kms and less than 60 days was seen in Malawi
[105]. Clustering was more pronounced in older children
in both Uganda and Malawi [98, 104]. The case clusters are
summarized in Table 1.

Although the phenomena of seasonality, shifting foci,
and clustering have been observed and are well documented,
they are not always found, even when sought [103, 105].
Clustering can best be explained by an environmental
cofactor which moves around and is variable from year to
year, such as an infectious disease, especially one like measles
which can cause epidemics and clusters [101]. Neither
malaria, nor infections with other common parasites such
as Schistosoma, a Class 1 human carcinogen, can provide a
convincing explanation for the phenomena. Heavy Schisto-
somal infection exerts a considerable effect upon the immune
system and could potentially contribute to lymphomagenesis
by inducing a skewing of the immune response away
from the TH1 cell-mediated immunosurveillance towards
a B-lymphocyte dominated TH2 response [106]; indeed
Schistosomal lesions adjacent to BL lesions have been noted
[107]. Foci of Schistosomal infections could explain spatial
clustering, but not space-time clustering or shifting foci of BL
cases. However, insect-borne viruses, known as arboviruses,
are particularly well suited to explain the occurrence of
space-time case clusters. The epidemiology of eBL mimics
that of certain arboviruses, including their temperature
requirements, age, and geographic distributions more closely
than that of malaria [22, 91, 108], as shown in Table 2. An
arbovirus, which is endemic, but causes periodic epidemics,
could explain the existence of the time-space case clusters
during an epidemic, and their absence, in the intervening
periods, when it is endemic [22, 56]. Morrow et al. [105]
observed that the incidence of the tumour was inversely
related to age, suggesting that intense malarial transmission
was associated with earlier age of onset. This observation
could also apply to arboviral infection as both infections are
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Table 2: Arboviruses and Malaria—a comparison.

Characteristic Arboviruses Malaria

Epidemiology in Lymphoma Belt Endemic and occasionally epidemic Holoendemic + 3 types less intense

Age acquisition immunity Mimics age distribution of eBL By age of 5 yrs if holoendemic

Altitude Barrier 5000 ft at Equator, 3000 ft in Zambia—same as BL Up to 8,000 ft at Equator

Geographic Distribution Dependent on vectors—usually mosquitoes Dependent on anopheline mosquitoes

Replication Temperature Requirements
Yellow fever stops <15.5–18◦C Malaria stops <20◦C

Same as BL (PF > 18◦C, PV > 17◦C, PM > 16◦C)

Effect malaria suppression None Reduced

Effect malaria eradication Eradicated Eradicated

Table 3: Characteristic arboviral signs and symptoms seen in eBL patients immediately preceding development of lymphoma.

Sign or symptom Total number (%)
Time before BL
in days (range)

CHIK IgG/M+ On
admission

CHIK IgG/M+ after 14/7

Rash 9 (8) 8 (2–14) 0 5

Sore eyes 16 (18) 19 (7–28) 1 10

Joint pains 32 (37) 14 (2–28) 9 16

Mouth ulcers 14 (16) 13 (3–21) 2 10

Fever 27 (31) 16 (1–56) 10 19

Bleeding 14 (16) 19 (14–28) 3 6

increased where mosquitoes thrive. Both malaria and most
arboviruses are vectored by mosquitoes.

2.4. Space-Time Case Clusters of Endemic Burkitt’s Lympho-
ma. A statistically significant association between infection
with the arbovirus, CHIKV and the onset of eBL was
observed in Malaŵi, at the time of a CHIKV epidemic,
when space-time case clusters were also being observed [12].
BL patients were significantly more likely to be CHIKV
seropositive on first admission or to have seroconverted
three weeks afterwards than either hospital or local controls
(P = 0.002 and 0.009, resp.) [12]. A majority of BL patients,
irrespective of CHIKV seropositivity, gave a history of signs
and symptoms typical of arboviral infection, such as rashes,
oral lesions, and bleeding tendencies, occurring shortly
before the appearance of BL, as summarized in Table 3
[12, 22, 56]. Rashes and oral lesions preceding BL onset had
been seen previously in Uganda and attributed to Herpes
or Measles infection [110]. However, most unimmunized
children in tropical Africa acquire measles by 1–4 years,
whereas BL is not seen before the age of 2-3 years, peaks at 5–
8 years, depending on the degree of endemicity and is rarely
seen after the age of 18 years [110].

Ugandan BL serological studies showed that antibodies
to various arboviruses, which included CHIKV, were sig-
nificantly more likely to be found in BL patients, and to
a lesser extent, their families, than controls, but no one
arbovirus predominated [109, 111]. This would be consistent
with more than one arbovirus being associated with BL.
This possibility is also suggested by the observation that
three patients, seronegative for CHIKV, seroconverted for
Yellow Fever during the course of their first admission,

and other cases, seronegative for both viruses, had high
titres of antibody to Sandfly Fever, denoting recent infection
[56]. Additionally, some Ugandan space-time case clusters
[101] occurred during or following an epidemic of O’nyong-
nyong, an arbovirus closely related to CHIKV [112, 113] and
others [95, 97, 98, 101–103] also occurred during periods
when CHIKV activity was recorded in East and Central
Africa, viz. 1958, 1960-61, 1963-65, 1967, 1971, 1973 [114].

3. Arboviruses

Arboviruses occur world-wide, particularly in the tropics
and where vector-control is poor. They are an important
group of diseases, with considerable economic consequences
for the livestock industry [115], and a considerable burden
of morbidity and mortality in humans [115, 116] although
human disease is too often unrecognized or misdiagnosed
[116, 117], except when large-scale epidemics occur as with
the frequent outbreaks of Dengue in South-East Asia [118],
or the recent CHIKV epidemic in the Indian Ocean [93].
Climatic conditions are important in determining arboviral
outbreaks, with rainfall pattern, temperature, and humidity
all playing a role [118].

There are many arboviruses, but only a minority are of
medical importance. Arboviruses are RNA viruses, depen-
dent on arthropod hosts for their transmission. They are
classified on the basis of antigenic relationships, structure
and manner of replication, into five main groups shown in
Table 4 [119]. There is considerable cross-reactivity among
different, but related, arboviruses. Viral reassortment is
thought to occur in nature and, possibly, to explain the origin
of some of these viruses [120].
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Table 4: Classification of arboviruses.

Family Genus Disease Vector

Flaviviridae
Flavivirus
Formerly Casal’s Gp B

Yellow Fever
Dengue
Japanese Encephalitis
Saint-Louis Encephalitis
West Nile Fever
Tick-borne Encephalitis

Aedes Mosquitoes
Aedes Mosquitoes
Culicine Mosquitoes
Culicine Mosquitoes
Culicine Mosquitoes
Ticks

Togaviridae
Alphaviruses
Formerly Casal’s Gp. A

Chikungunya, O’Nyong-Nyong, Sindbis
Ross River Fever, Barmah Forest

Aedes and Culicine
Mosquitoes

Mayaro
Culicine Mosquitoes

Equine Encephalitis

Bunyaviridae
Bunyavirus
Nairovirus
Phlebovirus

Bunyamwera Virus
Crimea-Congo Haemorrhagic Fever
Rift Valley Fever
Sand-fly Fever

Aedes Mosquitoes
Ticks
Mosquitoes and Ticks
Sandflies

3.1. Characteristics of Arboviral Infection. Arboviruses are
best known for causing acute febile illnesses and only recently
has the magnitude of long-term arthritic, ocular, and central
nervous system sequelae, as seen in the recent Indian Ocean
CHIKV epidemic [121–123], been fully appreciated [124,
125]. Subclinical infection occurs frequently and persistent
infection is extremely common [121, 126, 127]. Disease is
most severe in the very young and the elderly. Arboviruses
can produce immunosuppression which is dependent on the
age of the patient and the degree of leukopenia induced
by the virus [128]. In the presence of mosquito saliva, the
natural route of infection, CHIKV can skew the immune
response towards the TH2 type postulated to be a risk
factor for BL [106, 129]. Arboviruses can also produce
the phenomenon of immune enhancement whereby pre-
existing, nonneutralising, viral antibodies, due to prior
infection with a different, but related serotype, enhance
viral replication [130, 131], facilitating viral entry into
cells and promoting the release of cytokines [132], thus
increasing severity of disease. Certain strains and genotypes
may be more virulent, or replicate at a higher rate, and
thereby exacerbate disease severity [133]. Both the Flavivirus
Dengue, and the Alphavirus CHIKV, can cause a severe
form of the disease known as “Shock Syndrome” [130,
131]. Dengue serotype-crossreactive CTL clones showing
high avidity for antigen produce higher levels of inflamma-
tory cytokines than serotype-specific clones [133]. In vitro
experiments show that Alphavirus infection inhibits host
protein synthesis drastically, whilst virally encoded genes
are expressed liberally [134]. Alphaviruses, Flaviviruses, and
Reoviruses are particularly well suited to be vectors for
heterologous genes. They are being investigated as vectors
for miscellaneous treatments and vaccines and show con-
siderable promise. However, caution needs to be exercised
in view of their propensity for mutation, reassortment and
establishing persistent infections [134–136].

3.2. Oncogenic Potential of Arboviruses. Arboviruses have
the potential to be oncogenic since they exhibit persistence

in vivo and [121] and in vitro [125, 137]. Persistence is
enhanced, in vitro, if arboviruses are cultured in EBV-
infected cell lines as EBV opposes the arboviral ten-
dency to apoptosis [138]. Mice brain cells infected with
CHIKV showed loss of contact inhibition and morphological
alterations suggesting they had been transformed [137].
Viral isolates related to CHIKV and Bunyamwera induced
tumours when injected into Swiss albino mice which could
be transmitted to other animals [139]. In a series of early
experiments inspired by the arboviral cofactor hypothesis,
Reoviruses, which are classified as arboviruses [119], were
detected in ten BL biopsies. Antibodies to Reovirus type 3
were commoner in BL cases than in controls [140–142], but
no clear-cut relationship between high levels of Reovirus
childhood infection and BL incidence could be established
[143]. Reoviruses were reported as inducing a lymphoma in
a rabbit [144, 145] and BL-like lesions in mice [146–148], but
it was finally decided the tumours were induced by a Murine
Leukaemia virus, the Reoviruses having been commensals
[149].

Acute infection with the arbovirus, West Nile virus, can
potentiate the actions of the tumour promoter, TPA, 12-o-
tetradecanoylphorbol-13-acetate, when applied to the skin of
nude mice, producing an increase in the number and size of
papillomata [150]. TPA is derived from a Euphorbia, one of
the EBV-activating plants considered potential cofactors in
eBL lymphomagenesis [22, 151, 152].

4. Hepatitis C

It has already been mentioned that the Flavivirus, HCV, a
Class 1 Human Carcinogen [5] is most closely related not
only to Hepatitis G, another apparently oncogenic Flavivirus,
but also to the Arboviruses, Yellow Fever, and Dengue [153–
156]. Hepatitis G accounts for up to 9% of all NHLs in some
studies, showing a stronger association with lymphomas
than HCV in several studies [157, 158].

HCV, a Hepacivirus [155], belonging to the Flaviviridae
family, produces a chronic infection, often relatively silent in
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the majority of cases, which persists despite the production
of antibody. Important manifestations of the disease are cir-
rhosis, autoimmune disease, lymphoproliferative conditions
such as Mixed Cryoglobulinaemia, and a well-documented
association with both low- and high-grade NHLs [154]. HCL
accounts for 7.4–37% of NHLs overall [159], the strength of
the association varying geographically [160], being particu-
larly high in Italy [161, 162] but absent in some countries,
including those of Northern Europe [163], indicating the
existence of important environmental cofactors. Populations
with high HCV prevalence have a greater propensity to
develop HCV-associated NHL [162].

It is of particular interest and relevance to this paper
that rare instances of sporadic Burkitt’s lymphoma arising in
connection with chronic HCV infection have been recorded
[164–166]. They included a number of primary hepatic BLs
[164], a cardiac lymphoma with variant BL translocation
and a gingival BL arising in a renal transplant patient with
chronic HCV infection [165, 166]. Under-ascertainment of
HCV-associated BL is likely, unless there is a high index of
diagnostic suspicion.

4.1. Possible Oncogenic Mechanisms of HCV. HCV replicates
by way of an RNA-dependent polymerase which lacks a
proof-reading function [154]. High rates of genetic varia-
tions during replication result in the production of mutant
viruses capable of escaping the immune attack and estab-
lishing persistent infection. Chronic antigenic stimulation
occurs during a lengthy induction period. HCV induces
Toll-Like Receptor 4 and consequent enhanced production
of Beta-Interferon and Interleukin-6 [167]. HCV directly
stimulates B cell expansion, causing a clonal or polyclonal
B cell expansion by producing a variety of cytokines and
chemokines [167, 168], which may result in mixed cryo-
globulinemia, the development of the antiapoptotic t(14;18)
translocation in some patients, and, in a few cases, NHL
[162, 168, 169].

The virus can greatly enhance mutations of both
immunoglobulins and proto-oncogenes by inducing error-
prone polymerases and acting on cellular enzymes to
enhance production of Nitrous Oxide leading to DNA
double-strand breaks, hypermutation of immunoglobulin,
proto-oncogene, and tumor suppressor genes, with ampli-
fication of the mutated proto-oncogenes [170, 171]. HCV
infection inhibits multiple DNA repair processes [172].
Chromosomal abnormalities and polyploidy are frequently
found in HCV-infected peripheral blood cells and HCV is
thought to inhibit the mitotic checkpoint [173]. The HCV
Core and NS3 proteins are responsible for the inhibition
of DNA repair, mediated by nitric oxide and reactive
oxygen species and both have oncogenic potential, since
they can transform certain cell lines [174–176]. The Core
Protein can impair cell cycle regulation in vivo, affecting
the function of human pRb/p105 and other cell growth
regulatory proteins, thus uncoupling cell cycle progression
from mitotic control and permitting random mutations and
rearrangements of the genome [175, 176]. Part of the HCV
genome encoding the nonstructural protein NS3 is involved

in cell transformation as cells expressing this sequence
proliferated rapidly, displayed characteristics associated with
malignancy, and were tumorigenic in nude mice [174, 176].
The HCV NS5A protein is also thought to have oncogenic
potential, by opposing TP53 and acting as a BCL2 homologue
[177, 178]. The HCV protein E2 enhanced the expression
of antiapoptotic BCL2 family proteins and increased the
expression of costimulatory molecules CD80, CD86, and
CD81, both of which mechanisms are likely to contribute to
HCV-associated B cell lymphoproliferative disorders [162].
Thus, HCV chronic infection acts in a number of different
ways, resulting in B cell activation and a subset of cells
which are more likely to express BCL2 and to be intrinsically
resistant to apoptosis [162, 177–180].

4.2. Pathogenesis. The frequency of HCV-associated NHL
is much lower than that of HCV infection, suggesting that
additional factors are required for lymphomagenesis, which
are likely to include cellular interactions with the virus and
its products. HCV-associated Cryoglobulinaemia seems to
precede the development of both high- and low-grade NHLs
[181, 182] and it has been suggested that particular HCV
genotypes may be more prone to develop NHLs [169].

HCV directly stimulates B cell expansion, causing a
clonal or polyclonal B cell expansion [183]. Serum levels of
Rheumatoid Factor were found to be increased in patients
with a clonal expansion, suggesting that the expanded B-cell
clones belong to the Rheumatoid Factor producing B-cell
subset [183, 184] and that, in some cases at least, they can
evolve into NHL [185].

Up to half of all HCV carriers have mixed cryo-
globulinaemia, composed of HCV antigen and antibody.
Cryoglobinaemia, and the severity of disease, appears to be
linked to the wide range of antibodies produced in HCV
infection, consequent, to some extent upon the frequent
genetic mutations that the virus produces in the course
of the disease. HCV is also associated with monoclonal
gammopathies, particularly when infection is due to Geno-
type 2a/c [186]. Cryoglobulinaemia is associated with the
development of the t(14;18) translocation which consists of
the rearrangement and activation of BCL2, the antiapoptotic
B-cell lymphoma/leukaemia gene and its juxtaposition with
the Immunoglobulin heavy chain gene IgH on chromosome
14 [182]. Development of the t(14;18) translocation, the
commonest form of translocation found in lymphomas, is
thought to be favoured by chronic antigenic stimulation
[182, 187]. This translocation can occur in normal people
without malignancy, suggesting that, on its own, it is
insufficient to induce a malignant outcome [182]. Chronic
antigenic stimulation is considered to be a factor in the
clonal evolution of HCV-associated immunocytomas [187].
Both premalignant and malignant lymphoproliferations in
an HCV-infected type II Mixed Cryoglobulinemic patient
appear to be sequential phases of an antigen-driven patho-
logical process [188]. Effective antiviral treatment leads to
the disappearance of the translocation [189, 190] and in
some cases, resolution of the lymphoma [162, 191] highlight-
ing the importance of both translocation and virus in the
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process of lymphomagenesis and the potential reversibility
of the process.

EBV coinfection seems to increase the oncogenicity of
HCV, at least as regarding its contribution to the incidence
of Hepatocellular carcinoma [192]. HCV replication is
enhanced in the presence of EBV [193], due to an interaction
with EBNA1, thus increasing the effect of antigen-driven
oncogenic processes. EBV could also potentiate the effects
of HCV’s mutator actions because EBV can rescue error-
bearing cells from apoptosis [63]. In addition, EBV-infected
B cells tend to accumulate more somatic hypermutations,
to have more replacement mutations and to occupy a
skewed niche within the memory compartment, due to their
exclusion from the CD27(+)IgD(+)IgM(+) subset, which
protects them from the immune system, since they cannot
be distinguished from uninfected cells [194].

5. Similarities between
Hepatitis C and Arboviruses

HCV is part of the Family Flaviviridae to which those
Arborviruses which are Flaviviruses belong. The arboviruses
most closely related to HCV are the Flaviviruses Yellow
Fever and Dengue. CHIKV is an Alphavirus, belonging to
the Togaviridae Family. Flaviviruses are closely related to
Alphaviruses, being previously classified as an Alphavirus
subgroup, and were only allocated their own family when
sufficient differences were noted [153]. It is conceivable
that CHIKV, already known to be potentially oncogenic
[137, 139] and additionally those arboviruses, closely related
to HCV such as Yellow Fever, might deploy oncogenic
mechanisms similar to those of HCV because of their shared
characteristics, and that some, or all, related Flaviviruses and
Alphaviruses could share such potential.

It has been shown that Arboviruses, as a group, can
exhibit persistence and initiate autoimmune disease [119,
126, 127]. CHIKV, as demonstrated during the recent
epidemic [121–123], can persist and give rise to chronic
infection. Not only autoimmune disease, but also cryoglob-
ulinaemia, has been found to be common in chronic forms
of this infection [195]. CHIKV infection, like Dengue, has
the ability to induce Haemorrhagic and Shock Syndrome
forms of disease [131, 132] which both unleash a huge
release of cytokines [132, 196, 197]. Both are thought to
be related to crossreactivity with antibodies produced as a
result of previous exposure to closely related serotypes of
the virus [131–133, 198–201]. Antibody-dependent immune
enhancement can also occur during infection, resulting in
high levels of replicating virus. Arboviruses have a rapid
replication cycle of four hours and, as with HCV, they
generate a high rate of genetic variations during viral
replication resulting in the production of mutants capable of
escaping attack by the immune system. This process is also
likely to generate faulty cells requiring either DNA repair or
apoptosis, particularly as arboviral RNA polymerases do not
have proof-reading ability. If antibody-dependent immune
enhancement occurred, it could produce a rapid increase
in viral replication and infected cells, unleashing prodigious

amounts of cytokines [132], which could exert effects such
as those seen in chronic antigenic stimulation. This could
challenge the capacity of cellular DNA repair mechanisms at
the very least.

In the Lymphoma Belt setting, chronic EBV infection
would provide an expanded pool of B-lymphocytes, thought
to be a key factor in lymphomagenesis, because of the
enhanced potential for the development of chromosomal
abnormalities. This effect would have been amplified still
further by the mitogenic effect of holoendemic malaria.
CHIKV infection has been shown to be associated with the
onset of eBL [12, 22] and an acute arboviral infection could
be the reason that the BL cell that is actively rearranging
its IgG genes [37]. It is conceivable that acute CHIKV
infection in such a setting, particularly if the infection had
been preceded by infection with a closely related arbovirus,
could initiate a release of cytokines which could have an
effect analogous to the antigenic stimulation seen in HCV
infection. CHIKV has a very short replication time and
also readily produces mutations as its polymerase lacks a
proof-reading function. In addition, EBV could cooperate
with the arbovirus, by helping error-bearing cells to survive
and might also assist the arbovirus to establish persistent
infection, as seen in vitro [138]. EBV is known to increase the
rate of HCV replication [193] but it is unknown whether it
exerts a similar effect on arboviruses, though conceivable that
this might be the case with those arboviruses closely related
to HCV.

Arboviruses readily act as vectors for heterologous genes
[134], suggesting the possibility that they could act as vectors
within the cell, possibly in conjunction with EBV. Their
association with autoimmune disease raises the possibility
that they could interact with cellular mechanisms though
molecular mimicry, thought to be a factor in autoimmune
disease [202].

6. Conclusion

A role in lymphomagenesis has been confirmed for HCV [5]
and is probable for Hepatitis G [158], suggesting that closely
related flaviviruses, such as Yellow fever, and other related
groups of arboviruses, could also have lymphomagenic
potential. CHIKV is already known to have oncogenic
potential [137, 139]. High levels of CHIKV activity were
documented around the time when space-time case clusters
of eBL were occurring in Malawi [105], and there was a
statistically significant association between recent infection
with that virus and the onset of eBL [12, 22]. High levels
of CHIKV activity were also recorded in NW Cameroon
[203] around the time when extremely high rates of eBL
were recorded, up to 20/100,000, and spatial clusters were
observed [100]. Although no analysis for space-time clus-
tering was performed in Cameroon, it is likely that this
was occurring, particularly in one area where the spatial
clustering was very pronounced. In addition, the early
space-time case clusters recorded in Uganda occurred at
a time when epidemic CHIKV [114] and O’nyong-Nyong
Virus activity was observed [200, 202]. O’nyong-nyong, like
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Figure 1

CHIKV, is an Alphavirus and is antigenically extremely
closely related to CHIKV [112]. It could appear that not
only CHIKV, but possibly both viruses, could be linked with
the eBL case clusters seen contemporaneously with their
epidemics. It is also possible that CHIKV could have acted
as a cofactor for late-stage eBL pathogenesis, in view of the
link between recent CHIKV infection and the onset of eBL
recorded in Malaŵi [12, 22].

As mentioned previously, CHIKV has the potential to
be oncogenic since it can transform mouse brain cells
[135] and is tumorigenic in nude mice [138]. CHIKV has
also recently been shown to give rise to cryoglobulinaemia
[195], a lymphoproliferative state analogous to the Mixed
Cryoglobulinaemia seen in chronic HCV infection. HCV-
associated Mixed Cryoglobulinaemia is thought to be asso-
ciated with a 35-fold risk of lymphoma development and to
evolve into HCV-associated NHL in 8–10% of cases [162].
In eBL lymphomagenesis, oncogenic arboviruses might
interact synergistically with EBV, possibly aided by exposure
to tumour-promoting, EBV-activating plant extracts [22,
54]. Further research needs to be done to investigate the
association between CHIKV, possibly other arboviruses, and
eBL. The requisite research is difficult to carry out in the
absence of epidemics, which only occur at lengthy intervals,
but is long overdue. Such work is likely to elucidate the
mechanisms of lymphomagenesis, not only in eBL, but also
in sporadic BL. HCV has been shown to be associated with a
few cases of sporadic BL and other RNA viruses, apart from
HIV, might also contribute to the small number of sporadic
BL cases.

Alphaviruses causing disease similar to CHIKV, are not
confined to the Lymphoma Belt, but, as shown in Figure 1,
are found in Asia, Australia, the Americas, and Europe.

CHIKV vectors are currently extending their range con-
siderably and it would be of interest to see how much
an updated map of the geographic distribution of eBL
differed from the Lymphoma Belt of Africa as originally
defined by Burkitt in the 1950s [204]. A CHIKV outbreak
recently occurred in Northern Italy [205], where the vector,
Aedes albopictus, is now endemic. Local transmission in
Italy and new areas invaded by the virus, may offer the
dubious advantage of providing arboviral research material
where pre-existing expertise and research facilities are readily
available. Our knowledge about chronic CHIKV disease has
already advanced due to the recent epidemic in the Indian
Ocean and India [195], and it is to be hoped that progress will
also be made with the assessment of the oncogenic potential
of this hitherto underestimated virus.

Global warming and other factors contingent on the
emergence of infectious organisms, and viruses in particular,
will almost certainly contribute to an increased disease
burden [206] in future, due not only to acute infection, but
also the more challenging, often initially inapparent, sequelae
of chronic infections. It is likely that more infectious agents,
particularly viruses, including some yet to be identified, will
be implicated in lymphomagenesis and oncogenesis and their
study will continue to illuminate oncogenic processes, aided
by advances in molecular biology and improved diagnostic
methods.
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