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Abstract

Pluripotent embryonic stem cells are of paramount importance for biomedical sciences

because of their innate ability for self-renewal and differentiation into all major cell lines. The

fateful decision to exit or remain in the pluripotent state is regulated by complex genetic reg-

ulatory networks. The rapid growth of single-cell sequencing data has greatly stimulated

applications of statistical and machine learning methods for inferring topologies of pluripo-

tency regulating genetic networks. The inferred network topologies, however, often only

encode Boolean information while remaining silent about the roles of dynamics and molecu-

lar stochasticity inherent in gene expression. Herein we develop a framework for systemati-

cally extending Boolean-level network topologies into higher resolution models of networks

which explicitly account for the promoter architectures and gene state switching dynamics.

We show the framework to be useful for disentangling the various contributions that gene

switching, external signaling, and network topology make to the global heterogeneity and

dynamics of transcription factor populations. We find the pluripotent state of the network to

be a steady state which is robust to global variations of gene switching rates which we argue

are a good proxy for epigenetic states of individual promoters. The temporal dynamics of

exiting the pluripotent state, on the other hand, is significantly influenced by the rates of

genetic switching which makes cells more responsive to changes in extracellular signals.

Author summary

In the embryonic stage mammalian cells are pluripotent: they have not yet committed to

any specific cell type. The commitment to a cell type is controlled by pluripotency net-

works, the bio-molecular inventory which is unsurprisingly complex, spanning a myriad

of transcription factors, genes and epigenetic factors. Thanks to advances in high-

throughput sequencing and related computational tools for data analysis, we are begin-

ning to unravel basic topological features of pluripotency networks. Networks inferred

from sequencing data are often cast in Boolean representations which specify the existence

and nature of regulatory connections between pairs of biomolecules. While immensely

useful, the Boolean networks remain silent about the stochasticity and dynamics of
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molecules that are indelible features of bio-molecular life inside cells. Understanding sto-

chastic and dynamic features of pluripotency networks is crucial if one is to have a mecha-

nistic understanding of cell fate determination rationalized in terms of fundamental

physico-chemical processes. The computational framework proposed in this work offers a

way of bridging the divide between Boolean networks and higher resolution views of net-

works in a predictive and quantitative manner. The usefulness of the framework is dem-

onstrated by recapitulating a number of experimental trends and creating new insights

about the stochastic and dynamical nature of pluripotency.

Introduction

Embryonic stem cells derived from mammalian blastocysts are pluripotent: they show an

indefinite capacity for self-renewal and the ability to differentiate into every cell type constitut-

ing an adult organism [1–3]. The development of healthy tissues hinges on the ability of these

pluripotent stem cells to make critical decisions determining when and into which kind of

cells to differentiate in response to the environment. It is therefore unsurprising that fates of

embryonic cells are decided through sophisticated biological computations by a tightly-inte-

grated regulatory network consisting of genetic, epigenetic and signaling layers [3].

The expression of genes is subject to intrinsic noise due to finite molecular copy numbers

[4] and due to randomness in extracellular environment. Thus, while at the level of the organ-

ism development is often predictable, with a well-defined order of events, at the level of single

cells fate determination is fundamentally stochastic [5, 6]. Indeed, many studies probing the

transcription of pluripotency-regulating genes in single cells have found high variability in dis-

tributions of transcription factors and mRNA molecules [7–9].

Several hypotheses about the functional roles for the highly heterogeneous expression of

pluripotency transcription factors (TFs) have been put forward. One idea is that stochastic

excursions in the population levels of transcription factors help by steering cells towards dis-

tinct states [10, 11]. A different hypothesis claims transcriptional noise to be advantageous by

facilitating the exploration of the state space of a gene network such that, at any instant, a sub-

population of cells is optimally primed to be responsive to differentiation signals [12]. The het-

erogeneity of populations of pluripotent cells has also raised some concerns that pluripotency

is ill-defined at a single-cell level [12] and instead should be viewed as a macroscopic state

emerginging at the level of an ensemble of cells. A comprehensive physical picture of pluripo-

tency at the single-cell level therefore remains unclear.

In this regard, the roles of modeling and computational approaches are seen as especially

important for bridging the gap between our understanding of molecular dynamics of regula-

tory networks and phenotypic outcomes. A rapid growth in single-cell sequencing data has

opened many avenues for carrying out statistical inferences of pluripotency regulating genetic

networks [13–15]. In vitro studies of mouse embryonic stem cells (mESC) in different culture

conditions, in particular, have become an ideal model system for computationally inferring

gene networks and exploring mechanistic issues surrounding pluripotency and lineage com-

mitment [15]. In a tour de force study of mESC by Dunn et al. [16], regulatory relationships

between transcription factors were uncovered through analysis of pairwise correlations in

gene expression. Using mean values of RNA-seq counts as constraints, a minimal network

topology was derived showing a high degree of predictive power with respect to perturbations

of the network, such as gene knockouts.
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Network topologies in general, however, remain silent about the roles of molecular noise

and dynamics in stem cell differentiation governed by stochastic biochemical reactions. Fur-

thermore, in order to validate that the inferred network reflects true microscopic reality of cell

and is not a result of overfitting, one has to ultimately test the results using mass-action-based

kinetics which integrate relevant molecular factors. The key challenge lies in finding the ade-

quate resolution for the network which is able to be predictive and does not pose insurmount-

able computational burden.

In the present work, we outline a framework for extending Boolean resolution networks—a

commonly derived product from high-throughput experimental results—into stochastic and

dynamical models with microscopic resolution of promoter architecture and individual gene-

switching events. The computational scheme utilizes static Boolean information about the

network topology and uses novel analytical model reduction to increase the computational

efficiency, allowing for extensive searches in the space of microscopic reaction rates. This

framework is successfully applied to the network topology inferred by Dunn et al. [16] in

order to build a mass action based stochastic dynamic model which is capable of describing

both the discrete states of all the genes and the populations of transcription factors. Starting

from minimal assumptions about the rates of various reactions, we find a parameter regimes

where a remarkable agreement with the experimental gene expression profiles [16] is achieved

for all combinations of external signals. We show that average gene-expression levels in com-

plex regulatory networks are not a unique function of gene-switching rates, which cautions

against over-interpreting Boolean-level networks and suggests strategies of inference which

utilize higher moments in distribution of transcription factors. Using single cell experiments

which have probed expression of pluripotency factors [7, 8], we are able to argue that gene

switching in pluripotent states happens primarily on the intermediate scale relative to the reac-

tions of production and degradation (dilution). This regime better agrees with the diverse set

of experiments available [7–9, 16] and provides explanation for the multimodality in distribu-

tions of transcription factors and burst like expression dynamics for some genes.

In the second half of the paper, armed with a predictive and physically motivated model of

pluripotency network, we explore the dynamics of lineage commitment driven by withdrawal

of various well documented signals (LIF, 2i) for maintaining the naïve state of pluripotency.

We find a number of non-trivial consequences of molecular noise and gene-switching dynam-

ics. Taking gene switching rates as a proxy for epigenetic states of individual promoters we

show that global variations of gene switching rates (mimicking global remodeling of epigenetic

marks) yields a significant leverage over stability, sensitivity and exiting dynamics of pluripo-

tent states In particular we show that intermediate gene-switching regime generates higher

sensitivity for the network when responding to external signals.

Results

Framework for deriving microscopic resolution networks from

experimentally inferred Boolean network topologies

In this Section we outline the steps for constructing higher-resolution regulatory networks

with explicit promoter architecture, gene states, and transcription factor copy numbers, start-

ing from experimentally-inferred Boolean network topologies. To illustrate the potential of

our modeling framework we have chosen the most comprehensive Boolean network to date

which describes the regulation of pluripotency factors of mouse embryonic stem cells [16]. In

the next subsection we describe how Boolean logic is converted into the molecular logic of pro-

moter states via a set of simplifying assumptions. Once promoter logic is defined, in the second

subsections we go on to define the resolution of protein to promoter interactions.

A stochastic and dynamical view of pluripotency in mouse embryonic stem cells
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These assumptions lead to a set of chemical reactions describing transitions between gene

states. In the third subsection we introduce the rules defining the production and degradation

of transcription factors. In the fourth subsection we give an overview of the multi-scale simula-

tion techniques appropriate for the simulation of stochastic switching of genetic states with a

single-molecule-level resolution. In particular we contrast the rigorous yet computationally

inefficient individual-based model (IB) with a more efficient piecewise-deterministic Markov

Process (PDMP) which we adopt and extensively validate in the present work.

Extending the Boolean logic to molecular logic

The Boolean model of Dunn et al. specifies twelve genes in the network. We use Gi to denote a

gene and Pi to denote the corresponding functional TFs (i 2 {1, 2, . . ., 12}) in the following

framework. The network topology (Fig 1) contains static information about the types of inter-

actions between pairs of genes. The interactions are classified as being either repressing or acti-

vating. To study the dynamics of complex genetic networks, one has to extend the Boolean-

level description to account for the molecular logic of gene regulation. This molecular logic

specifies the precise relation between the binding of transcription factors to the promoters and

the regulatory outcome in terms of gene activation or repression. In the case where the same

sites can be bound to different transcription factors, the combinatorial nature of regulation

can give rise to ambiguity in molecular logic. Indeed, even on the level of Boolean networks,

the logic is ambiguous and many possible truth tables have to be enumerated in order to select

an appropriate picture for the dependence of a gene on its regulating signals. Ideally, such

ambiguities should be resolved by directly inferring regulatory logic. Alternatively, one could

simulate different combinatorial possibilities until sufficient agreement with experiments is

reached.

In our case, we assume a set of rules which applies to every gene in the network. This is a

simplifying assumption, the justification for which is obtained a posteriori; networks with opti-

mized parameters yield gene expression patterns consistent with the experiments. The fact that

Fig 1. Network topology and molecular logic. The left panel shows a schematic diagram of the network topology, reproduced from Dunn et al. [16]. Each node

corresponds to a given gene and their placement from left to right is chosen to indicate a trend of downstreamness from three external inputs. In our mechanistic

model, each gene produces a unique transcription factor at a rate which depending on the binding state of its promoter site. These transcription factors then go on to

bind and activate (black arrow) or repress (red bar) other genes. The three nodes on left correspond to extra-cellular signals, which are either absent or present. The

right panel shows our assumed molecular logic of transcriptional regulation when there are N = 2 promoter sites per gene. Each circle is a binding site: it can be either

empty (white), bound by an activator (green), or bound by a repressor (red). The right panel lists possible combinations of the promoter sites. Depending on the

configuration of the promoter site, transcription factors are produced with rates 0, Oαm, and Oαmax, modeling the effects of cooperative binding.

https://doi.org/10.1371/journal.pcbi.1006000.g001
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these simplifying assumptions work surprisingly well implies a dominance of the global net-

work topology over the local details of molecular regulatory logic of gene promoters.

For each gene, we assume a fixed number N of promoter sites. The genes which are only

regulated by activators are always “OFF” unless N promoter sites are bound to activators. Simi-

larly, the genes which are only regulated by repressors are always “ON” unless N promoter

sites are bound to repressors. For those genes which are regulated by both activators and

repressors, their activity is up-regulated to “ON” (resp. down-regulated to “OFF”) only when

N promoter sites are bound to activators (resp. repressors), otherwise they have a “MEDIUM”

activity. These rules are illustrated quantitatively in the right panel of Fig 1.

Binding and unbinding of transcription factors to promoter sites

From the topology, we know that each gene is regulated (activated or repressed) by a subset of

TFs; we denote the subset of the TFs which regulates gene i by Si 2 {P1, P2, . . ., P12}. For exam-

ple, the subset of the TFs which regulates the core gene Nanog is the set of transcription factors

Klf2,Sox2, MEKERK (see Fig 1). The binding and unbinding of the transcription factors to the

promoter sites of gene i can be summarized by the following binding and unbinding reactions:

Gi þ PjÐ
NkonO� 1

koff
GiPj for Pj 2 Si; ðfirst TFÞ

..

.

GiPj . . . Pk þ PlÐ
konO� 1

Nkoff
GiPj . . . PkPl for Pl 2 Si; ðfirst TFÞ

ð1Þ

where the rates are written per the reactants, i.e., a given Pj binds to a given unbound promoter

Gi with rate NkonO−1 etc. The “system size” parameter O has been introduced which sets the

scale for a typical number of TFs in the system [4, 17] without loss of generality. The scaling of

these switching reactions is chosen such that the time scale of gene switching is independent of

O [18]. Notice that we have adopted the parallel binding mechanism [19] which assumes the

transcription factors bind to any of the unbound promoter sites independently with a rate con-

stant kon.

Production and degradation of transcription factors

Each gene Gi “produces” its own transcription factor Pi with a rate which depends on the pro-

moter state of Gi. We use a one-step model of transcription [20] whereby transcription factors

are produced via a unimolecular step. This approximation coarse grains several sequential

intermediate reactions (polymerase recruitment, mRNA production, RNA splicing, etc.) into

one effective step [21, 22]. This approximation has become popular in models of protein pro-

duction [18, 23, 24]. All of the transcription factors are assumed to have finite lifetimes set by

the rate of degradation, thus ensuring the existence of stable steady states with a finite number

of molecules. The absolute time is set to be * 1 hr which is consistent with experimental mea-

surements reported on the lifetimes of pluripotency transcription factors [25–28].

The reactions are

Gi � !
Oa

Gi þ Pi; ðTF productionÞ

Pi � !
g ⌀: ðTF degradationÞ

ð2Þ

Here, the rate constant of the production of TFs (Oα) depends on the promoter’s configura-

tion and is determined by the molecular logic defined previously. We further assume the

A stochastic and dynamical view of pluripotency in mouse embryonic stem cells
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production rate when the gene is “ON”, “MEDIUM”, and “OFF” to be Oαmax, Oαm, and 0 (see

Fig 1). These rates are taken to be identical among all the genes.

We note that one can adopt a view with a higher resolution of the network depending on

the available experimental data and the nature of the question posed. The computational

framework can readily incorporate in an explicit manner more steps, for instance to model the

effects of cell cycle regulation, different epigenetic states, and binding of non-coding RNAs.

Herein we consider the most simplified dynamical model which describes only the promoter

configurations and the population dynamics of the transcription factors. This model aims to

use the optimal resolution for capturing trends in gene expression while remaining feasible

for efficient stochastic simulations. After converting the Boolean topology into a higher resolu-

tion network of biochemical reactions, our next goal is to exhaustively sample a vast space of

parameter space in order to identify the optimal parameter regimes with which the model best

reproduces the experimental results.

Multi-scale simulation of complex genetic networks

Biochemical reactions in gene networks are of a fundamentally probabilistic nature; this

demands a stochastic description of the kinetics. The conventional mean field mass-action-

based kinetics only describe the dynamical behavior in the thermodynamic limit, and ignore

the stochastic effects which arise from the discreteness of the system. In our model, the system

is highly discrete, as there is only a single copy of each gene, and their discrete promoter states

dictate the dynamics of the transcription factors. The most rigorous way to simulate such a

reaction system is by numerically solving the chemical master equation which accounts for

all possible states of the network down to the level of single molecules [4, 20]. In high dimen-

sions, i.e., when the number of species is large, this approach is not computationally efficient.

Instead, kinetic Monte Carlo algorithms are the most straightforward way to generate sample

paths of the stochastic process. We refer to the stochastic process modeling the reactions down

to the single-molecule level with the well-mixed assumption as the individual-based model

(IB).

The state of our individual-based model is characterized by the state of each gene’s pro-

moter sites—how many sites are bound to specific kinds of transcription factors—and the inte-

ger populations of the transcription factors. The rates at which the process stochastically

transitions from one state to another are specified by the reactions Eqs (1) and (2). Fully indi-

vidual-based models, however, still suffer from a steep scaling of computational time with the

number of discrete system states. This fact renders them inefficient for simulating large gene

networks, especially when it comes to scanning or exploring the parameter space.

A wide range of approximate schemes have been employed to simulate complex gene regu-

latory networks [29–31]. Most conventional approximations so far have been the size-expan-

sion methods [32, 33] which are known for being problematic when the molecular noise

induced by discrete genetic switching becomes non-negligible [18, 34, 35]. On the other hand,

for embryonic stem cell networks it is essential to account for the stochastic nature of genetic

switching events which give rise to multimodality in the probability distributions of transcrip-

tion factors populations. These local maxima in the multidimensional probability distributions

of a stochastic genetic network correspond to metastable states and are also known as local

attractors which corresponding to distinct promoter configurations and hence likely also to

distinct phenotypic states [36–38]. Theoretically a network with M independently functioning

genes can generate up to * 2M distinct phenotypic states [39].

Thus, even if populations of all the other species are present in large quantities, the stochas-

tic fluctuations caused by the genetic switches (due to stochastic binding-unbinding events of

A stochastic and dynamical view of pluripotency in mouse embryonic stem cells
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the transcriptional factors to a discrete number of promoter sites) between ON, MEDIUM,

and OFF states cannot be ignored, unless the switching is operating in the extremely fast limit

compared to any other reactions, known as the “adiabatic regime” [35, 39, 40]. In the other

cases—the non-adiabatic regime—gene switching can completely dominate the dynamics in

the network [35, 41]. Eukaryotic gene regulatory networks are often found in the intermediate

regime where gene-switching events are dynamically interwoven with the rest of the reactions

in the network and cannot be ignored [5, 42, 43]. Single-cell studies of mESC in particular

have shown bursty behavior in gene expression with sudden jumps in the levels of proteins

resulting in multi-modal distributions of core transcription factors [7].

The sheer volume and complexity of information that is emerging from experiments on

embryonic stem cells have motivated the application of a wide variety of modeling strategies

for confronting the observed patterns of gene expression in ESCs [44, 45]. Some of the compu-

tational techniques used so far include Boolean networks [16, 46–48], Hopfield neural net-

works [49–51], systems of coupled ordinary [52, 53] and stochastic differential equations [10,

54, 55] with Hill coefficients, agent-based models [56], individual-based models [43, 57, 58]

and small noise approximations to individual-based models [59–61].

Many of the early computational models of embryonic stem cells focused on small frag-

ments of pluripotency networks, typically involving bistable switches [10, 52]. These early

pioneering studies yielded many insights on stochastic decision making in regards to fate

determination and self-renewal [44]. Relatively few studies have also looked at larger por-

tions of regulatory networks while including a stochastic treatment of genetic switching

dynamics by either carrying out individual-based simulations [43, 57] or small noise approx-

imations [59–62].

Because of the computationally demanding nature of individual-based models and the

restricted validity of small noise approximations to the near-adiabatic gene switching, the full

range of stochastic and dynamical regimes displayed by different gene switching time-scales

has remained unexplored. Additionally with very few exceptions [43], the kinetic parameters

in many of the previous models have been not thoroughly explored or informed by data and

have had to be selected from physical intuition alone. These limitations have now been over-

come in the present work. Thanks to a series of recent developments in modeling of gene

expression dynamics [18, 23, 24, 35, 63–65], a novel computational framework utilizing piece-

wise-deterministic Markov processes (PDMPs) [66] has emerged as a rigorous approximation

to the fully individual-based model.

The idea behind PDMP is simple: reactions with large number of molecules are evolved

deterministically, while reactions with smaller numbers of molecules are propagated as dis-

crete, random switching events. This approach treats discrete genetic switching events exactly,

while assuming noise due to the finite nature of populations of transcription factors to be

small in comparison. As shown in the subsequent sections, the assumptions underlying the

PDMP approach turn out to be sound as we go on to obtain a nearly perfect quantitative agree-

ment with full blown kinetic Monte Carlo schemes even for the case of the complex networks

of mESC operating in the intermediate gene-switching regime. The mathematical details of

the PDMP are given in the next subsection.

The PDMP simulations carried out in the present study show nearly Oð103Þ fold faster gen-

erating stochastic trajectories compared to conventional individual-based kinetic Monte Carlo

techniques (the algorithm for generating PDMP sample paths is provided in the Method sec-

tion). This rigorous and rapid sampling of gene-switching events has not only allowed us to

investigate the stochastic dynamics of the regulatory network at a longer time scale compared

to conventional kinetic Monte Carlo methods, but also enabled us to explore a vast parameter

A stochastic and dynamical view of pluripotency in mouse embryonic stem cells
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space efficiently. We have used the obtained information to derive microscopic resolution

models of ESCs. The mathematical details of the PDMP described in greater detail can be

found in the next few subsections.

In the pluripotent state the mean levels of gene expression are robust with

respect to changes of gene state switching rates

After converting the Boolean topology to a higher resolution genetic network we use a compu-

tationally efficient stochastic dynamics method (PDMP in the present case) to explore the

kinetic parameter regimes. This is done in order to: i) Identify all the unique steady states ii)

Obtain a set of rate coefficients that best reflects the experimental constrains iii) Study the

response of the network to gene switching dynamics the rate of which is taken as a proxy for

epigenetic states. The experimental data used for constraining rate coefficients are the binar-

ized gene expression levels of pluripotency transcription factors under well-defined culture

conditions consisting of different combinations of leukemia inhibitory factor (LIF), glycogen

synthase kinase 3 (CH), and mitogen-activated protein kinase (PD). Identical culture condi-

tions were used by Dunn et al. [16] to infer the original Boolean topology.

The optimization of rate coefficients is done by defining a uniform threshold η among all

the TFs and with different external conditions; TFs whose population densities are higher

than η are classified as expressed, while those below the threshold are not expressed. Then, we

employ the Hamming distance (the number of discrepancies between the simulated and exper-

imental profiles) as a cost-function for the optimization. The Hamming distance is minimized

through multiple rounds of simulations where we vary the uniform threshold η and four free

and non-dimensional model parameters (see Method section): the number of promoter sites

per gene N, the rate constant of TFs binding to the promoter kon, rate constant for a bound

TF to dissociate from the promoter koff, and the production rate αm when the gene is in the

“MEDIUM” state.

Through this procedure, we find that the binary expression patterns can be closely repro-

duced (minimal Hamming distance = 3) by the model when the number of the promoter sties

N� 2. We remark that, given the small number of free parameters, this is a very small amount

of deviation from the experimental results; the remaining deviations are likely to have been

caused by the simplifications to the logic and dynamics in the construction of our individual-

based model. The qualitative features for N = 2, 3, . . . 5 cases are similar (see S2–S7 Figs in the

Supporting Information). We chose to present the data for the simplest case N = 2 in the man-

uscript. We note that various other forms of cooperativity, including cases when bound TF at

the promoter recruits other TFs (either of its own kind or other type), can be readily incorpo-

rated into the current computational framework by changing the association rates kon as pro-

moter-state dependent. For simplicity, we only illustrate the most basic form of cooperativity

in this pilot paper. We find for any given N there exists a “valley” in the remaining model

parameter space kon, koff, αm, as illustrated in Fig 2(A). The inferred parameter αm is consis-

tently low (≲ 0.02), meaning that the “MEDIUM” production rate is almost zero. This implies

that the negative regulation of those genes which are regulated both by activators and repres-

sors (Tfcp2l1, Esrrb, Nanog, and Oct4) in the model are technically fulfilled by inhibition (i.e.,

regulating TFs by blocking the promoter sites), instead of actually down-regulating the pro-

duction activity. In addition, the valley suggests a relationship between kon and koff, where

kon� 10koff. This implies a certain asymmetric time scale between the binding and unbinding

processes.

We chose three parameter sets in this valley of cost function, corresponding to three distinct

dynamical regimes of binding and unbinding reactions between the TFs and the promoter

A stochastic and dynamical view of pluripotency in mouse embryonic stem cells
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sites: slow (kon = 3.2, koff = 0.2, αm = 0.02), intermediate (kon = 16, koff = 1.5, αm = 0.01), and

fast (kon = 102, koff = 10, αm = 0.005) compared to the time scale of the TF dynamics. We

remark that as we non-dimensionalize the model using the protein degradation rate γ (see

Method section), the time scale of the binding and unbinding are fast, intermediate, or slow

relative relative to the time scale of the protein dynamics, also set by γ. See Eq 3. All of the

parameter sets successfully reproduce the experimental gene expression patterns (Fig 2) corre-

sponding to pluripotent and lineage committed cells.

The fact that the rate parameters of the network occupy finite regions and cover different

regimes suggests that distinct gene expression profiles can tolerate fluctuations in reaction

rates. Such rate fluctuations, reflecting the effect of extrinsic noise, are inevitable in dynamic

cellular environments of embryonic cells which experience frequent epigenetic and extracellu-

lar perturbations [15, 26, 67]. In a way, changes in gene-switching rates can be seen as a proxy

for how global epigenetic changes govern the rates of transcription factor binding to target

genomic regions.

From the methodology point of view, the absence of a unique regime of rates implies the

following: inferring networks using only mean levels of gene expression (as is done for Boolean

networks) may lead to the loss of valuable information contained in higher moments of distri-

bution. Thus new approaches of inference need to be developed in order to account for broad

distributions of transcription factors. For this reason, we look beyond the comparisons of

Fig 2. PDMP stochastic simulations identify three genetic switching regimes that are consistent with experimental data. When switching is slow, intermediate, or

fast we find certain parameters which closely match the experimental results obtained by Dunn et al. [16]. The consistency of our model with experimental results is

measured using a Hamming distance—a measure where one counts the number of discrepancies between the binary expression of each TF for both cases. (A) Shown are

the identified regions in parameter regimes that minimize Hamming distance. There are three free parameters: the binding rate kon, unbinding rate koff, and basal

transcription rate αm. For slow switching, the parameters are kon = 3.2, koff = 0.2, αm = 0.02; for intermediate switching, kon = 16, koff = 1.5, αm = 0.01; for fast switching,

kon = 102, koff = 10, αm = 0.005. The selected parameter sets are presented as red dots in the landscapes in the upper panel, hereby referred to as the slow, fast and

intermediate parameter regimes. (B) Comparison of computed and discretized gene expression profiles with those of the experiments (Benchmark panel) [16].

https://doi.org/10.1371/journal.pcbi.1006000.g002
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mean expression levels and turn to comparing stationary distributions of transcription factors

observed in experiments with the computationally generated distributions in three chosen

parameter regimes identified in Fig 2. We generate the stationary distributions of the TF con-

centrations in the model, with eight different environmental conditions, in the specified three

parameter sets in Fig 3. We observe qualitatively that in the “fast” parameter set the distribu-

tion of each TF is unimodal, and in the “slow” parameter set, the distribution of each TF is

peaked near “0” and “1” in non-dimensional units. In the intermediate regime, on the other

hand, with some environmental conditions, broader distributions of the gene expression are

observed.

The pluripotent state of mESCs has been the subject of intense investigations by nucleic

acid-based single-cell techniques such as RNA-seq, sm-FISH, qPCR and there is now extensive

data on the steady-state distributions of RNA and transcription factors maintained under plur-

ipotency-favoring culture conditions [7, 8, 68]. These experiments have revealed a heteroge-

neous nature of gene expression with many core pluripotency factors, such as Nanog and

Esrrb, having long-tailed or bimodal distributions (see for example Fig. 5a in Ref. [7]). Addi-

tionally, the single-cell stochastic trajectories of TFs have shown sharp, bursty transitions

implying infrequent genetic switching events [7]. Qualitatively, these experimental observa-

tions are more consistent with the intermediate regime of genetic switching as seen from Fig 3,

as in the case of slow switching nearly all of the transcription factors express bimodality and in

the case of fast switching the expressions of all the factors are narrow and unimodal.

In Fig 3, consistent with experiments, we also find that under LIF gene expression is more

heterogeneous than under 2i, but also that the overall levels of expression are higher [7, 8]. In

Fig 3. Gene expression profiles of pluripotency factors predicted by PDMP simulations. Each column corresponds to different external inputs, and each row

corresponds to regimes of slow, intermediate and fast gene switching. More than 105 sample paths were used for generating each condition.

https://doi.org/10.1371/journal.pcbi.1006000.g003
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all three regimes of genetic switching supporting pluripotency (LIF+2i,LIF+PD, LIF+CH, LIF

and 2i), core transcriptions factors such as Nanog, Oct4, Sox2 are highly expressed. The same

factors are also repressed in conditions favoring differentiation (CH, PD and none) irrespec-

tive of gene-switching regime. This shows that the pluripotent and differentiated states, as

determined by the pattern of gene expression, are hardwired in the architecture of the genetic

network independent of genetic switching rates. Nevertheless, as we will show in the next sec-

tion, the routes and dynamics of lineage commitment from pluripotent states strongly depend

on the level of molecular noise generated in different gene-switching regimes.

Although the PDMP approach accurately captures the effects of genetic switching, it assumes

demographic noise arising from finite populations to be negligible. To test the validity of this

assumption and assess the contribution of different sources of noise in establishing the steady-

state distribution of the pluripotent state, we carry out individual-based simulations for the

intermediate switching regime of the network, Fig 4. In the individual-based model all reactions

are treated stochastically thereby accounting for all of the sources of noise in the system. The

Fig 4. Gene expression profiles of pluripotency factors predicted by individual-based simulations. The intermediate switching regime is chosen to be presented as it

is the regime which best captures the experimentally measured distributions [7, 8]. (A) Shown are two representative trajectories and full distributions of select few

transcription factors under three different conditions generated by individual-based simulations. Typical lifetime for pluripotency transcription factors [25–28] (* 1 hr)

is used for setting the absolute time-scale of simulations (B) Gene expression profile showing the near quantitative agreement with results of PDMP simulations shown

in Fig 3. (C) Gene expression profile of individual-based model, for comparison with the PDMP and experimental benchmark shown in Fig 2.

https://doi.org/10.1371/journal.pcbi.1006000.g004
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resulting gene expression profiles follow closely those obtained by PDMP simulations, showing

that the noise arising from stochastic switching events of promoter configuration accounts for

the significant part of overall variability in the network. Trajectories of individual transcription

factors show that indeed most of the variance in the molecular distributions are generated by

genetic switching events which appear as abrupt stochastic jumps.

Dynamics of lineage commitment is significantly affected by the dynamical

changes of individual gene-switching rates

We next ask how the steady-state gene expression patterns displayed by the gene network

respond to extracellular perturbations in the form of the initiation or termination of pluripo-

tency signals. Both dual inhibitor 2i (PD+CH) and Leukemia factor LIF based signaling have

been shown to provide a stable environment for maintaining pluripotency of stem cells in

vitro [3, 16]. Conversely, withdrawal of either LIF or 2i leads to irreversible lineage commit-

ment after a 24-hour period. Despite a similar ability to guard pluripotent cells against lineage

commitment, these factors deploy different regulatory mechanisms reflected in distinct distri-

butions of pluripotency factors. As a result, stem cell differentiation by withdrawal of different

signals proceeds via different routes. To gain a mechanistic understanding of how the interplay

of signaling, molecular noise and network architecture gives rise to the steady-state expression

profiles, we study the dynamics of transitioning between the pluripotent and lineage commit-

ted states induced by rapid initiation and withdrawal of signaling conditions (LIF, CH, PD).

The temporal evolution of distributions of the TFs exiting (LIF/2i withdrawal) and entering

(LIF/2i immersion) pluripotent states reveals rich, dynamical signatures of these transitions

(Fig 5). To reveal the role of stochasticity in these transitions, we compare the intermediate

regime—which is dominated by genetic switching—to the fast regime—in which transitions

are largely governed by the network topology and the fluctuation of promoter configuration

is almost-completely ignored. The irreversible nature of transitions manifests clearly in differ-

ent routes exiting and entering the pluripotent state (transitions to and from the None state in

Fig 5).

In the intermediate regime of genetic switching rates, expression noise greatly facilitates

transitions out of a pluripotent state by making the network more responsive to changes in

environmental signaling. In contrast, in the fast-switching regime, upon withdrawal of pluri-

potency signals the downstream regulation happens on a much slower time scale with some

factors remaining virtually unresponsive to changes of signaling. This signaling enhance-

ment in the intermediate regime reveals the importance of molecular noise in making plurip-

otent states more sensitive to environmental conditions. There are qualitatively different

patterns of re-entrance into pluripotent states upon LIF vs 2i addition, with LIF being much

more efficient at reversing pluripotency compared to the 2i. The different potentials of sig-

naling cultures for pluripotency reversal has been established in experiments [3] which have

shown that in the later stages of commitment only the LIF is able to reverse lineage-primed

cells back to their naive pluripotent states. The exit and re-entrance from pluripotency upon

withdrawal and addition of LIF shows complex signatures of hysteresis and bifurcations.

This suggests that there can be multiple pathways of entering or exiting pluripotency. The

transition times for all signaling-induced changes of the steady states of the network are visu-

alized on a kinetic diagram, Fig 6. This figure shows an underlying structure to these transi-

tions where conversion among pluripotent states takes place with lower “activation barriers”

compared to transitions accompanying loss of pluripotency. In the intermediate switching

regime there is a clear time scale separation between transitions which keep cells in pluripo-

tent states and transitions out of pluripotent states. One may argue that such a time scale
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separation between signals inducing differentiation and pluripotency allows embryonic cells

to execute developmental decisions more faithfully. In the fast-switching regime this clear

time scale separation is partially lost where only the loss of all three signals is separated from

the rest of the transitions.

Fig 5. The dynamical behavior of the distributions of transcription factor densities for the intermediate and fast switching regimes. At time t = 0, the external

inputs are changed. The plots show the evolution in probability density for a large ensemble (105) of PDMP sample paths. The times and populations are respectively

rescaled by 1/γ and αmax/γ (see Method section). We assume the proteins are stable and so the their estimated half-life is of an order 8 hour [7]; in other words γ * 1/8

hr−1, and the entire course of simulation (t 2 (0, 30)) corresponds to physically 240 hours. A validation of the PDMP prediction by individual-based simulations can be

found in S8 Fig in the Supporting Information.

https://doi.org/10.1371/journal.pcbi.1006000.g005

Fig 6. Transition times between the stationary distributions of different external conditions. A larger, darker arrow indicates that a given transition

takes a longer time to converge to its stationary state. This time scale is measured by simulating a large ensemble (105) of PDMP sample paths to provide

a simulated probability density and finding the Jensen–Shannon divergence [69, 70] between the instantaneous distribution of each TF and its final

stationary distribution. The time for the each divergence to fall below a threshold (≔ 0.3) is recorded, and we choose the largest of these as a

quantification of the transition time. The numerical values can be found in S1 and S2 Tables in the Supporting Information.

https://doi.org/10.1371/journal.pcbi.1006000.g006
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Detailed analysis of individual distributions and trajectories of transcription factors can be

very informative due to their high information content. It is, however, not immediately clear

how changes in the expression of individual genes contribute to global changes corresponding

to different phenotypic transitions. To reveal such global changes, we project stochastic trajec-

tories of all transcription factors onto the first two eigenvectors obtained by principal compo-

nent analysis (PCA) of the reference pluripotent steady state (LIF+2i). Most of the variance of

transcription factors is well captured by the few principal components. The high-dimensional

steady state of the cellular network can thus be conveniently projected onto a 2-dimensional

subspace, allowing us to visualize the attractor states of the network as probability landscapes

π(PC1, PC2) which are often masked by heterogeneous distributions.

Comparing these probability landscapes with different gene-switching regimes reveals the

distinct roles played by gene switching-induced molecular noise and the deterministic network

topology in guiding the transition out of the pluripotent states (Fig 7). The intermediate gene-

switching regime, once again, appears to be the more viable regime underlying pluripotent

states since the probability landscape shows up as a broad attractor with interconnected

states. Going towards the limit of slow switching results in the fragmentation of the landscape

into states separated by high barriers. This gene switching-induced remodeling of attractors

shows the potential for regulation via global epigenetic changes which are purported to act via

silencing or activating entire sets of genes at once [15]. Thus one may view gene-switching

rates as a proxy for genome wide acetylation/methylation patterns which can dramatically

alter the access of transcription factors to key target genomic sites. The sequential removal of

Fig 7. Mapping the cellular attractors of the genetic network under different switching and signaling conditions. We project

PDMP-simulated gene expression distributions onto the first two principal components. The reference state for principal

components was chosen to be the LIF+2i/intermediate switching.

https://doi.org/10.1371/journal.pcbi.1006000.g007
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pluripotency-inducing signals reveals a consistent change in the size of the attractor towards

occupying smaller regions on the landscape. This argues for the physical state of the network

corresponding to pluripotent states to be the one with maximal variance of regulatory tran-

scription factors where lineage commitment is accompanied by their gradual constraining and

repression. A similar idea which views pluripotency as a macrostate emerging from an ensem-

ble of cells which try to maximizes the information entropy with respect to regulatory tran-

scription factors has been postulated before [12, 71]. The analysis of the steady-state stochastic

dynamics of the pluripotency network in this work appears in agreement with this view. Fur-

thermore, we are able to suggest a microscopic origin of this entropic paradigm. By analyzing

pairwise correlations among different transcription factors we find that signals like LIF/2i cre-

ate greater independence between the expression of core transcription factors, leading them to

explore a larger range of values. Hence, removal of these signals leads to more constrained and

interdependent patterns of gene expression for the same transcription factors which greatly

diminishes overall variance (see S1 Fig).

Discussion

Experimental [16, 51, 72] and computational studies [54, 56, 73, 74] of embryonic stem cell

networks have increasingly emphasized a systems-level perspective where pluripotency is a

result of sophisticated biological computations done by tightly integrated set of genes, epige-

netic and transcription factors [16, 75]. The rapid growth of gene-expression data on mESCs

under many different in vitro conditions has enabled reliable inferences of the underlying

topology of pluriptoency regulating networks [16]. At the same time single-cell probes of gene

expression in mESCs reveal significant heterogeneity and dynamism in bio-molecular popula-

tions [7, 8], suggesting that molecular stochasticity and non-equilibrium processes could be

playing a crucial role in regulating pluripotnecy and stem cell differentiation. Thus the sche-

matic network topology models inferred from real data, while immensely useful, are not always

sufficient for rationalizing the single cell data, which is rich with stochastic and dynamical

information. On the other hand, full chemical master equation based stochastic simulations of

complex ESC networks with complete bimolecular inventory quickly become impractical,

especially when making data-driven parameter searches and explorative simulations with a

large number of external conditions.

In the present work we have developed a multi-scale computational scheme for converting

experimentally-inferred Boolean topologies into quantitative and predictive models of net-

works with a microscopic resolution of gene expression dynamics. The employed computa-

tional model is based on previously proposed hybrid stochastic dynamics approaches [18, 23,

24, 35] in which the switching dynamics of individual genes are considered exactly while the

rest of the biochemical reactions are approximated as deterministic processes. This hybrid-sto-

chastic approach is approximately thousand fold faster than conventional kinetic Monte Carlo

methods. This gain in computational speed allows us to simulate large scale gene regulatory

networks of ESC under different culture conditions and gene-switching regimes. Thanks to

rapid hybrid simulations we are able to use a standard optimization approach to exhaustively

sample the space of rates and find the closest match with the experimental gene expression

data collected different culturing environments [16]. The approximation introduced due to

using the hybrid scheme is validated by showing excellent quantitative agreement of both

steady states distributions and dynamical transition times with the fully stochastic simulations

for the identified parameter sets. This agreement also shows that the switching events of genes

—due to stochastic TFs binding to the promoter sites—is likely a dominant source of variance

in transcription factor populations of ESC networks. Furthermore we argue that changes in
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gene-switching rates are a proxy for global epigenetic modifications which can alter the rates

of access of transcription factors to sites buried under chromatin structures [76]. Thus, the sig-

nificant remodeling of steady-state landscapes that we see by varying the global gene-switching

rates suggests a powerful role for the global epigenetic changes in maintaining the stability of

pluripotent states.

We find that the intermediate regime, in which the gene-switching rate is comparable to

the other reaction rates in the network, is most consistent with single-cell measurements [7–

9]. This result has also been pointed out by Sasai et al. [43] when exploring time-scale hierar-

chy in stem cell network with individual-based models and concluding that experimentally

observed phenotypic heterogeneity likely originates from promoter reorganization and genetic

switching taking place on the comparable time-scale with the rest of the biochemical processes.

In this intermediate switching regime the transcription factors show bursty dynamics which

lead to heterogeneous distributions with some showing long-tailed and bimodal features. Con-

sistent with many experiments [7–9], our simulations show that the presence of LIF and 2i

signals is crucial for maintaining the stability of pluripotent states, which in our model are

defined as states with an up-regulated triad of pluripotency factors Nanog/Oct4/Sox2. With-

drawal of either LIF/2i initiates lineage commitment via a robust pattern of reduced expression

of the Nanog/Oct4/Sox2 triad in the simulations.

To characterize the dynamics of lineage commitment, we have computed the transition

times of going from pluripotent to differentiated steady states. We find that slower gene

switching generates more heterogeneous distributions of transcription factors, which in turn

makes the network more responsive to changes in signaling conditions. For instance, the

response time to LIF/2i withdrawal is much faster in a more stochastic regime than in the

more deterministic regime corresponding to faster gene switching time scales. Next, by carry-

ing out principal component analysis on ensembles of gene expression profiles, we find a

much simpler description of pluripotency and lineage commitment in terms of effective prob-

ability landscapes. As the signals safeguarding pluripotency are removed, these landscapes

reveal a gradual narrowing of the steady-state attractor explored by the network. Thus, we see

a hierarchical organization of differentiation landscapes where pluripotent states pose the larg-

est attractor which is maintained through the extracellular signals and the molecular noise of

gene switching.

Given the rapid rise of information from high throughput single-cell nucleic acid based

techniques (RNA-seq, RNA-FISH, qPCR, etc.), we expect the microscopic resolution models,

reported in the present work, to play important roles in bridging the systems-level behavior

of genetic networks with the underlying molecular-level processes of binding, reaction and

diffusion.

Methods

Constructing the piecewise-deterministic Markov process (PDMP)

In the individual-based description of complex genetic networks studied in the present work,

one models each individual reactive events as a Markov jump processes. The underlying mas-

ter equation governing the Markvoian evolution of the entire network is analytically intracta-

ble and in general even numerical simulations quickly become computational inefficient once

dimensionality of the system becomes too high [77]. Specifically what contributed to this inef-

ficiency is the population scale of transcription factors for which it is common to have values

on the order of O = 104 as is characteristic for biological cells. Thus the use of standard contin-

uous-time Monte Carlo [17, 78] sampling techniques becomes unfeasible especially if one

wants to sample the kinetic parameter regimes for finding optimal set of rate coefficients.
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Fortunately the latest efforts of modeling gene expression dynamics [18, 23, 24, 35, 63, 64,

79] have lead to the emergence of a new class of techniques which are broadly based on using

a piecewise-deterministic Markov process (PDMP) to approximate the individual-based

model with a switching property. In this section, we briefly recapitulate the construction of the

PDMP. A more thorough analysis can be found in the literature cited [18, 23, 24, 35, 63, 64,

79].

A PDMP is a process such that, in between discrete random switching events, the evolution

of the process is deterministic. To construct the deterministic evolution of the TF populations,

starting from the chemical master equations, we performed Kramers–Moyal expansion [77,

80] in the population of TFs while maintaining the discreteness of the genetic state; we keep

only the first order of the expansion. The result is a standard Liouville equation governing the

deterministic flow of the distribution. The joint probability distribution of our model converges

to the deterministic flow in a given genetic state and in the thermodynamic limit O! 1 [80].

With the PDMP approach, the demographic noise originating from random birth-death

events are neglected, so that the population density xi(t) of each TF evolves according to

d
dt

xiðtÞ ¼ ai � gxiðtÞ; ð3Þ

where αi 2 {0, αm, αmax} is the production rate of the ith TF dependent on the ith gene’s config-

uration of promoter sites. While the evolution of the TF population density is deterministic,

the binding and unbinding events of the regulating TFs to their target genes are still stochastic

and formulated according to Eq 1 in the main text.

We finally emphasize that the PDMP only retains the contribution of switching noise which

arise from the discrete and stochastic binding and unbinding events between the TFs and

the promoter sites, and ignores demographic stochasticity from the discrete production and

degradation processes of the TFs. The PDMP is the limiting process when the population scale

O! 1 [18], and the error bound of the description can be rigorously derived to be OðO� 1
Þ

[81].

Generating exact sample paths of the PDMP

To simulate the stochastic binding and unbinding statistics of the promoter sites, accurate

waiting times must be generated. A waiting time exists for each possible stochastic transition;

the smallest of these times tells us how long the system stays in the current configuration of

promoter sites, and to which promoter configuration it transitions. In general, waiting times

can be generated by mapping a uniform random variable to a random time using the survival

function. Since in our case the transition rates are functions of dynamical state variables, this

involves the numerical integration of survival functions describing each potential transition

[63].

In our case, the simple form of Eq 3 (and thus of the transition rates) allows us to improve

upon this by generating waiting times without numerical integration, detailed in the Supple-

mentary Information.

Non-dimensionalization of model parameters

Under the assumptions we proposed, there are initially six free model parameters: Oαmax and

Oαm as the production rates when each of the genes has an “ON” or “MEDIUM” activity, γ as

the protein degradation rate, N as the number of promoter sites, and lastly konO−1 and koff as

the binding and unbinding rates between the TFs and the promoter sties. We remark that the

population scale O is fixed at 104.
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Through suitable non-dimensionalization of the physical time and concentrations of the

TFs, we reduce the number of parameters. As can be seen from the above formulation (Eq 3),

the time scale of the TF dynamics is set by the degradation rate γ. For stable proteins, the time

scale of degradation is of the order of the times of the cell cycle. We therefore choose the unit

of physical time such that γ is 1. Similarly, the maximum concentration in the TF can achieve

in Eq 3 is αmax/γ. We can choose a unit for the concentrations of the chemical species such

that αmax = 1, so the concentration of the TFs are always bounded in (0, 1). After non-dimen-

sionalization, the model ends up with four free parameters: αm 2 {0, 1} as the intermediate pro-

duction rate of those genes which are regulated by both activators and repressors, kon, koff as

the binding and unbinding rate of the TF to the promoter sites, and N as the number of pro-

moter sites per gene. We use these non-dimensionalized parameters to report our results in

the manuscript.

Using the checkerboard diagram to infer the parameter regime

To narrow down the parameter regime, we match our model predictions to the experimental

findings of Dunn et al. [16] in which the authors measured the TF expression under various

combinations of external signals, i.e., LIF, CH, and PD. We aim to match the model prediction

to a twelve-by-five “checkerboard diagram” which records the experimentally measured expres-

sion pattern presented in Fig 2 in the main text. To achieve this goal, we performed a sweep in a

vast parameter space: αm 2 [0, 1], kon, koff 2 [0, 110], and N = 1, 2 . . . 5. For each parameter set,

we simulated 103 PDMP sample paths for a time to sufficiently reflect the stationary state, and

the average TF expression levels were recorded. Because of the non-dimensionalization, the

expression level (the population density) of each TF is a real number in between 0 and 1. This

results in a twelve-by-five real-valued matrix, which is binarized by a threshold. To find the

optimal threshold, we use the number of discrepancies between the model prediction and the

target matrix—the Hamming distance—as a quantitative measure. For each parameter set, an

optimal threshold which minimizes the Hamming distance was then found computationally,

and the minimal Hamming distance was recorded and plotted in Fig 2 in the main text as a

“landscape” of how good the model captures the experimental results. We found that for N = 1

and N� 2, the global minimal Hamming distance is 5 and 3 respectively. We chose N = 2 to

present our follow-up analysis, as it incorporates the capacity of modeling cooperative binding

which is often modeled phenomenologically. We find the Hamming distance can be constantly

as small as 3 in a vast region in the space of binding/unbinding rates when αm is small (≲ 0.02).

Therefore, in the manuscript we present the landscape of a fast switching regime kon� 100, an

intermediate regime kon� 15 and a slow switching regime kon� 3.

Validating the PDMP against the individual-based model

For the three selected parameter sets, 104 sample paths of a fully individual-based model were

generated by standard kinetic Monte Carlo simulations—namely Gillespie’s stochastic simula-

tion algorithm (SSA) [17, 78]. The population scale O for each TF is set to be 104. A parallel

analysis is carried out and the results are consistent with the predictions from using the

PDMP. We report the results of the intermediate switching regime in Fig 4 of the main text.

Visualizing stochatic fluctuations in gene expression on low dimensional

manifolds using principal component analysis (PCA)

While the joint probability distributions are measured by kinetic Monte Carlo sampling, the

dimensionality of the dynamical system is very high: each TF has a real-valued density, so

that even if we marginalize over the genetic states the probability density is a 12-dimensional
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object. Although Fig 4 in the main text summarizes the marginal distributions of the real-val-

ued TF density and contains rich information, it is desirable to visualize the results in a lower

dimensional space to draw qualitative conclusions. To achieve this goal, we perform the stan-

dard principal component analysis [82]. We chose a baseline external condition to be LIF+2i;

the first two principal components were computed. For the rest of the external conditions, the

joint probability distributions are projected onto the plane spanned by these principal compo-

nents; the results are presented in Fig 7 in the main text.

Dynamical transitions between different external signals

To investigate dynamical transitions when the external driving conditions (whether LIF, CH,

and PD are present) change, we prepare 105 independent sample paths with an initial external

condition until the joint probability distribution converges to the stationary distribution.

Then, the external condition is switched instantaneously to the second condition. We further

evolve the dynamical system until stationarity for the second conditions is reached. The results

are summarized in Fig 5 of the main text. To estimate the transition times between the station-

ary distributions with different external conditions, we measure the Jensen–Shannon distance

of the marginal distribution of each TF density, at any given time during the transition to the

final marginal distribution. We measure and report the first time when all 12 distances are

below a threshold value of 0.3, presented in Fig 6 of the main text.

Numerical implementation

Both the PDMP and the IB models have been implemented in c++, using the algorithm pre-

sented in the Supporting Information and the standard kinetic Monte Carlo algorithm [17, 78]

respectively. The network topology was hard-coded in the simulators to improve the simula-

tion efficiency. The simulators are provided in the Supporting information. To facilitate the

use of our computational work and ensure full reproducibility, the IB model is translated into

standardized BioNetGen language [83, 84] and provided in Supporting Information, along

with the standard SBML format of the model exported by BNGL.

Supporting information

S1 Text. Supplementary information.

(PDF)

S1 File. c++ source code of the kinetic Monte Carlo simulator to generate exact distribu-

tions of the PDMP; SBML and BNGL files for numerically implementing individual based

model of the pluripotency network.

(ZIP)

S1 Table. The transition times (normalized by 1/γ� 8hr) in the fast switching regime.

(PDF)

S2 Table. The transition times (normalized by 1/γ� 8hr) in the intermediate switching

regime.

(PDF)

S1 Fig. Pairwise correlations between different transcription factors under signaling con-

ditions LIF+2i, LIF, 2i and None. We show the results for the fast, intermediate, and slow-

switching parameter regimes defined in the manuscript.

(PDF)
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S2 Fig. (N = 1) The Hamming distance (shown in color) as function of model parameters

αm, kon (x-axis of the figures), and koff (y-axis of the figures). Each column corresponds to

one of the three (slow-, intermediate- and fast-switching) regimes.

(PNG)

S3 Fig. (N = 2) The Hamming distance (shown in color) as function of model parameters

αm, kon (x-axis of the figures), and koff (y-axis of the figures). Each column corresponds to

one of the three (slow-, intermediate- and fast-switching) regimes.

(PNG)

S4 Fig. (N = 3) The Hamming distance (shown in color) as function of model parameters

αm, kon (x-axis of the figures), and koff (y-axis of the figures). Each column corresponds to

one of the three (slow-, intermediate- and fast-switching) regimes.

(PNG)

S5 Fig. (N = 4) The Hamming distance (shown in color) as function of model parameters

αm, kon (x-axis of the figures), and koff (y-axis of the figures). Each column corresponds to

one of the three (slow-, intermediate- and fast-switching) regimes.

(PNG)

S6 Fig. (N = 5) The Hamming distance (shown in color) as function of model parameters

αm, kon (x-axis of the figures), and koff (y-axis of the figures). Each column corresponds to

one of the three (slow-, intermediate- and fast-switching) regimes.

(PNG)

S7 Fig. The TF expression pattern (in both continuous space and binarized form) for dif-

ferent number of promoter sites N = 1, 2, 3, 4, and 5. The expression patterns were generated

with the parameter set (αm, kon, koff) which has the minimal Hamming distance among the

points we sampled in Figs. S2-S7 to the experimental data in Dunn et al. Each column corre-

sponds to one of the three (slow-, intermediate- and fast-switching) regimes.

(PNG)

S8 Fig. PDMP faithfully captures the dynamics of the individual-based model. First row:

reproduction of Fig 4 of the main text manuscript. Second row: corresponding IB model

(with * 100 sample paths) with the same perturbations.

(PNG)
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