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Abstract

Knowledge of mutation rates is crucial for calibrating population genetics models of demographic history in units of
years. However, mutation rates remain challenging to estimate because of the need to identify extremely rare events. We
estimated the nuclear mutation rate in wolves by identifying de novo mutations in a pedigree of seven wolves. Putative
de novo mutations were discovered by whole-genome sequencing and were verified by Sanger sequencing of parents and
offspring. Using stringent filters and an estimate of the false negative rate in the remaining observable genome, we obtain
an estimate of�4.5� 10�9 per base pair per generation and provide conservative bounds between 2.6� 10�9 and 7.1�
10�9. Although our estimate is consistent with recent mutation rate estimates from ancient DNA (4.0� 10�9 and 3.0–
4.5 � 10�9), it suggests a wider possible range. We also examined the consequences of our rate and the accompanying
interval for dating several critical events in canid demographic history. For example, applying our full range of rates to
coalescent models of dog and wolf demographic history implies a wide set of possible divergence times between the
ancestral populations of dogs and extant Eurasian wolves (16,000–64,000 years ago) although our point estimate
indicates a date between 25,000 and 33,000 years ago. Aside from one study in mice, ours provides the only direct
mammalian mutation rate outside of primates and is likely to be vital to future investigations of mutation rate evolution.
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Introduction
Understanding the rates and biochemical sources of new
mutations is of inherent interest to evolutionary biologists.
New germline mutations provide genetic variation from which
many new adaptations are built, but they also may incur a
fitness cost to organisms when they are deleterious (Agrawal
and Whitlock 2012). The rate of mutation plays a crucial role in
calibrating molecular clocks and allowing branch lengths of
genealogies to be converted to units of time (Kimura 1968;
Bromham and Penny 2003). In demographic inference, any
uncertainty in the mutation rate is directly propagated to
estimates of the divergence time, effective size, and migration
between populations. In humans, for example, a recently re-
vised reduction of the per-generation mutation rate by a factor
of 2 had profound impact on the timing of all major evolu-
tionary transitions, from our divergence with chimpanzees to
the time the first modern humans left Africa (Scally and
Durbin 2012; S�egurel et al. 2014).

One controversial issue concerning mutation rate is its
impact on inferences of the timing and location of dog do-
mestication. Genetic estimates of divergence time between
dogs and the gray wolf (the wild ancestor of dogs), range from
14,000 to over 100,000 years before present (reviewed in
Freedman, Lohmueller, et al. [2016] and Ostrander et al.
[2017]). A seemingly straightforward approach to the study
of dog domestication would be to fit a demographic model to
extant dog and wolf populations (Freedman et al. 2014;
Freedman, Schweizer, et al. 2016); the wolf population from
which dogs split most recently would identify the geographic
location of domestication, and the time of this split would
give an accurate upper bound on the timing. Unfortunately,
this conceptually simple approach is complex in practice.
Inferring the geography of domestication requires that the
modern descendants of the source wolf population are not
too far from their ancestors’ location, and inferring the split
time is strongly dependent on mutation rate.

A
rticle

� The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is
properly cited. Open Access
2536 Mol. Biol. Evol. 36(11):2536–2547 doi:10.1093/molbev/msz159 Advance Access publication July 12, 2019



A commonly used per base pair mutation rate for dogs
and wolves has been 1� 10�8 per generation (Lindblad-Toh
et al. 2005; Freedman et al. 2014; Skoglund et al. 2015; for
brevity here on we use “per base pair” in referring to the
mutation rate). The value of 1� 10�8 per generation is close
to the value of 6.6 � 10�9 obtained if one multiples the
average mammalian mutation rate of 2.2 � 10�9 per year
measured by Kumar and Subramanian (2002) using substitu-
tion on a fossil-calibrated phylogeny by a generation time of 3
years (Lindblad-Toh et al. 2005; Skoglund et al. 2015). Given
how little was known about the mutation rate in dogs,
Freedman et al. (2014) considered the range of mutation rates
from 6.6 � 10�9 to 1.8 � 10�8 per generation to provide a
range for the split time between dogs and wolves to be be-
tween 11,000 and 34,000 years ago. Wang et al. (2013) also
estimated the split time between dogs and wolves and used
the mutation rate of 6.6 � 10�9 per generation. If they had
used a rate of 1.8 � 10�8 instead their estimated split time
would have been about 21,000 years ago. Much of the dis-
cordance in estimated split times was therefore due to differ-
ent assumptions about the mutation rate.

Two recent studies have estimated the mutation rate spe-
cifically for dogs and wolves using ancient DNA. Skoglund et al.
(2015) used an approach originally developed to estimate the
divergence time between the ancestral populations of humans
and Neanderthals (Green et al. 2010). The procedure uses the
proportion of sites carrying the derived allele in the ancient
individual, conditional on that site being heterozygous in the
modern individual. If the demographic history of the popula-
tion ancestral to the modern individual and the divergence
times of the populations ancestral to the modern and ancient
individual are known, then a mutation rate can be chosen to fit
the observed data. Skoglund et al. (2015) applied this approach
to ancient DNA from a 35,000-year-old wolf from the Taimyr
Peninsula in Siberia. Frantz et al. (2016) applied a similar ap-
proach to a 4,800-year-old dog from the Newgrange site in
Ireland but were able to fit a joint demographic history to both
the ancient and modern samples because their ancient sample
was of higher quality. These studies reported mutation rates of
4.0 � 10�9 and 3.0–4.5 � 10�9 per generation, respectively.
Both rates are lower than those used previously and push the
estimated divergence time between dogs and wolves further
into the past. In particular, when calibrating their model using
the mutation rate from Skoglund et al. (2015), Fan et al. (2016)
estimate a divergence time around 29,000 years ago.

However, there are problems with all these approaches to
mutation rate estimation. First, a demographic history is es-
timated using an approach such as the pairwise sequentially
Markovian coalescent approach (Li and Durbin 2011), and it
is not clear how deviations from the true population history
and uncertainty in the distribution of coalescent times im-
pact estimation (Beichman et al. 2018). Second, the age of the
ancient specimen is used for the population split date, and
this will give an overestimate because the ancient individual is
likely not from the same population as the ancestors of the
modern individual. For instance, the ancient Taimyr wolf
population is unlikely to be directly ancestral to that of mod-
ern wolves. Additionally, the Green et al. (2010) approach

assumes no postdivergence gene flow, a process known to
occur in dogs and wolves since domestication (Freedman
et al. 2014). The presence of gene flow would increase simi-
larity between ancient and modern samples and lead to un-
derestimation of the mutation rate.

To estimate mutation rate, we use a whole-genome se-
quencing approach of parents and offspring of wolves from
Yellowstone National Park, USA. This approach is insensitive to
the issues of fossil calibration and demographic assumptions
surrounding previous calculations. Estimating the mutation
rate by sequencing parents and offspring is conceptually
straightforward and involves a count of the number of sites
where both parents are homozygous for the same allele and
the offspring is heterozygous divided by the number of ob-
served sites in the genome. In practice, however, it can be
difficult to distinguish true de novo mutations (DNMs) from
sequencing errors, somatic mutations, missed heterozygous
genotypes in parents, and alignment issues in repetitive regions
of the genome. Nonetheless, pedigree-based estimation of mu-
tation rates has been performed in a growing number of spe-
cies. Estimates based on pedigree sequencing are available for
Homo sapiens (Kong et al. 2012), Pan troglodytes (Venn et al.
2014; Besenbacher et al. 2019), Pongo abelii (Besenbacher et al.
2019), Gorilla gorilla (Besenbacher et al. 2019), Drosophila mel-
anogaster (Keightley et al. 2014), Heliconius melpomene
(Keightley et al. 2015), Apis mellifera (Yang et al. 2015),
Arabidopsis thaliana (Yang et al. 2015), Ficedula albicollis
(Smeds et al. 2016), Chlorocebus pygerythrus (Pfeifer 2017a),
and Aotus nancymaae (Thomas et al. 2018). In humans, ped-
igree studies produce lower estimates of the mutation rate
around 1.2 � 10�8 per generation (S�egurel et al. 2014) com-
pared with 2.3 � 10�8 per generation, a value that had been
calculated using a fossil-calibrated divergence time with chim-
panzees. As mentioned above, this lower value suggests esti-
mated times of demographic events would have to be
increased by a factor of 2. However, an increase in the gener-
ation time could compensate for this decrease by reducing the
average number of mutations occurring per year (Scally and
Durbin 2012; S�egurel et al. 2014; Amster and Sella 2016).

In this study, we estimate the mutation rate in wolves by
sequencing a pedigree that consists of four offspring, one
mother, and two fathers from Yellowstone National Park
(fig. 1). We identified DNMs by applying strict filters based
on genomic context and independently verifying a large num-
ber of candidate sites using Sanger sequencing (following the
general pipeline developed by Keightley et al. [2014]). Then, we
calculated the posterior probability of different mutation rates
based on the number of sites in the genome passing all filters
and estimated false negative rates (FNRs). We bound the mu-
tation rate between 2.6� 10�9 and 7.1� 10�9 per base pair
per generation and give a point estimate of 4.5� 10�9, which
is consistent with previous estimates based on ancient DNA.

Results

Sequencing Filtering and Identification of DNMs
We identified DNMs using whole-genome sequencing data
from a known pedigree of seven wolves (Schweizer et al. 2018;
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vonHoldt et al. 2008) (fig. 1). Interestingly, this pedigree family
structure reveals the first confirmed case of multiple paternity
of a single litter in gray wolves in the wild. In 2006, Wolf 569F
was a subordinate breeding female of the Druid Peak Pack
and produced a litter containing genotyped offspring of both
subordinate breeding male 302M (offspring 570M) and dom-
inant breeding male 480M (offspring 629M and 694F).

For each of four trios within the larger pedigree, we exam-
ined �1.04 Gb of sequence for DNMs after filtering for cov-
erage and sequencing and alignment quality. This number of
bases represents �43.5% of the 2.39 Gb of sequence in the
dog reference genome (fig. 2). The majority of sequence re-
moved by our filtering was due to sites containing repetitive
DNA (identified using the dog-specific repeat library) and due
to sites where three or more mapped reads contained gaps in
their alignment to the reference genome. The overall number
of sites remaining after filtering did not differ substantially
among trios (fig. 2).

For each trio, we considered a site a potential DNM if the
offspring had at least one alternative read from the reads
observed in the parents (table 1). For each potential DNM
site, we used genotype likelihoods output by GATK to calcu-
late a de novo score (DNp, eq. 1) that can be roughly inter-
preted as the probability of containing a DNM (Ramu et al.
2013). We then applied a cutoff of DNp> 0.3, which we chose
to balance the probability of false negatives with the number
of sites requiring manual examination of alignments and
Sanger verification. Offspring 570M had fewer sites with at
least one alternative read and apparent homozygous parents
than the other offspring. An approximately equal number of
these passed the DNp cutoff in 570M and approximately
twice as many passed the manual inspection when compared
with the other offspring (table 1). In total, 84 sites were cho-
sen for Sanger sequencing, 22 of which were chosen using a
preliminary version of the pipeline (see supplementary table
S1, Supplementary Material online, for more details). All true
DNMs in the preliminary set were also present in the final set.
We obtained Sanger sequencing results for 70 of the 83 sites,

and of these 70 sites, 27 (38.6%) were confirmed as DNMs,
and 43 (61.4%) were false positives. Of the confirmed DNMs,
12, 5, 7, and 3 were found in the offspring 570M, 629M, 645F,
and 694F, respectively (table 1). We compared the sequencing
and mapping quality of putative DNMs, using the
QualByDepth (QD) and MappingQualityRankSumTest
(MQRankSum) scores output by GATK, to the background
distribution from sites passing all filters and where at least one
alternative read was observed in each trio. We found that sites
with low quality scores (QD< 4) tended to be false positives,
as were those with low mapping qualities for reads with al-
ternative alleles (MQRankSum < �2, fig. 3a). Among poten-
tial DNMs with quality scores within the typical range, there
were still many false positives (fig. 3). Sites that failed Sanger
sequencing showed a similar distribution of quality scores as
the true DNMs.

A likely reason for the Sanger sequencing failure at 14 of
the potential DNM sites is high GC content within the region
to be amplified. Nine out of the 14 failures had a GC content
>60% within the 100 bp surrounding the site of interest
(fig. 3b). In contrast, none of the sites where sequencing
succeeded had a GC content this high. We therefore applied
an additional filter removing all sites with >60% GC content
within 100 bp. This filter removed another 5% of sites overall.
We present mutation rate estimates both with and without
this filter for high GC content.

The locations of the 27 DNMs validated using Sanger se-
quencing largely matched the genomic proportion of se-
quence in protein-coding, intronic, and intergenic regions
observed in the reference genome and in variants that were
transmitted from parents to offspring after filtering (supple-
mentary fig. S8, Supplementary Material online). The nucle-
otide substitutions of validated DNMs also matched those of
transmitted variants with the exception of an overabundance
of A to T transversions (supplementary fig. S9, Supplementary
Material online). Although the nucleotide context surround-
ing a site is known to have a large impact on local mutation
rates (Aggarwala and Voight 2016), the number of DNMs
discovered here is underpowered to detect such effects.
Additionally, we observed a statistically significant excess of
DNMs on chromosome 10 (P¼ 0.004, multinomial test) and
in subtelomeric regions, defined as 5 Mb from the ends of
assembled chromosomes (Webber and Ponting 2005)
(P¼ 0.012, binomial test), compared with segregating var-
iants that were transmitted from parents to offspring (sup-
plementary figs. S10 and S11 and supplementary table S1,
Supplementary Material online). Four of the five DNMs ob-
served on chromosome 10 were found in offspring 570M and
represent two pairs of DNMs with intermutation distances of
about 40 and 70 kb.

DNM Rate Estimation
In order to estimate the mutation rate, it was necessary to
estimate the FNR for each trio. This was done by creating
synthetic DNMs by randomizing genotype likelihoods at sites
passing all filters and calculating the proportion with DNp <
0.3. The trio containing individual 570M had a lower FNR
than the trios containing his half-siblings (fig. 4 and

302M
(2000)

480M
(2003)

~25X ~27X ~20X

~26X

569F
(2004)

570M
(2006)

629M
(2006)

645F
(2007)

694M
(2006)

~22X ~21X ~22X

12 5 7 3

FIG. 1. Whole-genome sequences from seven Yellowstone wolves of
known pedigree were analyzed to detect DNMs. For each male
(square) or female (circle) wolf, the top number indicates the
Yellowstone National Park wolf ID and the bottom number provides
the birth year. Below each individual is the average sequencing depth
of coverage (see supplementary fig. S1, Supplementary Material on-
line, for more detail on coverage per individual). The number of ver-
ified DNMs in each of the four offspring is provided at the top of the
box or square.
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supplementary fig. S2, Supplementary Material online). This
lower rate probably reflects higher genome coverage of this
individual and his father, 302M. In general, the fraction of
simulated DNMs with DNp < 0.3 does not decrease to 0 as
the sequencing depth of an offspring increases (supplemen-
tary fig. S11, Supplementary Material online). This finding
likely reflects lower coverage in some parents and missed
parental heterozygotes. Interestingly, the FNR actually
increases for higher sequencing depths, perhaps because
higher depths are enriched for mismapped reads that appear
as infrequent alternative alleles within the reads of offspring.
Infrequent alleles among reads are likely to generate lower
DNp scores because they can be modeled as sequencing
errors. However, because the fraction of sites with high-
enough read depths to elevate the FNR is low, such sites do
not contribute much to the overall FNR (fig. 4). Finally, filter-
ing for high GC content had almost no impact on the esti-
mated FNRs (supplementary fig. S3, Supplementary Material
online).

Given that some potential DNM sites failed to produce
Sanger sequencing data, we provide broad bounds on the
per-generation mutation rate by considering the cases where
none of the failed sites are DNMs and cases where all of them

are DNMs. We calculate the posterior distributions of the
mutation rate for both cases and provide the 5th percentile
of the distribution for the minimum number of mutations
and the 95th percentile of the distribution for the maximum
number of mutations. This procedure is done with and with-
out the additional filter for high GC content regions.

Estimated mutation rates with and without filtering high
GC content regions are largely concordant. The posterior
distributions of the mutation rate without filtering for GC
content bound the mutation rate within the range (2.6 �
10�9, 7.1 � 10�9) (fig. 5a). Filtering regions with high GC
content results in a narrower bound for the mutation rate
of (2.8 � 10�9, 6.2 � 10�9) (fig. 5b) by contracting the pos-
terior distributions for the minimum and maximum number
of mutations and also moving them closer together. This
second range is nested within the first, and the average pos-
terior mean mutation per generation per base pair rate across
GC filtering and minimum and maximum numbers of muta-
tions gives a point estimate of �4.5 � 10�9.

Discussion
Mutation rates are necessary to scale times in population
genetic models from units of mutations to units of genera-
tions. When combined with a generation time, model param-
eters can then be scaled in units of years. Given that the
divergence time between dog and wolf populations provides
an upper bound on the timing of dog domestication, it is
necessary to scale population genetic models of canine his-
tory using the correct mutation rate. Although previous esti-
mates of the mutation rate are available based on fossil-
calibrated mammal phylogenies (Kumar and Subramanian
2002) and on ancient DNA from wolves and dogs
(Skoglund et al. 2015; Frantz et al. 2016), we provide the first
direct estimate based on sequencing parents and offspring.
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FIG. 2. Number of sites remaining after the sequential application of filters. Filters were applied independently in each trio to remove regions of the
genome producing false positives. The final bars represent the number of sites ultimately examined for candidate DNMs. Filters were applied
successively, potentially obscuring the effects that each might have if applied individually to the raw set of sites. A detailed description of all filters is
given in the methods section of the main text.

Table 1. Examination of Potential DNMs.

YNP 570M YNP 629M YNP 645F YNP 694F

�1 alt. read 2,676 3,529 3,935 3,225
DNP > 0.3 112 109 106 108
Sanger sequenced 32 15 18 19
Failed 6 1 3 4
Confirmed DNM 12 5 7 3

NOTE.—The number of sites in each trio after all filtering steps, having a DNp score
>0.3, and chosen for Sanger sequencing. The final two rows give the number of
confirmed DNMs and the number that failed to sequence out of those for which
Sanger sequencing was attempted.
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We bound the mutation rate in wolves to 2.6–7.1� 10�9 per
base pair per generation with a point estimate of 4.5� 10�9.

The filters we used to remove regions of the genome
enriched for false positives could potentially bias our esti-
mated mutation rate. For instance, we removed regions of
the genome with a large number of variants. Areas with high
genetic diversity may be regions of the genome with elevated
mutation rates, or, alternatively, heterozygosity itself may
have an impact on the mutation rate (Yang et al. 2015).
However, because the fraction of the genome removed by
the high-variant filter was small (�4%), the elevation of the

mutation rate in these regions would have to be large to have
a meaningful bias. The mutation rate in highly variable regions
would need to be about 26 times greater than the mutation
rate in the rest of the genome in order to double it. A large
portion of filtered sites were removed due to occurrence in
repetitive regions (fig. 2). Given that studies of human muta-
tions have measured higher mutation rates in ancient repeats
than in nonrepetitive regions (Turner et al. 2017), we ac-
knowledge that the mutation rate calculated in the present
study may be an underestimate. In general, when our esti-
mated mutation rate is used in future population genetic
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studies, researchers should use similar filtering strategies to
avoid downstream biases in their analysis.

Crucially, our bounds on the mutation rate exclude the
value 1.0� 10�8 which had been used by studies prior to the
estimates from ancient DNA (Lindblad-Toh et al. 2005;
Freedman et al. 2014; Skoglund et al. 2015). Our point esti-
mate aligns closely with rates estimated using ancient DNA.
Skoglund et al. (2015) and Frantz et al. (2016) estimated rates
of 4.0� 10�9 and 3.0–4.5� 10�9 per generation, respectively.
Two assumptions of the methodology used in these studies
can bias mutation rate estimates. First, radiocarbon dates of
ancient samples will be underestimates of divergence times
between the ancestral populations of ancient and modern
individuals and will bias mutation rates upward. Second, as-
suming a lack of postdivergence gene flow will bias mutation
rates downward. Given the agreement of our estimate with
those from ancient DNA studies, it may be that these biases
are small or that their opposing directions tend to cancel out.
However, we are unable to rule out a mutation rate �50%
lower (2.6 � 10�9) or higher (7.1 � 10�9) than 4.5 � 10�9.
We urge caution in accepting a simple point estimate on the
grounds that it coincides with estimates based on ancient
DNA. The method used by Skoglund et al. (2015) and Frantz
et al. (2016) does not account for uncertainty in the inferred

demographic history that would propagate into mutation
rate estimates, and relies on dated remains for the divergence
time between ancestral populations. More work is needed to
characterize the bias and variance of mutation rate estimates
generated with that method.

To get a sense for the uncertainty remaining in population
genetic models of canid demographic history, we rescaled the
estimated times of several important events taken from pre-
viously published models (table 2). Because previous studies
used point estimates of the mutation rate to calibrate their
analyses, our recalibration has the effect of increasing uncer-
tainty in the timing of specific events. For instance, Frantz
et al. (2016) estimated that the divergence between East
Asian and Western Eurasian dogs occurred around 6,400–
14,000 years ago. They used the fact that this postdates the
oldest known dog remains in Europe around 15,000 years ago
(Pionnier-Capitan et al. 2011) to argue that domestication
occurred independently in Europe and Asia and that
Western Eurasian dogs were largely replaced by those with
East Asian origin. If the true mutation rate is on the lower end
of our interval, the upper bound on the divergence time
estimated by Frantz et al. (2016) is pushed back to �17,000
years ago. The divergence between East Asian and Western
Eurasian dogs could therefore have occurred before the first
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FIG. 4. Trio false negative rates (FNRs) by sequencing depth in the offspring. FNRs were estimated for each possible sequencing depth in each
offspring, then were multiplied by the fraction of sites in the offspring with that depth of coverage. This provides the contribution from each
sequencing depth to the overall FNR at sites passing all filters. The overall FNRs are the sum of these points.
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appearance of dog remains in the European archeological
record. If so, this would be consistent with a single domesti-
cation event.

Our recalibration suggests a wide range of possible
dates for the divergence of the ancestral populations
of dogs and Eurasian wolves. Recalibrated point esti-
mates from four studies range from 25,000 to 33,000
years ago. However, the interval reported by Frantz
et al. (2016) based on cross-coalescent rates calculated
using multiple sequentially Markovian coalescent
(MSMC) is recalibrated to 11,000–74,000 years ago,
whereas intervals based on G-PhoCS models range
from 16,000 to 64,000 years ago (table 2). These time
intervals span the range of the first appearance of dogs
in the fossil record to around the time when anatomi-
cally modern humans left Africa. Thus, although the
most likely period for the divergence of dog and wolf
ancestors is between 19,000 and 33,000 years ago, we
cannot yet fully rule out earlier or later divergence dates,
and a greater timespan for dog domestication is there-
fore also possible.

The use of accurate generation times is of equal impor-
tance as accurate mutation rates during calibration of popu-
lation genetic models. On phylogenetic time scales, changes
in the generation time and other life-history traits are known
to affect substitution rates (Wu and Li 1985; Sayres et al. 2011;

Moorjani et al. 2016). It has been suggested that the com-
monly used generation time of 3 years in canid genetics might
be too low since generation times between 3 and 5 years have
been estimated in contemporary populations (vonHoldt et al.
2008; Stahler et al. 2013; Mech et al. 2016; Mech and Barber-
Meyer 2017). Changes in the generation time associated with
dog domestication would also lead to changes in the per-year
mutation rate and therefore bias estimates of divergence
times when scaling genealogies by our estimated mutation
rate. We note that, if a generation time other than 3 years is
desired, the generation times will linearly scale all the esti-
mates given in table 2.

One surprising result of the work presented here, and pos-
sible reason for caution, is the �2-fold greater number of
mutations observed in 570M relative to the offspring of
480M. 570M did not have a greater amount of sequence
passing filters than his half-siblings (fig. 2). Additionally, al-
though the estimated FNR was lower for 570M, we would
only expect this to increase the number of mutations found
by about 10%. Conceivably, the overall FNR in the other off-
spring may have been underestimated, but the rate would
have to be �50% to explain the observed number of
mutations.

Another possible explanation for the greater number of
DNMs observed in 570M is due to this wolf having an older
father (302M). More mutations accumulate with paternal age
in primates (Kong et al. 2012; Venn et al. 2014; Rahbari et al.
2016; Thomas et al. 2018). The paternal age at birth of 570M
was 6 years, and the paternal ages of 629M, 645F, and 694F
were 3, 4, and 3 years, respectively (supplementary fig. S4,
Supplementary Material online). The 2-fold greater number
of mutations observed in 570M is therefore consistent with a
paternal age effect, as is the higher mutation count in 645F
relative to her siblings (table 1). However, we caution against
overinterpretation of these observations given our extremely
limited sample size. In humans �40 years of the father’s life
are needed to double the mutation rate (Kong et al. 2012;
Rahbari et al. 2016), although the rate of increase observed in
chimpanzees and owl monkeys is faster (Venn et al. 2014;
Thomas et al. 2018). The paternal age effect thus remains a
potential explanation for the differences in DNMs among the
wolves studied here. More sequencing on wolves with greater
variation in paternal age would be necessary to show whether
age has a substantial effect. Our pedigree contains even less
variation in maternal age at birth: 570M, 629M, and 694M
were from the same litter when 569F was 2 years old, and
645F was born the next year. Two and three are on the low
end for observed maternal ages in North American wolves
(vonHoldt et al. 2008; Stahler et al. 2013; Mech et al. 2016;
Mech and Barber-Meyer 2017). If there is a strong maternal
age effect in wolves, this could bias our mutation rate esti-
mate downward.

We also observe statistically significant clustering of DNMs
in nucleotide substitutions, chromosomes, and subtelomeric
versus interstitial DNA when compared with the genomic
background of observable sites and to variant sites transmit-
ted from parents to offspring (supplementary figs. S9–S11,
Supplementary Material online). Although we lack the
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sample size to investigate these patterns in greater detail, we
note that certain processes generate spatially clustered muta-
tions (Chan and Gordenin 2015) and that mutation rate is
positively correlated with recombination rate in humans
(Kessler et al. 2019), whereas recombination rate is positively
negatively correlated with distance to telomeres in dogs
(Campbell et al. 2016).

Variation in the mutation rate may exist among individu-
als, as has been observed among human trios (Conrad et al.
2011; Kessler et al. 2019). Consequently, the mutation rate
estimated here may not accurately represent gray wolves in
general given that only three parents from one population
were sampled. Finally, some number of the excess DNMs
identified in 570M may be somatic mutations. Without
assessing if any of these mutations were transmitted to a
future generation, we cannot be sure that the mutations
identified here occurred in the parents’ germ line.
Multigenerational sequencing approaches, such as has been
implemented in African green monkeys (Pfeifer 2017a),
would resolve this issue and should be preferred when
feasible.

The evolution of mutation rates is another arena in which
pedigree-based estimates of mutation rates such as ours are
useful. In particular, the drift-barrier hypothesis for the evo-
lution of mutation rates predicts a negative correlation be-
tween mutation rate and effective population size (Sung et al.
2012; Lynch et al. 2016). Such a negative relationship is ob-
served within the eubacteria, unicellular eukaryotes, and mul-
ticellular eukaryotes for which mutation rates have been
measured (Lynch et al. 2016; Smeds et al. 2016; Pfeifer
2017a). Our mutation rate estimate therefore also represents
a step toward understanding the evolution of mutation rates,

especially in wild species who have close common ancestry
with domestic forms.

Aside from mice (Uchimura et al. 2015), ours is also the
only directly estimated mutation rate in a nonprimate mam-
mal. In nonmodel species that cannot be readily bred in cap-
tivity, or that have long generation times, pedigree
sequencing will remain the only way to directly estimate mu-
tation rates. An unfortunate step in this process, as it cur-
rently exists, is the need for a manual examination of
alignments at putative DNMs and resequencing. Filtering is
necessary to limit the number of alignment plots that must
be examined. The future development of computational
methods that eliminate the need for manual inspection
would make it much easier to estimate mutation rates
from a large number of trios, especially in nonmodel organ-
isms lacking highly curated repeat libraries.

Materials and Methods

Sampling Strategy and Whole-Genome Sequencing
We sequenced whole genomes for a known pedigree of seven
wolves (vonHoldt et al. 2008; Schweizer et al. 2018) containing
one mother and her four offspring from two different fathers
(fig. 1). Samples from 569F and 570M were sequenced as part
of Fan et al. (2016; NCBI SRP044399) using the HiSeq 2000
platform and are described in that study as the “Yellowstone
trio.” The prior sequencing of 302M suffered from 50% PCR
duplicates, so we sequenced an additional four lanes of the
Illumina HiSeq 2500 platform using a different library prepa-
ration, as described below. The other four individuals were
sequenced on one lane each using the Illumina HiSeq 4000
platform. All libraries were sequenced with a 100-bp paired-
end strategy. Libraries for 302M and the four new individuals

Table 2. Recalibration of Estimated Divergence Times in Canid History.

Divergence Event Published Dates (ka) Our Recalibration (ka)

Western Eurasian dogs j East Asian dogs LF: 6 (6–11) 5 (4–17)
Mexican wolves j Yellowstone wolves BvH: 14 (12–18) 12 (8–28)

ZF: 14 (10–17) 12 (7–26)
Basenji j other dogs AF: 32 (29–34) 28 (19–52)

ZF: 21 (19–23) 19 (12–35)
European wolves j East Asian wolves AF: 33 (29–38) 29 (19–58)

BvH: 27 (24–30) 24 (16–46)
Dogs j wolves AF: 37 (35–40) 33 (23–62)

BvH: 28 (24–30) 25 (16–46)
ZF: 29 (24–30) 26 (16–46)
LF: 34 (17–48) 30 (11–74)

North American wolves j Eurasian wolves BvH: 31 (28–32) 28 (18–49)
ZF: 31 (29–33) 28 (19–51)

Coyotes j wolves BvH: 165 (158–171) 146 (102–264)
Golden Jackals j Coyote/Wolf ancestors AF: 995 (797–1,038) 884 (514–1,596)

NOTE.—Estimated divergence times were taken from four studies that used coalescent models to reconstruct canid population history. Times from different papers have been
denoted as follows: AF (Freedman et al. 2014), BvH (vonHoldt et al. 2016), ZF (Fan et al. 2016), and LF (Frantz et al. 2016). The AF, BvH, and ZF studies used the Generalized
Phylogenetic Coalescent Sampler method (G-PhoCS) (Gronau et al. 2011). Point estimates represent posterior means and intervals are 95% credible intervals. The LF study used
relative cross-coalescent rates calculated using MSMC (Schiffels and Durbin 2014) to estimate divergence times. Point estimates are the times when between population
coalescent rates exceeded 50% of the within-population coalescent rates, and intervals give the corresponding times for 25% and 50% of the within-population coalescent rate.
Published dates from Freedman et al. (2014) were scaled to a mutation rate of 4.0� 10�9 to be comparable with other studies. We recalibrated divergence times by rescaling
point estimates using our estimated mutation rate of 4.5� 10�9. Lower bounds on divergence times were obtained by rescaling the lower bound on estimated rates using our
upper bound on the mutation rate, 6.2� 10�9, and upper bounds on divergence times were obtained by rescaling the upper bound on estimated rates using our lower bound
on the mutation rate, 2.8 � 10�9.
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(480M, 629F, 645F, and 694M) were prepared as part of a
previous study (Schweizer et al. 2018). Briefly, genomic DNA
was sheared to �300–450 bp using a Biorupter NGS
Sonication System, then libraries were prepared using a
“with-bead” protocol (Faircloth 2015) and unique 6-bp in-
dexes (Faircloth and Glenn 2012). We note that, although
Schweizer et al. (2018) sequenced targeted enrichment librar-
ies, for the present study we sequenced the original precap-
ture libraries to obtain whole-genome data.

Calculation of Genotype Likelihoods
To identify DNMs with a low FNR, we employed a strategy of
liberally calling potential DNMs and then detecting false pos-
itives for exclusion via independent sequencing. Sequencing
data from all seven individuals were passed through a series of
processing and filtering steps to generate a set of putative
DNMs that were subsequently tested by Sanger sequencing
(supplementary fig. S1, Supplementary Material online). We
aligned sequencing reads to the dog reference genome ver-
sion CanFam3.1 using BWA 0.7.12 (Li and Durbin 2009).
Although a wolf reference genome exists, it is not as complete
as the dog genome and using this genome does not substan-
tially impact analyses when compared with CanFam3.1
(Gopalakrishnan et al. 2017). We used GATK 3.5.0 (DePristo
et al. 2011) to realign alignments around indels and remove
duplicates. To generate an initial trial set of variants for reca-
librating base quality scores, we used GATK’s
UnifiedGenotyper to call variant sites, and kept SNP sites if
they passed the recommended hard filtering thresholds (QD
> 2, FS < 60, MQ > 40, MQRankSum > �12.5, and
ReadPosRankSum> 15). We filtered sites in repetitive regions
from this set using RepeatMasker 4.0.6 and a dog-specific
repeat library (Smit et al. 2013–2015), then treated the
remaining set of variants as “known” to recalibrate base qual-
ity scores using GATK. After recalibrating base quality scores,
we used the GATK UnifiedGenotyper algorithm to calculate
genotype likelihoods at all sites with a minimum base quality
score of 15 and the “emit all sites” options. Genotype like-
lihoods calculated in this manner are independent for each
individual. We retained all sites regardless of their variant
quality scores in order to avoid bias against variable sites
and therefore potential DNMs.

Site Filters
We chose to apply site-level filters per trio so as to maximize
the likelihood of observing true DNMs in each trio. We se-
lected our filters to remove genomic regions likely to be
enriched for false positives, to retain sites with sufficient cov-
erage and sequencing quality. As with the variant set used in
recalibration, we first filtered sites in repetitive regions using
RepeatMasker (Smit et al. 2013–2015). We then removed
sites marked by GATK as missing, either as a result of a se-
quencing depth of zero or if more than 5% of reads spanning
the locus contain deletions. We also filtered sites with <10-
fold or >100-fold coverage in any individual because low
coverage sites have low genotype quality and high coverage
sites may have many mismapped reads due to copy number
variation (Keightley et al. 2014; Pfeifer 2017b). In order to only

examine sites where the parents were confidently homozy-
gous for the same allele, we removed sites with one or more
alternative alleles observed in the parents’ mapped reads. We
applied two additional filters to account for base quality and
mismapped reads. First, we removed sites with four or more
variant sites within a 200-base window on either side in order
to capture the approximate range for which primers were
designed, and, second, we removed sites where three or more
of the reads mapping to that site contained gaps in their
alignments. We consider potential biases introduced by these
filters on the final estimates in the Discussion section.

Identification of DNMs
The above procedure yields a set of sites for each trio in the
family where the parental individuals appear homozygous for
the same allele. Although the vast majority of these sites are
homozygous in the offspring as well, a small number contain
DNMs. To find these mutations, we begin with the list of all
sites where one or more alternative alleles are observed in the
offspring. Other studies have found that, among sites with at
least one alternative read in the offspring and no alternative
read in the parents, the vast majority are sequencing errors,
missed heterozygous genotypes in the parents, or mismapped
from elsewhere in the genome (Keightley et al. 2014, 2015;
Smeds et al. 2016; Pfeifer 2017b). To distinguish sites with true
DNMs from those with sequencing errors or missed parental
heterozygotes, we calculated a de novo score (DNp) that can
be roughly interpreted as the probability that each site con-
tains DNM. This calculation was made by considering the
posterior probability of each genotype combination between
parents and offspring (Ramu et al. 2013) and computing the
probability of configurations that require a DNM event:

PðGC;GM;GFjDÞ / PðDMjGMÞPðDFjGFÞPðDCjGCÞ

fgenotype likelihoods of observed individuals

� PðGCjGM;GFÞÞ|{z}
transmission probability

PðGM;GFjhÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
parental heterozygosity

:

(1)

The term for transmitting different genotypes to the off-
spring contains an assumed mutation rate and the term for
the parental heterozygosity contains a parameter for the het-
erozygosity in the population (Ramu et al. 2013). The purpose
of this calculation is to weigh evidence from genotype like-
lihoods, which take into account both sequencing depth and
quality, with our prior belief about how often mutations oc-
cur and how likely the parents are to be homozygous at a
given site. Given the fact that base qualities may be a poor
reflection of the actual probability of sequencing errors, we do
not interpret the de novo scores calculated using this formula
as true probabilities but rather as scores with which to rank
potential DNMs. We first calculated DNp using a mutation
rate of 4 � 10�9 per generation, as estimated by Skoglund
et al. (2015), and a heterozygosity of 0.0015 as values close to
this have been observed in many wolf populations (Freedman
et al. 2014; Fan et al. 2016; Schweizer et al. 2018). These real-
istic parameters yielded very few candidate DNMs and a large
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number of clear false positives, potentially because base qual-
ity score recalibration was overly conservative. As part of our
strategy to minimize the FNR by calling DNMs more liberally,
we calculated DNp with the mutation rate prior set to 1.0�
10�6 per generation. The heterozygosity was set to 0.008 to
try and avoid missed parental heterozygotes. Only the geno-
type combination where the offspring is heterozygous and
both parents are homozygous for the reference allele was
considered compatible with a DNM. Sites with a DNp >
0.3 were examined further.

Among sites passing all filters and having a DNp > 0.3,
many contained, on visual inspection, obvious sequenc-
ing errors or had a high proportion of mismapped reads.
This is a problem faced by many studies that attempt to
estimate the mutation rate using pedigree sequencing
(Keightley et al. 2014, 2015; Smeds et al. 2016; Pfeifer
2017a). Following the example set by Keightley et al.
(2014), we removed these sites from further analysis by
examining read alignments manually using IGV 2.3.79
(Robinson et al. 2011; Thorvaldsd�ottir et al. 2013) and
the igv_plotter library (Weisburd 2017). IGV plots often
clearly showed, in the form of high numbers of mis-
matches and gaps in the alignment, whether a site was
in a region where reads tended to mismap (see examples
in supplementary figs. S5–S7, Supplementary Material on-
line). In addition to visualizing alignments, we used the
QD and MQRankSum quality metrics output by GATK of
potential DNMs to compare them to other variants in the
sample. QD reflects the depth-normalized sequencing
quality and MQRankSum reflects how well alternative
versus reference reads map. If a putative DNM had QD
and MQRankSum scores within the typical range of other
variants in the sample and in addition having clean align-
ments when visually inspected, that site was selected for
validation by Sanger sequencing. Some sites outside the
typical background range of QD and MQRankSum were
sequenced as well to check that our approach was not
generating false negatives.

As stated above, we used relaxed parameters to choose
sites for validation in order to minimize the number of false
negatives. To confirm our interpretation of alignment plots,
we also Sanger sequenced some sites that, from inspection of
alignment plots, appeared to be clear examples of mismap-
ping or sequencing errors. The pipeline described above was
implemented using Snakemake (Köster and Rahmann 2012)
and is available on github (https://github.com/emkoch/wolf-
dnm-pipeline; last accessed July 8, 2019).

Mutation Rate Calculation
In order to calculate an estimate of the mutation rate given a
set of verified DNMs, it is necessary to know how many
mutations could have potentially been observed from each
trio. We calculated this number by taking the number of sites
in each trio that passed all filters and multiplied it by one
minus an estimated FNR for that trio (see below). For com-
putational reasons, it was impractical to apply the filter for
gaps in read alignment to the whole genome, so we estimated

the proportion of sites removed by applying the filter to a
random sample of sites.

The FNR for each trio is the probability that a site con-
taining a true DNM and passing all filters would have a DNp<
0.3. To approximate this probability, we used an assumption
that, conditional on a true DNM having a DNP> 0.3, it would
be chosen for validation by independent sequencing after
having its alignment examined, and that sequencing would
indicate a DNM event. That is, we assume that no true DNM
which passed the DNP cutoff would have been discarded
because its alignment resembled a sequencing or alignment
error. Under this assumption, we are able to calculate the FNR
by generating a set of simulated DNMs from the genotype
likelihoods calculated in each trio, calculating the DNp for
each simulated DNM, and measuring the proportion which
fell below 0.3. A simulated DNM was created by first sampling
genotype likelihoods from a site where both the offspring and
at least one of the parents were heterozygous. These likeli-
hoods were then paired with genotype likelihoods for the
parents chosen at random from the set of sites where no
alternative alleles were observed. DNp values were calculated
using equation (1) just as for the real data. This approach also
assumes that the joint coverage distribution at real DNMs
would be the same as that for the randomized, simulated set.

Using the number of sites passing all filters and an estimate
of the FNR, we calculated a posterior distribution on the per-
generation mutation rate using

P
i

Xi � Poisson
�X

i

2Lið1� biÞl
�

pðlÞ /
ffiffiffi
1

l

r
;

where Xi is the total number of DNM we observed in trio i, Li

is the number of sites passing all filters in trio i, and bi is the
estimated FNR for trio i. l denotes the mutation rate per
generation. We used a prior on l proportional to the inverse
square root. This is the Jeffrey’s prior (an uninformative prior
that is invariant to reparameterization) for a Poisson rate
parameter.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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