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Spatiotemporal Airy Ince–Gaussian 
wave packets in strongly nonlocal 
nonlinear media
Xi Peng, Jingli Zhuang, Yulian Peng, DongDong Li, Liping Zhang, Xingyu Chen, Fang Zhao & 
Dongmei Deng

The self-accelerating Airy Ince–Gaussian (AiIG) and Airy helical Ince–Gaussian (AihIG) wave packets 
in strongly nonlocal nonlinear media (SNNM) are obtained by solving the strongly nonlocal nonlinear 
Schrödinger equation. For the first time, the propagation properties of three dimensional localized AiIG 
and AihIG breathers and solitons in the SNNM are demonstrated, these spatiotemporal wave packets 
maintain the self-accelerating and approximately non-dispersion properties in temporal dimension, 
periodically oscillating (breather state) or steady (soliton state) in spatial dimension. In particular, 
their numerical experiments of spatial intensity distribution, numerical simulations of spatiotemporal 
distribution, as well as the transverse energy flow and the angular momentum in SNNM are presented. 
Typical examples of the obtained solutions are based on the ratio between the input power and the 
critical power, the ellipticity and the strong nonlocality parameter. The comparisons of analytical 
solutions with numerical simulations and numerical experiments of the AiIG and AihIG optical solitons 
show that the numerical results agree well with the analytical solutions in the case of strong nonlocality.

Ince-Gaussian (IG) beams, which constitute the third complete family of transverse eigenmodes of stable resona-
tors, have attracted extensive attention from research communities all over the world since it was introduced by 
Bandres and Gutiérrez-Vega1,2. The transverse structure of IG modes is described by the Ince polynomials, and 
the limiting cases of IG modes are Laguerre Gaussian (LG) modes and Hermite Gaussian (HG) modes when the 
ellipticity parameter of IG modes tends to zero or infinity, respectively. Meanwhile, Schwarz et al. have generated 
single high order IG modes with very high quality by slightly breaking the symmetry of the cavity of a diode 
pumped Nd:YVO4 laser and its pump beam configuration3,4.

Soon afterwards, Deng et al. have discovered the IG solitons in strongly nonlocal nonlinear media (SNNM)5–7. 
Recent experimental results demonstrate that nematic liquid crystals8 and lead glass9 are strongly nonlocal non-
linear media. Propagation properties of Airy beams in the SNNM has been studied by Zhou et al.10. Then, the 
anomalous interaction of Airy beams in nonlocal nonlinear media have been reported by Shen et al.11, in which 
nonlocal nonlinearity also affects the interaction of out-of-phase bright solitons and dark solitons. In addition, 
owing to the SNNM, Zhu et al. have obtained that the Airy vortex beams follow a periodic trajectory when prop-
agating through a SNNM12.

Over the past decades, tremendous efforts have been made by researchers to generate the three-dimensional 
(3D) localized optical solitons13–21, which also called spatiotemporal light bullets, are localized in both space and 
time. Among which, Airy wave packets were widely reported in free space16–18 and quadratic index medium20,21 
due to the self-accelerating22–26, self healing27 and no diffraction28 features of Airy distribution. It is worth men-
tioning some pioneer works in Airy related wave packets. The spatiotemporal Airy-Bessel light bullets by com-
bining an Airy pulse with a two-dimensional Bessel beam have been studied by Chong et al.14. At the same time, 
Abdollahpour et al. have reported the spatiotemporal Airy3 light bullets by combining an Airy pulse in time with a 
spatial Airy beam15. Recent interest in the study of Airy related wave packets have undergone rapid development. 
For instance, in free space, Zhong et al. have reported the 3D localized Airy-Laguerre-Gaussian wave packets16, 
Deng et al. have studied the 3D localized Airy-Hermite-Gaussian and Airy-Helical-Hermite-Gaussian wave pack-
ets17, and Peng et al. have obtained the 3D localized Airy-Ince-Gaussian and Airy-Helical-Ince-Gaussian wave 
packets18. Then, the chirped Airy Gaussian vortex wave packets in quadratic index medium20 and Airy Gaussian 
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and Airy Gaussian vortex light bullets in harmonic potential21 have been reported. However, what will happen 
when the 3D localized Airy Ince-Gaussian (AiIG) wave packets propagate in the SNNM? It will be significant to 
investigate the AiIG and Airy helical Ince-Gaussian (AihIG) optical breathers and solitons and their propagation 
dynamics in the SNNM.

Methods
In the paraxial approximation and in the nonlocal nonlinear media, the propagation of the wave packet obeys the 
(1 + 3)D nonlocal nonlinear Schrödinger equation5–7,29,30
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where U(r, t, z) = U(x, y, t, z) is a paraxial wave packet, r = x y2 2+ , x and y are the transverse coordinates, z is 
the longitudinal coordinate (the propagation distance in nonlocal nonlinear materials), k is the wave number in 
the media without nonlinearity, k0′′ is the dispersion coefficient of the media evaluated at ω0. Δn = n2∫N(r − 
r′)|U(r′, z)|2d2r′ is the spatial nonlinear perturbation of the refraction index, n2 is the nonlinear index coefficient, 
r and r′ are two-dimensional transverse coordinates, N is the normalized symmetrical real spatial response func-
tion of the media. Without loss of generality, we assume the material response to be the Gaussian function 

π= −N r r w w( ) exp[ /(2 )]/(2 )m m
2 2 2 , where wm is the characteristic length of the material response function.

Underlying the dimensionless coordinates (X, Y, T, Z) = (x/w0, y/w0, t/t0, z/L), w0 is the spatial scaling param-
eter, t0 is the temporal scaling parameter, =L kw0

2 is the diffraction length. In the case of the strong nonlocality29, 
Eq. (1) can be simplified into the normalized dimensionless Snyder–Mitchell model
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where P0 is the input power at Z = 0, Pc = n0/(γn2L2) is the critical power for the soliton propagation, γ is the 
material parameter relating to N. Eq. (2) is an equation in the case of the nonlinearity limit with the degrees of 
nonlocality approaching to infinity, the field can change the refractive index of the medium while propagating, 
which is creating a structure similar to a graded-index fiber. Schrödinger equation in ref.20. is from the quadratic 
index medium, while Eq. (2) is from strongly nonlocal nonlinear medium condition, they are two different ques-
tions. The solution of Eq. (2) can be obtained from the method of separation of variables as
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in the transverse plane perpendicular to Z, the elliptic coordinates1–5 are defined as X = f(Z)coshξcosJ, Y = f(Z)sin-
hξsinJ, Z = Z, where 0⩾ξ  and J0 2π<⩽  denote the radial and angular elliptic variables, respectively. 
Semifocal separation f(Z) = f0w(Z)/w0, f0 denotes semifocal separation at waist plane Z = 0. ξ and J satisfy conti-
nuity in the whole space. φG is the Gaussian solution5,18
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where D is a normalization constant.
By substituting U(X, Y, T, Z) into Eq. (2), we have the following equations
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where a and p are separation constants and ε = f w2 /0
2

0
2 is the ellipticity parameter of the IG wave packet.

In Eq. (7), we deal with finite energy Airy wave packet for the physical reality, which can be expressed as A(T, 
0) = Ai(T)exp(σT), where Ai(T) is the Airy function22–24, ⩽σ σ<(0 1) is the decay factor. By using the 
Fourier-transform method, one can obtain the solution of Eq. (7) as
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The solution of Eq. (8) can be given as

= − .M Z p P P Z P P( ) arctan[ / tan( / )] (12)c c0 0

Equation (10) is the Ince equation1–7, which is a special case of the Hill equation. If iξ = J, Eq. (9) can be trans-
formed into Eq. (10), and vice versa. The solutions of Eq. (10) are known as the even and odd Ince polynomials of 
order p and degree m, usually expressed as Cp

m and Sp
m1–3, where m p0 ⩽ ⩽  for an even function, m p1 ⩽ ⩽  

for an odd function, and indices (p, m) have the same parity. Then, the spatial even IG, odd IG and helical IG 
(hIG) distribution can be expressed as
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The even AiIG, odd AiIG and AihIG wave packets in SNNM can be expressed as
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Figure 1.  (a1) The analytical intensity profiles [I = |A(T, Z)|2] of finite-energy Airy pulses at various 
propagation distances Z, (a2) the numerical intensity profiles of Eq. (7) by using the split step fourier transform.
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Figure 2.  (a1–d1) The analytical propagation of the spatial IG wave packets IGo(X, Y = X, Z) with ε = 3, 
p = m = 4. (a1) P0/Pc = 10−3, (b1) P0/Pc = 0.5, (c1) P0/Pc = 1, and (d1) P0/Pc = 1.5. (a2–d2) The related 
numerical simulations [spatial part of Eq. (2)].

Figure 3.  Snapshots describing the initial spatiotemporal even (a1–c1), odd (a2–c2), and helical (a3–c3) AiIG 
wave packets AiIG(X, Y, T, Z) with (a1–a3) ε = 10−5, (b1–b3) ε = 3, and (c1–c3) ε = 105. P0 = Pc, p = m = 4, 
Z = 0.
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Figure 4.  (a1–c1) Snapshots describing the analytical solution of AihIG wave packets, the parameters are the 
same as those in Fig. 2(a3–c3) except Z = 2. Snapshots describing the numerical simulation [Eq. (2)] by using 
the split step Fourier transform with (a2–c2) α = 0.01, (a3–c3) α = 0.5, at Z = 2.
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Results and Discussion
Having found the analytical solutions of Eqs (16–18) in SNNM, we concentrate on the comparison of analytical 
solutions with numerical simulations and numerical experiments of the spatiotemporal AiIG and AihIG wave 
packets in the following. We discuss various examples of the localized wave packets for different parameters. The 
evolution properties of the AiIG and AihIG wave packets can be easily manipulated and modulated through 
adjusting the ratio between the input power and the critical power, the ellipticity and the strong nonlocality 
parameter.

By comparing Fig. 1(a1) with Fig. 1(a2), there is very good qualitative agreement between analytical result and 
numerical simulation of the temporal Airy wave packets. Propagation of the spatial odd IG wave packets is shown 
in Fig. 2(a1–d1), for different choices of the parameter P0/Pc. Without doubt, the wave is free to broaden when 
P0 approaches to zero. IG breathers initially broaden because wave packet diffraction initially overcomes wave 
packet induced refraction as P0 = 0.5Pc in Fig. 2(b1). The comparison shows that the IG solitons propagate stably 
with the input power equaling the critical power in Fig. 2(c1), which means that diffraction is exactly balanced 
by nonlinearity. And the IG breathers initially narrow as P0 = 1.5Pc in Fig. 2(d1). The numerical simulation of the 
spatial propagation distributions is shown in Fig. 2(a2–d2), which agrees well with the related analytical result. 
The spatiotemporal AiIG solitons can be realised theoretically when the input power equals the critical power, 
with steady state in spatial and almost non-dispersion in temporal dimensions. On the other hand, we can achieve 
3D localized AiIG breathers periodically oscillating when the balance between diffraction and nonlinearity is 
broken.

As revealed, the initial spatiotemporal AiIG and AihIG soliton patterns vary with the ellipticity ε are shown 
in Fig. 3. Under the condition of the input power equaling the critical power, we obtain an approach to generate 
approximately steady 3D AihIG solitons, which can maintain the shape after propagating many Rayleigh lengths 
by compare Fig. 4(a1–c1) with Fig. 3(a3–c3). Actually, the peaks along the T direction go ahead after propagation 
due to the self-accelerating character of Airy wave packets, which can also be found by comparing different prop-
agation distances in Fig. 1(a1) and (a2). In addition, we utilize split step Fourier transform to show the numerical 
simulation, α = w0/wm denotes the degree of the material nonlocality. The less α is, the stronger the nonlocality is. 

Figure 5.  (a1–a3) Analytical intensity distributions of the hIG wave packet evolution. (b1–b3) Phase 
distributions. (c1–c3) Interference intensity of the initial generated wave packet and a plane wave, the gray 
insets display the related computer-generated hologram. (d1–d3) Numerical experimentally [spatial part of Eq. 
(2)] recorded the transverse intensity distributions at Z = 2, with (a1–d1) ε = 10−5, (a2–d2) ε = 3, and (a3–d3) 
ε = 105. P0 = Pc.
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The numerical results (Fig. 4(a2–c2)) agree well with the analytical solutions (Fig. 4(a1–c1)) in the case of strong 
nonlocality with α = 0.01. However, at the same propagation distance, the numerical simulation results present 
unstable properties when the degree of nonlocality becomes weaker (α = 0.5), as shown in Fig. 4(a3–c3).

Likewise, one can easily obtain the self-accelerating AiIG breathers periodically oscillating when the balance 
between diffraction and nonlinearity is broken. The phenomenon shows the spatial periodically oscillating 
(breather state) or steady (soliton state), temporal self-accelerating and approximately non-dispersion properties 
of AiIG breathers and solitons reported in SNNM are different from other spatiotemporal Airy related wave pack-
ets diffracting in spatial dimension while propagating in free space17,18. Without loss of generality, the relationship 
of AiIG, Airy Laguerre Gaussian (AiLG), and Airy Hermite Gaussian (AiHG) breathers and solitons will be ana-
lysed as follow. When ε → 0, the transition from IGpm to LGnl occurs. Simultaneously, the indices of both modes 
are related as: l = m and n = (p − m)/2 in the limit. When ε → ∞, the transition from IGpm to HGl lx y

 occurs. In 
the limit, the indices are related as: for even AiIG breathers and solitons lx = m and ly = p − m, on the contrary, 
for odd AiIG breathers and solitons lx = m − 1 and ly = p − m + 1.

We formulate the spatial hIG wave packet analytically in SNNM and present related numerical experiment 
results of the hIG wave packet generation, corroborating the properties we describe. The intensity patterns of the 
initial input of hIG beams are shown in Fig. 5(a1–a3). The phase patterns of the initial input of hIG beams are 
shown in Fig. 5(b1–b3), where the locations of the optical vortexes are obtained. For numerical experimental 
generation, we launch an initial beam [see Fig. 5(a1–a3)] to reconstruct the computer-generated holograms [see 
gray insets display of Fig. 5(c1–c3)] of the desired beam profiles18. The holograms are obtained by computing the 
interference patterns between the complex amplitude profile of the hIG beams at the Z = 0 plane [see Fig. 5(a1–
a3)] and a plane wave [see Fig. 5(c1–c3)]. In the frequency domain, the information of the first order interference 
is chosen to produce the new wave packets. The transverse intensity patterns taken at Z = 2 [see Fig. 5(d1–d3)] 

Figure 6.  Numerical simulations [spatial part of Eq. (2)] of the intensity distributions of hIG wave packets in 
SNNM with initial perturbation. (a1–a3) ρ = 0 (soliton state), (b1–b3) ρ = 0.01, and (c1–c3) ρ = 0.05. (a1–c1) 
ε = 10−5, (a2–c2) ε = 3, and (a3–c3) ε = 105. P0 = Pc, Z = 3.
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indicate clearly that the hIG beams maintain the same along the propagation. By comparing Fig. 5(a1–a3) (ana-
lytical results) and Fig. 5(d1–d3) (numerical experiments) with Fig. 6(a1–a3) (numerical simulations), our results 
show a good agreement among them.

Figure 7.  Snapshots describing the numerical simulation [Eq. (2)] of AihIG wave packets. (a1–c1) ρ = 0.01, 
(a2–c2) ρ = 0.05. (a1–a2) ε = 10−5, (b1–b2) ε = 3, (c1–c2) ε = 105. P0 = Pc, Z = 3.

Figure 8.  (a1–c1) Transverse energy flow (red arrows) of hIG wave packets in SNNM. (a2–c2) Angular 
momentum of hIG wave packets in SNNM. (a1–a2) ε = 10−5, (b1–b2) ε = 3, (c1–c2) ε = 105. P0 = Pc.
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To obtain the stability analysis of the hIG wave packets, in Fig. 6, we numerically simulate the intensity dis-
tribution, which is excited by an initial perturbation31. The initial condition is supposed to be IGh(X, Y, Z = 0) + 
ρψ(X, Y, Z = 0), where ψ(X, Y, 0) is a random complex function whose maximum amplitude is less than that of 
the hIG beam, and ρ denotes the perturbation parameter. The difference between the output intensity distribution 
of the hIG beams and the solitons is huge when ρ = 0.05 in Fig. 6(c1–c3); the difference becomes so small that one 
can hardly distinguish it when ρ = 0.01 in Fig. 6(b1–b3). Stable soliton propagation in a numerical experiment 
where the initial beam is perturbed by noise, which may not constitute a rigorous proof of the stability, but does 
provide strong support for the existence of observable nonlinear modes in laboratory experiments. The related 
numerical simulations of spatiotemporal AihIG wave packets with ρ = 0.01 and ρ = 0.05 are shown in Fig. 7, 
while the comparison with ρ = 0 can be found in Fig. 4(a2–c2).

The local energy flow is usually expressed in terms of the Poynting vector. The Poynting vector has a magni-
tude of energy per unit area (or per unit time), and a direction which represents the energy flow at any point in 
the field. The vector potential is a linear polarization state. Given an X polarized vector potential V = IGh(X, Y, 
Z)eikZeX, where eX is the unit vector along the X direction. The time-averaged Poynting vector can be expressed as 
〈 〉 = 〈 × 〉

π
S E Bc

4
0 32, where c0 is the velocity of light in a vacuum. Figures 8(a1–c1) show that the transverse energy 

flow appears to rotate counterclockwise around the vortex (distinct circulation of current). The length and direc-
tion of the arrows represent the intensity and direction of the Poynting vector respectively. As in mechanics, the 
time-averaged angular momentum density for the electromagnetic field is the angular momentum per unit area 
(per unit time), obtained by forming the cross product of the position vector with the time-averaged momentum 
density 〈j〉 = r × 〈E × B〉33. The spatial angular momentum distributions in Fig. 8(a2–c2) are more coherent than 
the intensity distributions in Fig. 5(a1–a3), and the positions of optical vortex may not be obvious.

Conclusion
In summary, we have obtained a novel class of self-accelerating AiIG and AihIG optical breathers and solitons in 
SNNM from the method of separation of variables. The evolution properties of the AiIG and AihIG wave packets 
can be easily manipulated and modulated through adjusting P0/Pc, the ellipticity ε and the strong nonlocality 
parameter α. The AiIG and AihIG optical solitons can be obtained when the input power equals the critical 
power, while the AiIG and AihIG breathers can be achieved with P0 < Pc or P0 > Pc. The comparisons of analytical 
solutions with numerical simulations and numerical experiments of the AiIG and AihIG optical solitons show 
that the numerical results agree well with the analytical solutions in the case of strong nonlocality. For the first 
time, the spatial periodically oscillating (breather state) or steady (soliton state), temporal self-accelerating and 
approximately non-dispersion properties of AiIG and AihIG breathers and solitons are reported in SNNM, which 
is quite different from the case in free space18. If the last term of Eq. (1) in left part disappears, it becomes a free 
space condition, and the propagation of the spatial part is similar shown in Fig. 2(a1), which will expand due to 
the diffraction, and never show breathers and solitons.

In general, the analytical solution described here is applicable to other optical breathers and solitons such as 
self-accelerating AiHG optical breathers and solitons, self-accelerating AiLG optical breathers and solitons, and 
related self-accelerating Airy elegant breathers in SNNM. We foresee potential applications in signal processing 
due to the stabilized propagation properties of these wave packets.
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