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Abstract Global climate models present systematic biases, among others, a tendency to overestimate
hot and dry summers in midlatitude regions. Here we investigate the origin of such biases in the Community
Earth System Model. To disentangle the contribution of dynamics and thermodynamics, we perform
simulations that include nudging of horizontal wind and compare them to simulations with a free
atmosphere. Prescribing the observed large-scale circulation improves the modeled weather patterns as
well as many related fields. However, the larger part of the temperature and precipitation biases of the free
atmosphere configuration remains after nudging, in particular, for extremes. Our results suggest that
thermodynamical processes, including land-atmosphere coupling and atmospheric parameterizations,
drive the errors present in Community Earth System Model. Our result may apply to other climate
models and highlight the importance of distinguishing thermodynamic and dynamic sources of biases
in present-day global climate models.

Plain Language Summary Global climate models have become indispensable tools to simulate
past, present, and future climate. However, present-day models display systematic errors, which are found,
for example, in the simulation of surface temperature and precipitation. In this study, we demonstrate that
the origin of climate model biases can be more closely isolated, by distinguishing between those due to
dynamic processes, that is, related to atmospheric circulation, including wind and pressure systems, and
those due to thermodynamic processes, that is, energy exchanges and phase changes, in particular, related
to land-atmosphere interactions and convective processes. To separate these two contributions, we
prescribe observed winds into simulations with a global climate model, thereby forcing it toward
reproducing the correct atmospheric circulation. Strikingly, the largest part of the temperature and
precipitation biases are still found when the winds are corrected. This highlights that thermodynamic
processes play a dominant role for biases in the representation of today’s climate in the employed model.
Because the model has similar biases as other climate models, it is likely that these conclusions would also
apply there. Hence, in order to make more precise climate projections, it is important that the representation
of thermodynamic processes is further improved by the climate modeling community.

1. Introduction

Although large progress has been made during the development of global climate models (GCMs), they still
include large biases. Studies analyzing simulations from the Coupled Model Intercomparison Project Phase 5
(CMIP5; K. E. Taylor et al., 2012) revealed systematic errors in simulated global sea surface temperature (SST;
Wang et al., 2014), extratropical cyclones (e.g., Zappa et al., 2013), and also processes at the land surface, such
as evapotranspiration (Mueller & Seneviratne, 2014) and the seasonal cycle of albedo (Li et al., 2016). It is
noteworthy that the main biases in surface temperature and precipitation are fairly consistent between many
of the CMIP5 models (Intergovernmental Panel on Climate Change (IPCC), 2013; Mueller & Seneviratne, 2014).
It is not trivial to track down where these systematic model biases originate from. First, the manifold nonlinear
interactions and feedback processes between the components of the climate system render an identification
of biases’ origin difficult. Second, the scarce or incomplete observational record for some variables can hinder
model evaluation.
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A crucial variable driving surface temperature is incoming solar radiation. However, other processes influence
the local temperature, such as atmospheric circulation, cloud cover, or the interactions with land and ocean.
The simulation of these processes, that is, land surface processes, convection, clouds, and precipitation, relies
heavily on parameterizations, introducing additional sources of error (Chen et al., 2010; Gilmore et al., 2004;
IPCC, 2013; Neale et al., 2008). Hence, GCM biases can originate from the parameterized processes, as well as
the simulation of dynamic and thermodynamic processes. The dynamic component generally refers to the
circulation-induced influences, which range from geostrophic wind, weather regimes, and overall large-scale
circulation patterns to local wind direction and speed. The thermodynamic component includes phase tran-
sitions, differences in lapse rate and land-sea contrast as well as effects from the partitioning of radiative
and turbulent fluxes. In practice, it is not simple to separate the contribution of these components, due to
their complex interactions with each other (Otto et al., 2016). For example, for precipitation formation or for
the buildup of a drought event, both the thermodynamics and dynamics are involved (Schaller et al., 2016;
Vautard et al., 2016).

A way to study the thermodynamic contribution in isolation is to remove circulation effects by prescribing
a circulation state using the so-called nudging approach (Jeuken et al., 1996). Nudging can be used to force
winds toward observations, which produces a realistic representation of the observed weather patterns in the
model. Nudging has been used in various studies on climate model development and validation (e.g., Feichter
& Lohmann, 1999; Jeuken et al., 1996; Kooperman et al., 2012; Lin et al., 2016; Ma et al., 2013; Telford et al.,
2008). These studies have shown that nudging reduces model variability and uncertainty without requiring
long simulations or large ensembles. One drawback is that nudging is added as a forcing term to the model
equations and thus can potentially alter the model climate significantly. For example, Kooperman et al. (2012)
show that there are nonnegligible changes to the hydrological cycle and K. Zhang et al. (2014) note differences
in the radiation budget. This implies that nudging can potentially generate new biases and produce unrealistic
fields. Thus, attention has to be paid to the detailed implementation of nudging and the experiment design
(Lin et al., 2016; K. Zhang et al., 2014).

Here we investigate the role of dynamics and thermodynamics for biases in the Community Earth System
Model (CESM; Hurrell et al., 2013). CESM is a widely used GCM that is well established in the climate com-
munity and has contributed to high-impact studies (Deser et al., 2012; Fischer et al., 2013; Fischer & Knutti,
2014; Sanderson et al., 2017). To separate the dynamic and thermodynamic contribution to the surface climate
biases, we apply nudging of the horizontal winds. Hence, conceptually, the model bias is examined condition-
ally on the observed large-scale circulation to make statements about which contributions drive model bias
and where future research might be most beneficial to reduce biases in CESM and potentially other GCMs.

2. Model and Experiments
2.1. Community Earth System Model
Simulations are carried out using version 1.2 of the CESM (Hurrell et al., 2013). SSTs and sea ice fractions are
prescribed to transient monthly values from a merged product combining the Hadley Centre sea ice and SST
data set version 1 (HadISST1) and the weekly optimum interpolation (OI) SST analysis version 2 by the National
Oceanic and Atmospheric Administration (NOAA), as described in Hurrell et al. (2008). CESM couples the Com-
munity Atmosphere Model version 5.3 (CAM5; Neale et al., 2012) to predict the Earth’s atmosphere and version
4.0 of the Community Land Model (CLM4; Lawrence et al., 2011; Oleson et al., 2010) for the land surface. CAM5
and CLM4 are run on a horizontal resolution of 0.9∘ × 1.25∘ with 30 vertical layers in the atmosphere and 15
soil layers. Greenhouse gases are prescribed from transient observed concentrations. We extend CAM5 with
a nudging module as described in section 2.2.

An analysis of the model performance reveals that CESM shares systematic biases with the majority of CMIP5
models (see Figures S1a and S1b in the supporting information). The CMIP5 multimodel mean has, for exam-
ple, a hot and dry bias during Northern Hemisphere summer for Eastern Europe and the Great Plains and a
cold and wet bias over the Iberian Peninsula and West Coast of the United States. We find similar biases exam-
ining the CMIP5 configuration of CESM model alone. The setup of CESM used as control in this study (see
section 2.3 for experiment description) has larger error magnitudes than the CMIP5 multimodel mean due to
the effect of compensating biases when averaging over models (Figure S1c).

2.2. Nudging
Nudging (also called Newtonian relaxation) introduces an extra term into the governing equations of the
model to nudge the dynamical model variables toward given meteorological fields. We use a similar approach
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as used for CAM5 in Kooperman et al. (2012) and K. Zhang et al. (2014). Both studies show that the physical
tendencies in the model are not predominated by nudging and that the model climatology is not characteris-
tically different from the free-running model, especially when only winds are nudged. Here nudging is applied
to the horizontal wind. Six-hourly fields of zonal and meridional wind are retrieved from the ERA-Interim
reanalysis (Dee et al., 2011), which serves as a proxy for the observed circulation. The reanalysis results are
regridded to the model resolution and interpolated linearly in time to provide the input fields for each model
time step (30 min). The input fields are prescribed by adding a relaxation term to the prognostic equations of
horizontal wind:

𝜕U
𝜕t

= …− K(z)
𝜏

(
U(x, t) − Utarget(x, t)

)
(1)

where U stands for the horizontal wind components simulated by the model and Utarget refers to the respec-
tive value from ERA-Interim. Following Kooperman et al. (2012), the nudging time scale 𝜏 is 6 hr. We use a
height-dependent nudging profile, denoted by K(z), which allows us to prescribe the large-scale circulation
to observations (mostly above 700 hPa, see the right panels in Figure S2). By contrast, the boundary layer is
not prescribed, allowing surface turbulent fluxes to evolve freely and the atmosphere to interact with the land
and equilibrate. Technically, nudging is applied at the end of the CAM model sequence, just before coupling
of the atmosphere model with land and ocean (Kooperman et al., 2012).

2.3. Modeling Experiments
CESM is run using prescribed ocean fields. The simulations are initialized in 1979 and run until 2012. Ensemble
members are generated by initial perturbation of the temperature fields (Kay et al., 2015). A five-member
control ensemble (CTL) is run without nudging. The second ensemble of five members is identical to CTL
except that it has the nudging module switched on during the whole simulation period (NDG). As the first
three simulation years are regarded as spin-up time, the years analyzed are 1982–2012 (31 years).

2.4. Data Sets Used for Analysis
The performance of CESM with free and nudged atmosphere is assessed by comparing the model output to
gridded observational data sets. For comparison of the temperature fields we use monthly data with 0.5∘ res-
olution from a climate data set provided by the Climate Research Unit (CRU), called CRU TS (Harris et al., 2014).
Precipitation is compared to the Full Data Reanalysis product provided by the Global Precipitation Climatol-
ogy Centre (GPCC), called GPCC-FD, which has a horizontal resolution of 1∘ (Becker et al., 2013; Schneider et al.,
2014). Surface radiation is compared to two satellite products: the Surface Radiation Budget (SRB) Release-3.0
data set (Stackhouse et al., 2013) and the Clouds and the Earth’s Radiant Energy System, Version 3a (CERES)
product (Kato et al., 2013). Surface turbulent fluxes are evaluated against data from the Global Soil Wetness
Project 2 (GSWP-2; Dirmeyer et al., 2006) while for land evaporation we use the Global Land Evaporation Ams-
terdam Model, Version 3 (GLEAM) data set (Martens et al., 2017), which gives qualitatively the same results
as we get for latent heat flux from GSWP-2. For extreme temperatures we use ERA-Interim as a reference. For
the extreme indices related to drought and extreme precipitation we use daily precipitation data from the
Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017). The
gridded data products are remapped to the resolution of CESM using second-order conservative remapping.
The analysis uses the ensemble median and excludes ocean points and also Antarctica, unless the latter is
covered in the observational data sets. Precipitation values are set to missing where the observed seasonal
mean of the daily mean precipitation is smaller than 0.1 mm to avoid displaying large relative errors for very
small absolute errors.

3. Results
Nudging forces the speed and direction of horizontal winds toward observations and strongly reduces the
variability between the ensemble members of the nudged simulation (not shown). Evaluating the resulting
wind fields at the grid point level and the geopotential against ERA-Interim confirms that the large-scale cir-
culation in NDG closely follows the prescribed winds (see Figures S2 and S3). The fact that the geopotential
and the wind field are close to ERA-Interim suggests that the nudged model is in geostrophic balance. The
remainder of this section presents results for the surface climatology of CTL and NDG.

3.1. Surface Temperature
The seasonal mean surface temperature fields are compared to CRU TS, but qualitatively similar results are
obtained using ERA-Interim as reference (not shown). In the first two columns of Figure 1 we show the
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Figure 1. Model biases in 2-m temperature [∘C] compared to CRU TS for 1982–2012. From left to right: bias of median from the control simulation (free
atmosphere); bias of median from the nudged simulation; comparison of absolute biases in nudged versus control simulation (taking the median bias of both
experiments; negative values shown in green indicate smaller biases in NDG); Bias removed in the nudged simulation with respect to bias in the control
simulation [%].

median bias of the control and the nudged simulations. In many regions the error magnitudes decrease with
the introduction of nudging. However, most of the biases remain and the patterns are nearly unchanged.
Both ensembles simulate too hot Northern Hemisphere summers (June-July-August, JJA). The third and
fourth columns show the absolute and relative difference of the bias between NDG and CTL. In summer,
nudging generally reduces error magnitudes, indicated by predominantly green colors in the third column.
But still, in many regions the reduction is less than half of the bias (last column in Figure 1). In autumn
(September-October-November, SON) the picture is more mixed and in spring (March-April-May, MAM) a large
bias is introduced by nudging in the Arctic. Hence, nudging does not remove most of the GCM biases. Since
circulation, for example, frequency of a specific weather regime, can be excluded as contributing factor to
the bias in the nudged simulations, there must be non-dynamical mechanisms responsible for the remaining
errors.

Local radiative processes as well as turbulent fluxes can be the origin of temperature biases in GCMs. For sur-
face net radiation the comparison against satellite products (e.g., SRB, see Figure S4) shows a positive error
for JJA in central Europe and western North America, where also temperatures are too high. Even though the
magnitude of this radiation error is sensitive to the choice of the observational product (compare with CERES,
Figure S5), there are no substantial differences between the experiments. The patterns and magnitude of the
temperature biases found in the simulations are not explained by radiation alone. Misrepresentation of local
processes, such as land-atmosphere feedback, might also contribute to these biases. The land surface interacts
with the atmosphere in manifold nonlinear ways, mostly via evapotranspiration (ET), which can modulate sur-
face temperature, cloud formation, and precipitation (e.g., Guillod et al., 2015; Koster et al., 2014; Seneviratne
et al., 2010; C. M. Taylor et al., 2011). If the model underestimates soil moisture in a region, it will experience
more limitation of ET than observed and the partitioning of the surface fluxes will be biased toward sensible
heat flux, inducing a warming at the surface (Seneviratne et al., 2010). This overestimation of land-atmosphere
coupling is found in GCMs, which can influence their temperature bias (Mueller & Seneviratne, 2014; Sippel
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Figure 2. Same as Figure 1 but showing the bias of mean daily precipitation [%] in the model compared to GPCC-FD.

et al., 2017). Using GSWP-2 as a reference, we find an overestimation of sensible heat flux over the European
and North American continent for all seasons but strongest during MAM for both experiments (except for the
Great Plains and Rocky Mountains, where it is correct or slightly underestimated, see Figure S6). ET in Europe
is similar in CTL and NDG: It is too small in MAM and JJA, especially in Scandinavia and the Mediterranean, but
it is better captured in winter (December-January-February) and autumn (SON) (Figure S7). The same applies
to the Northern American continent but ET is overestimated over the Rocky Mountains and Great Plains.

A tendency toward too much sensible and too little latent heat flux together with a radiation surplus for JJA in
Europe and Northern America may explain the temperature bias of the models. Low values of ET (Figure S7)
also suggest that these regions might be too dry in the model. On the other hand, where ET is positively
biased, such as in the Great Plains and Rocky Mountains for JJA, we can assume that the simulation is wet
enough to keep the temperature close to the observed. The negative temperature bias seen in MAM in the
Arctic (Figure 1), does not seem to be related to an issue with the partitioning of turbulent fluxes. Instead,
it might originate from a radiation bias, probably related to clouds, or misrepresentation of snow/ice albedo
feedback processes.

3.2. Precipitation
Results show a decrease of the area-weighted global mean precipitation from 3.04 mm/day to 2.94 mm/day
by nudging, which corresponds to −3.5%. There is a substantial spread in estimates of global mean precipi-
tation from different gauge-based, satellite or reanalysis data sets (Sun et al., 2017). We have computed the
global values by regridding the data sets to the model resolution for the ERA-Interim reanalysis: 2.90 mm/day,
the Multi-Source Weighted-Ensemble Precipitation (MSWEP) satellite product: 2.54 mm/day and the Global
Soil Wetness Project 3 (GSWP 3) multimodel analysis: 2.80 mm/day (for years 1982–2010). Despite the spread
within the global estimates, all agree that nudging slightly reduces the bias. Note that the nudged simulations
are closer to ERA-Interim, which we nudge toward, than to other reference data sets.

Looking at the seasonal and spatial distribution of the bias in mean daily precipitation in Figure 2 shows that
the improvements are not uniform. Summer precipitation (JJA) in Europe is generally underestimated, sup-
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Figure 3. Bias in hot and cold extremes, drought, and precipitation indices computed as 31-year average (taken over 1982-2012) of the yearly indices. From left
to right: as in Figure 1. Shown from top to bottom are the following: Yearly maximum of the daily maximum temperature (TXx) compared to ERA-Interim; Yearly
minimum of the daily minimum temperature (TNn) compared to ERA-Interim; Number of consecutive dry days in a year (CDD) compared to MERRA-2; Yearly
maximum 5-day accumulated precipitation (RX5day) compared to MERRA-2. The ocean is masked for TXx and TNn for better readability.

porting our interpretation of the temperature results (Figures 1 and S7). Most of this bias is smaller in NDG
than in CTL for Central Europe but not for Northern Europe (where the bias is of similar magnitude) and for
the Iberian Peninsula (where the bias is larger in NDG due to overcompensation toward a too wet state). For
many regions the changes are small compared to the total bias, and in some cases NDG performs worse than
CTL, as illustrated in the third and fourth columns of Figure 2. Bias reduction in NDG is limited to only a few
regions (shown with green color in the fourth column). Other mechanisms must be the main contributors to
the precipitation bias in other regions.

3.3. Global Mean Error
To quantify the impact of nudging on model performance at the global scale, we compute the spatial
root-mean-square error (RMSE) for global land areas (excluding Antarctica). Generally, nudging leads to only
a small reduction in model biases. The results for surface air temperature show that the global bias is reduced
by 3% to 11% in NDG for all seasons, except MAM (see Table S1). Similarly, for mean daily precipitation NDG
performs better than CTL for all seasons except MAM.

We also compute the RMSE for the tropics (30∘S–30∘N) and northern midlatitudes (35∘N–66∘N, see Tables S2
and S3). Tropical regions generally have a smaller RMSE of surface temperature than the global average and
a larger RMSE of precipitation. The opposite is found for the northern midlatitudes. Of the two experiments,
NDG generally performs better than CTL for both precipitation and temperature, except for MAM in the tropics.
A comparison with the biases shown in Figure 2 confirms that nudging rather degrades the performance of
the model for MAM, especially in the tropics. Constant solar heating and convergence of air masses in the
tropics generate convective systems. Although there is an indirect influence on tropical precipitation through
the large-scale winds generating pressure systems, there is no direct constraint on the small scale convective
cells in our nudging approach. Substantial biases originating from the simulation of convection might be
reflected in the global performance of the model.

3.4. Extreme Indices
Extreme events, such as heavy precipitation, heat waves or droughts have large societal and economic
impacts (Barriopedro et al., 2011; Gilbert, 2010; IPCC, 2014; Poumadère et al., 2005). As extreme events are
usually linked with particular synoptic circulation patterns, such as blockings for heat waves (Quesada et al.,
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2012), one might expect nudging to improve the simulation of extreme statistics. To examine whether this is
indeed the case, we calculate four extreme indices following the definition by X. Zhang et al. (2011). Biases
in extremes are generally larger than biases in seasonal averages, as shown in Figure 3. The first row shows
the yearly maximum of the daily maximum temperature (TXx) and the second row the yearly minimum of
the daily minimum temperature (TNn). The temperature of hot extremes is generally overestimated, except
in Australia and Africa, and while there is improvement in the nudged approach, this is only a small error
reduction compared to the total bias. Cold extremes, on the other hand, are generally simulated too cold,
especially in the northern middle and high latitudes. Again, the errors are comparable between the two
experiments. The number of consecutive dry days (CDD), shown in the third row, is too large in the northern
high latitudes and rather too small in the low latitudes. Similarly, the maximum 5-day precipitation amount
(RX5day; last row in Figure 3) is slightly overestimated in the midlatitudes and underestimated in the tropics
and high latitudes. RX5day and CDD together indicated that climate extremes in North America and north-
ern Europe are simulated too dry because of too long dry periods and also too little precipitation during
intense events.

4. Discussion and Conclusions

In this study we nudge atmospheric winds to reanalysis, with the aim to disentangle the contributions of
dynamics and thermodynamics to model biases in a GCM. Nudging has been used previously in model
development and validation studies, which showed that the large-scale circulation is reliably adjusted to
observations while the underlying model climatology is well retained (Lin et al., 2016; K. Zhang et al., 2014).
Here we show that even if the dynamic component is prescribed, large errors in the surface fields persist in
the CESM model. A hot and dry bias seen in Europe and Northern America for northern midlatitude summers
is partly reduced by nudging, but the bias pattern remains common to both experiments.

We hypothesize that a large part of the errors that remain in the nudged simulations has a thermodynamic
source and is caused by local processes. We find evidence for this hypothesis in the partitioning of the surface
heat fluxes and ET. Computing the land-atmosphere coupling strength as the correlation of JJA mean temper-
ature with latent heat flux shows that the model exhibits too strong soil moisture limitation in eastern Europe
and central North America (not shown). This bias is improved but not removed in the nudged experiment,
providing one possible explanation on why these regions belong to the hot spots of summer temperature
error for both experiments. For extreme temperatures and droughts as well as heavy precipitation events,
we find that model biases are even larger than for seasonal averages and that the effect of prescribing the
atmospheric circulation is small.

In the tropics, a substantial part of the biases might originate from the convection parameterizations. Con-
vective cells, leading to most of tropical precipitation, are not directly constrained by nudging. Additionally,
nudging can introduce large biases in the model climatology, as found for temperature in the Arctic for MAM.
This effect suggests that nudging interferes with model tuning, which is used to adjust the top of atmosphere
radiation balance but might not match with the prescribed circulation. Compensating errors might indeed
exist in the setup with free atmosphere, in which case nudging corrects one of the errors, leading to new
apparent biases. In such a case, the results might appear more biased although the model simulation is in fact
more physically correct.

In conclusion, conducting CESM experiments with atmospheric nudging reveals that thermodynamic pro-
cesses are a dominant source of biases in the model. As this study was carried out using a single model,
different results might be found with other models. However, it is also possible that the conclusions
would apply to other GCMs, since the highlighted model biases (in particular, too dry and hot conditions
in midlatitude summer) have been shown to be systematically found in present-day GCMs. Our results
show the strengths and limitations of atmospheric nudging for climate simulations and put the role of
thermodynamics for biases in climate modeling into a new light. They call for multimodel investigations
assessing the robustness of the dominance of thermodynamics for temperature and precipitation biases
across GCMs. Although circulation changes are an important source of uncertainty in climate predictions
(Hall, 2014; Shepherd, 2014; Xie et al., 2015), our findings show a possibly dominant role of biases in ther-
modynamical processes for the representation of present-day climate. This highlights the urgent need
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to reduce the associated uncertainty in climate models in order to achieve better constrained climate
change projections.
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