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The thymus is the primary organ for the generation of naive T cells, a key

component of the immune system. Tolerance of T cells to self is achieved

primarily in the thymic medulla, where immature T cells (thymocytes)

sample self-peptides presented by medullary thymic epithelial cells

(mTECs). A sufficiently strong interaction activates the thymocytes leading

to negative selection. A key question of current interest is whether there is

any structure in the manner in which mTECs present peptides: can any

mTEC present any peptide at any time, or are there particular patterns

of correlated peptide presentation? We investigate this question using a

mathematical model of negative selection. We find that correlated patterns

of peptide presentation may be advantageous in negatively selecting

low-degeneracy thymocytes (that is, those thymocytes which respond to

relatively few peptides). We also quantify the probability that an auto-

reactive thymocyte exits the thymus before it encounters a cognate antigen.

The results suggest that heterogeneity of gene co-expression in mTECs has

an effect on the probability of escape of autoreactive thymocytes.
1. Introduction
The thymus is the primary organ for the generation of naive T cells, a key com-

ponent of the immune system. T cells play a key role in the adaptive immune

response, combating pathogens that have invaded host cells. Pathogen-derived

proteins in infected host cells are processed into short peptides (p) which can

then bind to major histocompatibility (MHC) proteins. The resulting peptide–

MHC (pMHC) complexes are presented on the surface of the host cell, ready

for interrogation by T cells [1].

T cells express a protein on their surface called the T-cell receptor (TCR).

Each TCR has a highly variable region (the CDR3 region) which is responsible

for antigen recognition. This region is generated randomly during the T-cell

maturation process through stochastic gene rearrangement, with the result

that each T cell expresses a distinct TCR. A given T cell is said to recognize a

particular pMHC complex if its TCR binds sufficiently strongly to it to enable

downstream signalling cascades inside the T cell that result in its activation

and proliferation [1].

Host proteins are also processed into short peptides and may be presented

as pMHC complexes. To prevent T cells attacking the host it is important to

eliminate from the pool of naive T cells those which recognize self-antigens.

This occurs in the thymus in a process called central tolerance.

To purge the pool of immature T cells (thymocytes) of cells with a reactivity to

self-antigens, antigen presenting cells in the thymus (primarily medullary thymic

epithelial cells, mTECs) provide a comprehensive ‘molecular library’ of self-

antigens that, when recognized by developing, self-reactive T cells, will initiate

their death. These cells promiscuously express the self-transcriptome at the

single-cell level [2]. This deletion of potentially harmful T cells is known as
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Figure 1. Schematic illustration of the model. In (a), the thymocyte randomly chooses an mTEC from the pool for its next interaction. Each mTEC is endowed with a
gene expression profile, which determines the peptides it can present. There are K different profiles, giving K different classes of mTEC (four are illustrated). The
interaction is illustrated in (b). The mTEC decides randomly which peptides to present. There are s TCR – pMHC complexes in the immunological synapse (seven are
illustrated). The energy of interaction of each complex is determined by summing the pairwise interaction energies of amino acids in the peptide and the corre-
sponding amino acids in the CDR3 region of the TCR. The thymocyte is negatively selected if enough complexes exceed a critical interaction energy. If the thymocyte
is not negatively selected, it proceeds to the next interaction, randomly choosing another mTEC.
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thymic negative selection and prevents the formation of effector

T cells able to initiate an injurious autoimmune response.

In a series of papers [3–6], Košmrlj et al. have developed a

computational model for this process of negative selection.

The interaction between a TCR and a pMHC complex is mod-

elled as follows. The more conserved region of the TCR,

which interacts with the MHC molecule directly, is not mod-

elled explicitly; the interaction energy due to this component

is assigned a value Ec. In the simplest incarnation of the

model, this value is a fixed parameter, while in more complex

versions it may be drawn randomly from a given distribution

of interaction energies. The highly variable region of the TCR,

and the peptide bound to the MHC, are each modelled as a

string of amino acids. Each site on the TCR is taken to interact

with the corresponding site on the peptide, with an inter-

action energy depending on the two amino acids (t and r,

say) given by the Miyazawa–Jernigan matrix J(t, r) [7,8].

The energy of interaction of the TCR–pMHC pair is then

given by the sum of all these individual energies:

E ¼ Ec þ
XN

i¼1

J(ti, ri), ð1:1Þ

where J(ti, ri) is the contribution of the ith amino acid on the

TCR (ti) and the peptide (ri), and there are N binding sites in

total. Although the typical length of a peptide is nine amino

acids, only positions 3–7 are taken to be available for binding

to the TCR, with the remaining residues responsible for bind-

ing to the MHC groove or buried within the groove; thus N is

chosen to be 5, consistent with experimental data [9] and

prior modelling work [3,4].

Košmrlj et al. then perform a number of numerical exper-

iments. They first randomly create a set of M peptides to

represent the self-peptides presented in the thymus. They then

randomly generate a set of TCRs and select them against these
peptides. This process is repeated many times to generate statisti-

cal results. In this way, they are able to predict that TCRs which

survive negative selection are enriched in weakly binding amino

acids, and that the pathogens they recognize are enriched in

strongly binding amino acids. Both of these effects increase

strongly with the number of self-peptides the TCRs are selected

against. In their simulations, each TCR interacts with all antigens

in the thymus. They do not consider the question of a TCR ran-

domly evading negative selection by exiting the thymus before

it had a chance to interact with a cognate antigen.

With the advent of experimental techniques generating

single-cell gene expression data, there has been much recent

interest in determining the manner in which mTECs present

the self-transcriptome [2]. Individual mature mTECs show pat-

terns of gene co-expression [10,11]. Is each mature mTEC

capable of presenting any self-antigen, or are there a number

of different classes of mTEC which divide up the space of

self-antigens between them? Is promiscuous gene expression

by mTECs stochastic, either spatially or temporally?

The model of Košmrlj et al. focuses on individual TCR–

pMHC interactions, rather than T cell–mTEC interactions. In

reality, a T cell will undergo a sequence of interactions with

mTECs as it progresses through the thymus [12–14]. For

each interaction, an immunological synapse will form compris-

ing a large number of TCR–pMHC interactions, of the order of

2000 [15] (figure 1). The response of the T cell will depend

on the interaction energies of each of these interactions,

fEj: j ¼ 1, . . ., 2000g, say. The model of Košmrlj et al. is equival-

ent to assuming that the T cell will be negatively selected if the

energy of any one interaction exceeds a threshold, that is,

minj (Ej) , Eneg (note that interaction energies are negative).

Other authors have assumed that a T cell responds to the trig-

gering rate averaged over all its TCRs, where the triggering rate

of a given TCR–pMHC complex is a function of its interaction

energy [16].
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Our focus in this paper is to extend the model of Košmrlj

et al. to incorporate the fact that an immunological synapse

comprises many TCR–pMHC interactions, and that these

may not be all independent. We focus in particular on two

effects: (i) the peptides presented may not be independent,

since they are presented by mTECs, which individually have

patterns of gene expression [2,10,11] and (ii) the response of

the T cell may depend on the complete set of interaction

energies, rather than on any one exceeding a threshold. Our

goal is to determine whether differential gene expression of

mTECs has a discernible effect on the probability of escape of

autoreactive T cells.

Although we will populate our synthetic thymus with

randomly generated peptides in the same way as Košmrlj

et al., the model is designed in such a way that it is capable

of incorporating single-cell genomic or proteomic data

when they become available.
 5:20180311
2. Material and methods
2.1. Summary of methods
We have created a computational modelling framework to simu-

late the presentation of self-peptides on the surface of mTECs

and interaction of these peptides with the CDR3 region of TCRs

on thymocytes. The overview of this framework is as follows.

We first generate the set of all self-peptides. We then create a set

of virtual mTECs each of which is able to present (some or all) pep-

tides from this set. Immature T cells (thymocytes) are generated,

each having a random amino acid sequence for the CDR3 region

of their TCRs. Each thymocyte chooses a sequence of mTECs to

interact with, and during each interaction each mTEC chooses a

set of peptides to present. If the interaction is too strong, the thymo-

cyte is deleted (negative selection). The model is illustrated

schematically in figure 1.

2.2. Generating a set of self-peptides
We randomly generated a set of m peptides (we consider the

cases m ¼ 10 000 and m ¼ 100 000; see section Model parameters).

Each peptide comprises a string of N amino acids (in our examples

N ¼ 5 [4]). Each amino acid is chosen randomly with a probability

proportional to the frequency of amino acids in the mouse pro-

teome [3]. This set of peptides is considered to be the set of all

self-peptides.

We then suppose that there are K different types of mTEC in

the thymus, and that the set of m self-peptides is divided up

between them without overlap. In reality, we would expect that

even if there were a number of different classes of mTEC each

with its own gene expression profile, there would be some overlap

in the peptides they could present. However, in the absence of any

specific experimental evidence, we choose a model without over-

lap as a representative extreme case of mTEC specialization. We

investigate the cases K ¼ 1 (corresponding to no specialization,

so that all mTECs are able to present all peptides), and K ¼ 10,

100 and 1000. We note that experiments suggest that the thymus

might contain autonomous tolerogenic units comprising approxi-

mately 200 distinct mTECs [17], though of course, the peptide

presentation capabilities of the mTECs in each unit are not known.

Each in silico mTEC thus created has a set of peptides associated

with it from which it chooses peptides to present to thymocytes.

2.3. Stochastic simulator
We simulate the passage of a thymocyte through the thymic

medulla and its resulting interaction with the pool of in silico
mTECs. The thymocyte is given a TCR sequence comprising N
randomly chosen amino acids (with each amino acid chosen

with a probability proportional to its frequency in the mouse

proteome [3]). The simulator then randomly picks a sequence

of mTECs from the in silico pool to interact with the thymocyte.

For each thymocyte–mTEC interaction, we suppose that there

are s TCR–pMHC complexes in the immunological synapse

[15,16]; we vary s in the range 100–2000. For each MHC in the

synapse, we randomly choose a peptide for it to present, with

a probability distribution proportional to the relative peptide

abundances in this particular mTEC.

We follow [3–6] and evaluate the interaction energy of each

TCR–pMHC complex by summing over the interaction energies

of the exposed amino acids, using the Miyazawa–Jernigan

matrix of interaction energies [7,8] as in equation (1.1). The fate

of the thymocyte is then determined by the collection of energies

fEj: j ¼ 1, . . ., sg, say. In the simplest case, corresponding to that

used in [3–6], if any one energy exceeds a threshold Eneg the thy-

mocyte is deemed to have been negatively selected and is

deleted. We investigate the effect of more complex selection rules

by considering also the case in which at least p energies must

exceed a threshold; we vary p in the range 1–3.

The model is illustrated schematically in figure 1, and in

pseudo-code in algorithm 1.

Algorithm 1. Pseudo-code description of the selection model.

The parameters are the number of exposed residues contributing

to TCR–pMHC binding (N ), the number of TCR–pMHC com-

plexes in an immunological synapse (s), and the number of

complexes which need to exceed a threshold energy for the

synapse to fire ( p).
2.4. Model parameters
We summarize here the key model parameters, and our estimates

for them.

m: the total number of peptides. We vary the total number of

peptides from a value of 10 000 (estimated from gene expression

data using older sequencing techniques suggesting that 2000

genes are expressed in the medulla [18]) to 100 000 (estimated

from a recent and more sensitive single-cell gene expression

study suggesting that approximately 20 000 genes are expressed

in the medulla [2]).

s: the number of TCR–pMHC complexes engaged in the

immunological synapse. This is varied between 100 and 2000

based on experimental estimates [15].

N: the length of the region of the peptide that is exposed and

available for binding. The typical length of peptides presented

by mTECs (bound to MHC-I) is nine amino acids. We assume

that the third through the seventh amino acids are available for

binding to the TCR CDR3 region, consistent with experimental

data [9] and prior modelling work [3]. Hence in our models we

set N ¼ 5.

K: number of distinct classes of mTECs in the thymus (that is,

the number of distinct gene-expression profiles). Experiments

suggest that approximately 200–500 distinct mTECs exist in

autonomous tolerogenic units [17,19], which would suggest an

upper bound for K in this region. The lower bound is simply

K ¼ 1, corresponding to all mTECs being identical and each

able to express any gene. We vary K over the range 1–1000.
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Figure 2. Distribution of the proportion of peptides recognized by each of 200 000 randomly generated TCR sequences shown on (a) log – linear and (b) log – log
scales. Model parameters used are Eneg ¼ 2 21.0 kbT and N ¼ 5. The proportion of TCRs not recognizing any peptides was approximately 12%.
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numinteractions: the number of interactions between a given

thymocyte and a series of mTECs. We can make some estimate

of the number of interactions that are biologically feasible. Thy-

mocytes reside in the medulla for approximately 4 days [17].

The immunological synapse lasts for approximately 30 min

[20]. This sets an upper bound on the number of interactions a

thymocyte can have with mTECs to approximately 200. How-

ever, the actual number of feasible interactions is likely to be

far fewer after accounting for thymocyte migration time. We

vary the number of interactions from 1 to 100.

p: the minimum number of peptides presented by an mTEC

that must simultaneously interact sufficiently strongly with the

TCR for the thymocyte to be negatively selected. We present

results for p in the range 1–3.

Eneg: the negative selection energy threshold. This is chosen

so that a biologically realistic proportion of all thymocytes

entering the medulla survive negative selection.

The fraction of all thymocytes entering the medulla (after

VDJ recombination and after positive selection) that survive

negative selection is

fescape ¼
gexit

gexit þ gkill

, ð2:1Þ

wheregexit is the rate at which surviving thymocytes exit the medulla

and gkill is the rate at which thymocytes are deleted (by negative

selection) in the medulla. Experimental data in [21] suggest that

gexit¼ 2.9 � 106 per day and gkill¼ 4.8 � 106 per day, which gives

fescape¼ 38%. In [22], fescape is estimated directly at 5%.

Matching this range of values of fescape to the probability

that a thymocyte survives negative selection in our stochastic

simulation, gives a negative selection energy threshold (Eneg)

between 220.0 kbT and 224.0 kbT. We use Eneg ¼ 2 21.0 kbT in

our simulations.
3. Results
3.1. The degeneracy of the TCR – pMHC interaction
The interaction between a TCR and pMHC is degenerate: each

TCR will recognize a number of different peptides bound to

MHC class I. To try and quantify this we generated 200 000

random TCR sequences and calculated for each one the prob-

ability of it recognizing a randomly generated peptide. We

show in figure 2 the resulting distribution of the fraction of

peptides recognized by each TCR. We see that (for these par-

ameter values) the majority of TCRs are highly degenerate,

recognizing over 1% of all self-peptides, while there are a few
low-degeneracy TCRs that recognize fewer than one in 1000

peptides, corresponding to tens or hundreds of self-peptides.

The distribution of degeneracy illustrated in figure 2 is all

the information we need from the detailed model of an individ-

ual TCR–pMHC interaction. For the paired amino acid model

we are using, this distribution depends on the two parameters

Eneg and N. Let us briefly examine the effect of varying

these parameters.

We show in electronic supplementary material, figure S1,

the degeneracy distribution when N ¼ 5 for Eneg ¼ 2 20.0 kbT,

221.0 kbT, 222.0 kbT, 223.0 kbT, and 224.0 kbT. We see that

lower thresholds correspond to a small shift in the distri-

bution so that there are fewer high-degeneracy TCRs and

more low-degeneracy TCRs. In addition, there is an increase

in the number of TCRs which do not recognize any peptide

(so would not be positively selected). Since lower degener-

acy TCRs are harder to detect, this change in distribution

will have a knock-on effect on the overall probability that

a randomly chosen TCR escapes negative selection.

We show in electronic supplementary material, figure S2,

the degeneracy distribution when N ¼ 9 for Eneg¼ 2 32.0 kbT,

235.0 kbT, 238.0 kbT, and 241.0 kbT (since there are more

amino acids contributing to binding, we need to scale the nega-

tive energy selection threshold accordingly). We see the same

trend as before, that lower thresholds correspond to a shift

in the distribution so that there are fewer high-degeneracy

TCRs and more low-degeneracy TCRs. Comparing electronic

supplementary material, figures S2 to S1, we see that the distri-

bution is ‘smoother’: we are closer to the N ! 1 limit in which

the distributions can be approximated using statistical mech-

anics [6]. There is also a longer tail: with nine amino acids

there are many more possible peptides and so it is possible

to have TCRs which recognize fewer that 1029 peptides

(but greater than zero).

3.2. A first look at the effect of correlation
We discuss here the impact of our modification to the model of

[3–6], namely that the distribution functions for the peptides

presented on a given mTEC may not be independent. To illus-

trate the effect of correlation, suppose first that there is only one

type of mTEC, so that each mTEC can present any peptide (K ¼
1). Suppose also that p ¼ 1, so that if any TCR–pMHC complex

in the immunological synapse exceeds the threshold energy

then the thymocyte will be negatively selected. If there are m
self-peptides available for presentation, and s TCR–pMHC
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parameters are m ¼ 100 000, p ¼ 1. A wider range of values of s are illustrated in electronic supplementary material, figure S3. (a) s ¼ 200 and (b) s ¼ 2000.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180311

5

complexes, then the probability that a given TCR sequence of

degeneracy d (i.e. recognizing d self-peptides) is not deleted

in the thymus after n interactions is given by

Pn ¼ 1� d
m

� �sn

: ð3:1Þ

Note that this formula depends only on the product sn: inter-

acting with 1000 peptides presented on 1 mTEC is equivalent

to interacting with 1000 mTECs each presenting 1 peptide;

only the total number of peptides presented matters.

Now suppose that there are K . 1 distinct classes of

mTEC, each capable of presenting m/K different peptides.

We denote the degeneracy of the TCR sequence with respect

to the ith mTEC by di, that is, we suppose that out of the m/K
peptides the ith mTEC can present, the TCR recognizes di

peptides, where
PK

i¼1 di ¼ d. Given d (via figure 2) and a

model for the partition of peptides between mTECs (we

assume a random partition) the distribution function for the

vector (d1, . . ., dK) can be calculated. The probability of

escape after n interactions is now given by

Pn ¼
1

K

XK

i¼1

1� Kdi

m

� �s
 !n

: ð3:2Þ

If di ¼ d/K, so that the degeneracy is the same for each mTEC,

then (3.2) is equal to (3.1). But there is no reason to suppose

that this is the case.

On the other hand, if the chance of being negatively

selected in one interaction is small, so that Kdis/m� 1, we find

P1 � 1

K

XK

i¼1

1� sKdi

m
þ s(s� 1)K2d2

i

2m2
þ � � �

� �

� 1� sd
m
þ s(s� 1)K

2m2

XK

i¼1

d2
i þ � � � ,

and the dependency on K comes only in the third term, so that

di being non-uniform across mTECs has a relatively small effect

on the probability of negative selection.

The formulae above are modified slightly if at least p
TCR–pMHC complexes must simultaneously exceed the

negative selection energy threshold for the thymocyte to be

negatively selected, with p . 1. The probability that a TCR
escapes after n interactions is now

Pn ¼
1

K

XK

i¼1

1� Kdi

m

� �s

þ s
1

� �Kdi

m
1� Kdi

m

� �s�1

þ � � �
 

þ s
p� 1

� �
Kdi

m

� � p�1

1� Kdi

m

� �s�pþ1
!n

: ð3:3Þ

For small Kdis/m, equation (3.3) gives

P1 � 1� s
p

� �
K p�1

mp

XK

i¼1

dp
i :

Note that in this case the non-uniformity of di across mTECs

affects the probability of negative selection much more

strongly, and the effect increases with increasing p. Thus,

the effect of correlations, and the question of whether there

is specialization among mTECs, is much more important

when multiple pMHCs need to be recognized simultaneously

in order for a thymocyte to be negatively selected.

We will now determine more quantitatively how the prob-

ability of escape depends on the parameters in the model.

We first examine the probability of escape for a TCR of a

given degeneracy d, under the assumption that the available

peptides are randomly partitioned among the K mTEC classes.

This analysis is independent of the particular detailed (amino

acid based) model for activation of a TCR–pMHC complex.

We then combine this with the distribution of degeneracy illus-

trated in figure 2 to determine the probability of escape of a

random TCR over multiple interactions.

3.3. The probability of escape in a single interaction
We first consider the case p ¼ 1, so that a thymocyte is nega-

tively selected if any one of its TCRs interact strongly with

the corresponding pMHC complex. We show in figures 3

and 4 the probability of escape in a single thymocyte–

mTEC interaction (P1) as a function of the number of

mTEC classes (K ) for various numbers of TCR–pMHC com-

plexes in the immunological synapse (s) and a range of TCR

degeneracies (d ). Results are shown here for m ¼ 100 000

self-peptides; corresponding plots for m ¼ 10 000 are given

in electronic supplementary material, figures S5 and S6.

Some obvious trends are observed in the data: the more

degenerate a TCR, and the more TCR–pMHC complexes

in the immunological synapse the less likely the thymocyte

is to escape. We also see that TCRs with a degeneracy over

5000 (i.e. those which react with over 5% of all peptides)

are very likely to be negatively selected by just one

thymocyte–mTEC interaction. For large enough s, there is



1.0

0.5

1 10 100 1000

1.0

0.5

1 10 100 1000

s = 100

s = 200

s = 500

s = 1000

s = 2000

1.0

0.5

1 10 100 1000

1.0

0.5

1 10 100 1000

1.0

0.5

1 10 100 1000

(a) (b) (c)

(d) (e)

Figure 4. Mean probability of escape in a single interaction, P1, as a function of the number of mTEC classes, K, for various numbers of TCR – pMHC complexes in
the immunological synapse, s. Other model parameters are m ¼ 100 000, p ¼ 1. A wider range of values of d are illustrated in electronic supplementary material,
figure S4. (a) d ¼ 10, (b) d ¼ 50, (c) d ¼ 200, (d ) d ¼ 1000 and (e) d ¼ 5000.

1.0

0.5

1 10 100

d = 10

d = 20
d = 50
d = 100
d = 200
d = 500

d = 1000
d = 2000
d = 5000

d = 10 000

1000

1.0

0.5

1 10 100 1000

1.0

0.5

1 10 100 1000

1.0

0.5

1 10 100 1000

1.0

0.5

1 10 100 1000

(a) (b) (c)

(d) (e)

Figure 5. Mean probability of escape in a single interaction, P1, as a function of the number of mTEC classes, K, for various TCR degeneracies, d. Other model
parameters are m ¼ 100 000, p ¼ 3. (a) s ¼ 100, (b) s ¼ 200, (c) s ¼ 500, (d ) s ¼ 1000 and (e) s ¼ 2000.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180311

6

also a threshold effect: the probability of escape transitions

from zero to one around the value K � d. We explain this

behaviour in the following section (see equation (3.4)).

More generally, the dependence on the number of mTEC

classes K is monotonic: the value of K which leads to the

lowest probability of escape of an autoreactive thymocyte

is K ¼ 1. Thus, if we imagine the different ways that

self-peptides could be divided among mTECs, the optimal

strategy when p ¼ 1 is to have any mTEC capable of

presenting any peptide.
We now consider the case p ¼ 3, so that a thymocyte is

negatively selected if and only if at least three of its TCRs inter-

act strongly with the corresponding pMHC complexes. (The

corresponding results for p ¼ 2 are given in electronic sup-

plementary material, figures S7–S10.) We show in figures 5

and 6 the probability of escape in a single thymocyte–

mTEC interaction as a function of the number of mTEC

classes for various s and d when there are m ¼ 100 000

self-peptides; corresponding plots for m ¼ 10 000 are given

in electronic supplementary material, figures S12 and S13.
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While it is still true that the larger d and s the less likely

the thymocyte is to escape (as we would expect), the behav-

iour as the number of mTEC classes K varies is more

interesting. For large d and s, the behaviour is still mono-

tonic in K, so that the optimal strategy is still K ¼ 1. But

for low degeneracies or low numbers of TCR–pMHC com-

plexes in the immunological synapse, there is an optimal

value of K which minimizes the probability of escape. We

will find in our analysis below that, roughly speaking, for

degeneracies d p m/s to minimize the probability of escape

it is best to choose K ¼ 1 so that all mTECs can present all

peptides, while for degeneracies d o m/s it is best

to divide the mTECs into K � m/s classes, each of which

can present around s peptides.
3.3.1. Mathematical analysis
Providing s is not too small, P1 given by (3.2) is dominated by

the probability that one of the di’s is small. For s� m/K (in

practice, for s � 2m/K), P1 is completely determined by the

probability that one of the di’s is zero: in this limit, the complete

set of peptides within a cell is almost certain to be expressed, so

the only way to avoid negative selection is to choose a cell in

which there is no matching peptide.

Choosing m/K peptides, each with a probability d/m of

matching, gives

P1 � 1� d
m

� �m=K

� e�d=K: ð3:4Þ

The collapse of the data onto this simple expression is

illustrated in electronic supplementary material, figure S14.

When s is not so large as this, we need to take account of the

fact that if an mTEC has small (rather than zero) degeneracy a

matching peptide may not be presented.
In this case,

P1 �
Xm=K

r¼0

1� d
m

� �m=k�r d
m

� �r m=K
r

� �
1� rK

m

� �s

�
Xm=K

r¼0

1� d
m

� �m=k�r d
m

� �r m=K
r

� �
e�rKs=m

� 1� d
m
þ de�sK=m

m

� �m=K

� exp � d
K
þ de�sK=m

K

� �
: ð3:5Þ

We see that the four parameters d, K, s and m only appear

in the combinations d/K and sK/m. This allows us to col-

lapse the results shown in electronic supplementary

material, figures S6 and figure 4 to a single plot. Sample

plots are shown in figure 7, in which the data are compared

to equation (3.5).

The corresponding results for p ¼ 2 and p ¼ 3 are

derived in the electronic supplementary material, appendix

S1, and are

P1 � exp � d
K
þ d

K
e�sK=m

� �
1þ sd

m
e�sK=m

� �
ð3:6Þ

and

P1 � exp � d
K
þ d

K
e�sK=m

� �

� 1þ sd
m

e�sK=m þ s2dK
2m2

e�sK=m 1þ d
K

e�sK=m
� �� �

, ð3:7Þ

respectively. Again these depend only on the combinations

d/K and sK/m. The data are compared to equation (3.7) in

figure 8 (and equation (3.6) in electronic supplementary

material, figure S15).
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We can use these formulae to find analytically the optimal

value of K. When p ¼ 1, if we denote x ¼ sK/m, then P1 is

minimized when

xþ 1� ex ¼ 0:

This gives x ¼ 0, so that K should be made as small as poss-

ible. When p ¼ 2, if we denote also y ¼ sd/m, then P1 is

minimized when

ex(1 � ex þ xþ x2)

ex � 1� x
¼ y if y , 1:08,

and x ¼ 0 otherwise.

9=
; ð3:8Þ
When p ¼ 3, P1 is minimized when

2e3x � (1þ x)y2 þ exy(� 2� 3x(1þ x)þ y)

� e2x(2þ 2xþ x2 þ x3 � (2þ x)y) ¼ 0 ð3:9Þ

if y , 2.11 and x ¼ 0 otherwise. These optimal values are

illustrated in figure 9. As claimed, we see that, roughly speak-

ing, for degeneracies d p m/s it is best to choose K ¼ 1 so that

all mTECs can present all peptides. For degeneracies d o m/s,

it is best to divide the mTECs into K � m/s classes, each of

which can present around s peptides. The reason for this is

as follows. For low degeneracies, the chance of finding two

or more matching peptides in a random sample of s peptides
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from the whole pool becomes small. But if an mTEC has a

limited repertoire of peptides then, if this set happens to con-

tain one matching peptide, there is a much more significant

chance that two copies of it will be presented.

While this result is intriguing, we do not claim that evol-

ution would necessarily select this optimal configuration, as

there are many other factors to take into account. Even within

our model, with reference to figure 5d, for example, we see

that choosing K ¼ 200 rather than K ¼ 1 reduces the probability

of escape of thymocytes with degeneracy 100, but increases

significantly the probability of escape of thymocytes with

degeneracy 500. The overall efficiency of negative selection

will depend on the degeneracy distribution of the incoming

thymocytes (figure 2). We examine this in more detail in the fol-

lowing section. Moreover, the evolutionary pressure itself is not

necessarily clear: low-degeneracy autoreactive TCRs may also

be less dangerous than high-degeneracy TCRs in the periphery,

for example.
3.4. Probability of autoreactivity
Having looked in detail at the probability of escape in a single

interaction, we now consider a sequence of T-cell–mTEC

interactions to determine the number of such interactions

required for negative selection.

For a given degeneracy d, if the probability of escape after

one interaction is P1(d ), then the probability of escape after n
interactions is simply P1(d )n. Thus to find the probability of

escape after n interactions, we need to average P1(d )n over

the distribution of degeneracy d (as illustrated in figure 2).

The percentage of T cells surviving after each interaction is

shown in figures 10 and 11 for a representative set of par-

ameters (Eneg ¼ 2 21.0 kbT, s ¼ 2000, and m ¼ 10 000 and

m ¼ 100 000, respectively).
We observe that the majority of autoreactive T cells are

negatively selected within just a few interactions, but that

there are a few (low degeneracy) autoreactive T cells which

take much longer to eliminate. As we might expect, the

simple threshold model ( p ¼ 1) eliminates T cells more rapidly

than the models requiring multiple matches ( p . 1), since the

criterion for negative selection is more readily satisfied. We

also see that if the number of self-peptides is increased from

m ¼ 10 000 to m ¼ 100 000, then negative selection takes

longer, since the fraction of self explored in each interaction is

smaller. If we suppose that for each mTEC–thymocyte inter-

action the immunological synapse lasts for 30 min [20], and

assume it takes approximately 30 min for the synapse to dis-

sociate and the thymocyte to migrate and find another mTEC

to interact with, then the number of interactions corresponds

exactly to the number of hours since the thymocyte entered

the medulla. The horizontal axis in figures 10 and 11 then

covers 4 days.

We also see confirmation that when p . 1 it can be ben-

eficial to divide peptides among a number of mTEC classes

rather than have all mTECs identical: figures 10b,c and 11b,c
show that K ¼ 1 is less efficient at eliminating autoreactive

T cells than K ¼ 5, K ¼ 20, K ¼ 50 and K ¼ 200, respectively.
4. Conclusion and discussion
We have implemented a model of thymic selection in which

decisions are made based on the interaction energies of mul-

tiple TCR–pMHC complexes in the immunological synapse,

as indicated in the experimental results of [12–14]. The

model computationally recapitulates the complex process

of T-cell negative selection in the thymus through a series of

interactions between thymocytes and mTECs presenting

self-peptides.
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The detailed energetic model of an individual TCR–

pMHC interaction is used to calculate the distribution of

degeneracy of a random TCR against all possible peptides,

that is the probability distribution for the proportion of

peptides which would activate a randomly generated

TCR. This distribution is all that is needed to model multiple

interactions, both in parallel (through multiple TCR–pMHC

interactions on a given mTEC) and in series (through

sequential interactions with different mTECs).

The typical length of peptides presented by mTECs (bound

to MHC-I) is 9 amino acids. In this study, we assume that the

third through the seventh amino acid are available for binding

to the TCR CDR3 region, following prior modelling work [3].

Recent experimental evidence suggests that the number of

contacts between the TCR–pMHC complex is concentrated

around a region consisting of approximately five to six amino

acids [9]. To consider interactions with MHC-II complexes,

which are relevant for many autoimmune diseases [23,24],

we would have to include more amino acids in the binding

region. We show the effect on the degeneracy distribu-

tion of including nine binding amino acids in electronic

supplementary material, figure S2.

The model of the TCR–pMHC complex we adopted is

(necessarily) a gross simplification: in reality, the three-

dimensional structural properties of the TCR–pMHC complex

are likely to be important [25–27], and may be poorly accounted

for by simple pairwise amino acid interactions. More realistic

models will require a great deal of data to parametrize, either

experimental or from molecular dynamics simulations. Our

analysis has identified that the key output of any such improved

model is the degeneracy distribution of TCRs.

For the parameters considered, we found that 12% of TCR

sequences did not recognize any peptide. Of the remainder,

many TCR sequences have high degeneracy (half of all TCRs

interact with more than 1.3% of peptides) but that there are a

few low degeneracy TCRs (5% of TCRs interact with fewer

than 1 in 10 000 peptides; figure 2). Our model indicates

that many TCR sequences are negatively selected very

quickly, within 10–15 interactions with mTECs in the medulla

(figures 10 and 11), but that there are some (of low degeneracy)

which take many more interactions with mTECs to find their

cognate peptides and be deleted.

Mature mTECs co-express genes and show genomic clus-

tering [10,11]. A key question of current interest is whether

gene expression by mTECs is stochastic in time and/or

space, and whether there is correlation between the genes

expressed by different mTECs. To investigate the impact that

such effects might have on negative selection, we investigated

two alternative scenarios in our model. In the first, there was no

specialization or correlation among mTECs: each mTEC could

express any gene at any time so that its presented peptides

were chosen randomly from all self-peptides. In the second,

the space of all self-peptides was divided up among K different

classes of mTEC, without overlap. For example, if there were

10 000 self-peptides and two classes of mTEC, we imagined

that an mTEC from the first class could present peptides

1–5000, and mTEC from the second class could present peptides

5001–10 000. These classes do not necessarily correspond to

different cell types: all mTECs may be the same but they may

have a number of different possible gene expression profiles

and switch between these (perhaps randomly) over time.

The impact of such correlation in the gene expression pro-

files of mTECs depends on the number of TCRs which need
to be triggered in the immunological synapse for negative

selection to occur. If only one TCR needs to be triggered,

then the most efficient strategy is to have no correlation, so

that all mTECs are capable of expressing all self-peptides at

any time (K ¼ 1). However, if more than one TCR needs to

be triggered, then, depending on the parameters, it can

become more efficient to correlate the self-peptides which

may be co-expressed (K . 1). Specifically, we find that if

there are m self-peptides and s TCR–pMHC complexes in the

immunological synapse, then for TCRs of sufficiently high

degeneracy (d p m/s) it is best to choose K ¼ 1 so that all

mTECs can present all peptides, but for lower degeneracies

(d o m/s) it is best to divide the mTECs into K � m/s classes,

each of which can present approximately s peptides. The

reason is as follows. For such degeneracies, the chance of find-

ing two or more matching peptides in a random sample of s
peptides from the whole pool becomes small. But if an mTEC

has a limited repertoire of peptides then, if this set happens

to contain one matching peptide, there is a much more signifi-

cant chance that two copies of it will be presented. We can

illustrate the general principle with the following toy problem.

Suppose there are just two distinct peptides, one of which

is recognized (H), and one which is not (T), that an mTEC

presents two peptides, and that a T-cell needs two hits to

be negatively selected. If all cells can present both peptides

then the probability of negative selection is 1/4: there are

four possibilities for presentation HH, HT, TH, TT and only

HH is negatively selected. Now suppose that in fact there

are two types of mTEC, one of which can only present H

and one which can only present T. Now the probability of

negative selection is 1/2: there are only two possibilities for

presentation: HH and TT.

Since high-degeneracy TCRs are easily removed, and the

negative selection of low-degeneracy TCRs is enhanced by

correlations in gene expression in mTECs, we anticipate

that such correlation may be biologically advantageous. Of

course, the overall efficiency of negative selection will

depend on the degeneracy distribution of the incoming thy-

mocytes: the system must find a balance between clearing

out the majority of high-degeneracy thymocytes efficiently,

and capturing the minority of low-degeneracy thymocytes

before they exit.

The advent of single-cell sequencing means that gene-

expression patterns in mTECs are now becoming available

[2], and it may soon be possible to test some of our predic-

tions. We view our work as a first step towards multi-scale

models that can incorporate next-generation sequencing

data and provide quantitative insights into the role of central

tolerance in the immune system.
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