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Abstract Image registration between planning CT images
and cone beam-CT (CBCT) images is one of the key technol-
ogies of image guided radiotherapy (IGRT). Current image
registration methods fall roughly into two categories: geomet-
ric features-based and image grayscale-based. Mutual infor-
mation (MI) based registration, which belongs to the latter
category, has been widely applied to multi-modal and mono-
modal image registration. However, the standard mutual in-
formation method only focuses on the image intensity infor-
mation and overlooks spatial information, leading to the in-
stability of intensity interpolation. Due to its use of positional
information, wavelet transform has been applied to image
registration recently. In this study, we proposed an approach
to setup CT and cone beam-CT (CBCT) image registration in
radiotherapy based on the combination of mutual information
(MI) and stationary wavelet transform (SWT). Firstly, SWT
was applied to generate gradient images and low frequency
components produced in various levels of image decomposi-
tion were eliminated. Then inverse SWT was performed on
the remaining frequency components. Lastly, the rigid
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registration of gradient images and original images was im-
plemented using a weighting function with the normalized
mutual information (NMI) being the similarity measure,
which compensates for the lack of spatial information in
mutual information based image registration. Our experiment
results showed that the proposed method was highly accurate
and robust, and indicated a significant clinical potential in
improving the accuracy of target localization in image guided
radiotherapy (IGRT).
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Abbreviations

CBCT Cone beam-CT

IGRT Image guided radiotherapy technology
SWT Stationary wavelet transform

NMI Normalized mutual information

3D CRT Three-dimensional conformal radiotherapy
IMRT Intensity modulated radiation therapy

MI Mutual information

Background

To achieve the best therapeutic outcome, modern radiotherapy
has attempted a variety of ways to maximize the damage to the
tumor while sparing surrounding normal tissues [1, 3—5]. The
accurate targeting of tumor has been playing an important role
in the implementation of successful radiotherapy, which in-
troduced the concept of image guided radiotherapy (IGRT).
As one of the key steps in targeting tumor, the registration
between planning CT images and CBCT (Cone beam-CT)
images has been widely explored and its techniques have been
improved significantly since the advent of CBCT.
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Image registration techniques generally rely on the infor-
mation of the images themselves. Current image registration
methods fall roughly into two categories: geometric features-
based and image grayscale-based [2]. To date, these image
registration methods have been widely used to perform the
registration between planning CT and CBCT images. Based
on the deformation with intensity simultaneously corrected, a
CT to CBCT deformable registration approach was proved to
be robust against the CBCT artifacts and intensity inconsis-
tency [3]. Free-form deformable registration algorithm, which
resulted in a high correlation between CBCT and the new
planning CT, was also successfully conducted [4].
Multiscale registration, which decomposed the registering
images into a series of scales and registered the coarser scales
of the images iteratively, was regarded as an effective method
for the registration between CT and daily CBCT images [5].
Registration techniques based on mutual information (MI)
belong to the image grayscale-based registration method and
have been widely applied to multi-modal and mono-modal
image registration tasks. A multi-modal retinal image regis-
tration, which was based on improved mutual information
using adaptive probability density estimation, resulted in high
accuracy and efficiency [6]. Three—dimensional registration
techniques based on mutual information could be also applied
to the alignment of brain tissues in magnetic resonance imag-
ing time-series or PET [7, 8]. A comparison between standard
mutual information and normalized mutual information indi-
cated that normalized mutual information is more stable and
robust in that it is immune to the variation of entropy [9]. The
application of mutual information is a very effective strategy
for image registration, but the traditional mutual information
method only focuses on the image intensity information, with
spatial information neglected, which leads to the instability to
intensity interpolation [10]. With regard to registration of
medical images, spatial information is very important and
should be incorporated into grayscale-based based registration
algorithms. A 3D-2D registration of CT and X-ray images
incorporated the spatial information in a variational approxi-
mation and obtained a high registration accuracy [11].
Positions with large gradient usually correspond to tissue
transition, which provides spatial information [12].
Therefore, wavelet transform was recently applied to image
registration [13, 14]. Daubechies complex wavelet transform,
which is shift invariant and provides phase information, was
successfully used to achieve the fusion of multimodal medical
images [15]. A flexible multiscale and shift-invariant repre-
sentation of registered images was firstly obtained by using
stationary wavelet transform, and then the registration through
pulse-coupled neural network was performed on the new
representation [16, 17].

Some studies incorporated the gradient information of
medical images in the mutual information to compensate for
the lack of spatial information [18, 19]. These methods
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produced gradient images using the sum of the squares of
the corresponding sub-band coefficients. However, gradient
images generated this way lack diagonal components, leading
to the loss of edge information and low registration accuracy.
In registrations between planning CT images and CBCT im-
ages, the noise in CBCT images usually results in poor reso-
lution in low contrast areas of the images and blurs edges of
images.

In this paper, we proposed a registration method based on
stationary wavelet transform (SWT) with translational invari-
ance. The translational invariance of the stationary wavelet is
conducive to highlighting edge features of an image and
improves the registration accuracy. Experiments showed that
our algorithm is robust.

Materials and methods
Materials

For planning CT images and setup CBCT images in radio-
therapy, Siemens large aperture CT and Varian Rapid Arc
CBCT are used for image registration. The image parameters
for CT are as follows: image matrix 512x512; pixels size
1.17x1.17 mm; the image parameters for CBCT are as fol-
lows: image matrix 384 x384; pixel size 1.27x1.27 mm. All
the participants gave their informed consent and the Ethics
Committee of Beijing Xuanwu Hospital Affiliated to Capital
Medical University approved the protocol of this study.

Methods

In our proposed method, the reference image and floating
images were decomposed with three levels using stationary
wavelet transform. Low-frequency components of wavelet
produced in all levels during the decomposition were set to
zero, and a gradient image of the original image was obtained
by performing inverse wavelet transform on remaining high-
frequency components. Then, the mutual information of the
original image and the gradient image was calculated by using
the normalized mutual information as the similarity measure.
Finally, a new similarity measure was synthesized with a
weighting function. The Powell algorithm was used for
multi-parameter optimization to produce the final spatial
transformation parameters for the image registration.

Stationary wavelet transform of image

Nason and Silverman introduced the stationary wavelet trans-
form in 1995 [20]. In contrast to orthogonal wavelets, station-
ary wavelet, also known as non-sampling wavelet transform,
has the properties of redundancy, translational invariance,
capability of providing more approximate estimation of
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continuous wavelet transform. As an effective mathematical
tool for edge detection [21-24], its advantages include the
local time-frequency characteristics and multi-resolution anal-
ysis capability of wavelet transform. The jth-level decompo-
sition of SWT is shown in Fig. 1.

The decomposition formulas of SWT are as follows:
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nent (LH), vertical high-frequency component (HL) and di-
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(2)
The components of the image after the SWT are shown in
Fig. 2.

Synthesized gradient image based on stationary wavelet
transform

The high-frequency sub-band of wavelet transform has the
ability to highlight the differences between neighboring pixels

High Pass }— 12 (= dj+1

Cj

Low Pass — 12 = Cj+1

Fig. 1 Schematic diagram of the jth level SWT decomposition. The
signal C; is decomposed into low frequency components ¢;;; and high
frequency components d;.; corresponding to the high pass and low pass
filters, respectively

in an image [25]. Large wavelet coefficient indicates the
boundary of two distinct intensity regions in the original
image. Stationary wavelet transform is translationally invari-
ant, which helps to identify the image edge features. In order
to improve the resolution of edge details, image with promi-
nent edge features can be reconstructed by using the inverse
SWT with the three groups of wavelet vectors (LH, HL, HH).
The CBCT image and the gradient image generated with SWT
are shown in Fig. 3.

Similarity measure

In this paper, mutual information is used as the similarity
measure. As a basic concept of information theory, mutual
information is generally used to describe the statistical corre-
lation between two systems, or the amount of informa-
tion of a system contained in another system. In
multimodality image registration, when the spatial posi-
tions of two images are completely consistent, the mu-
tual information, i.e., the information of one image
expressed by another image, is maximum. The mutual
information can be expressed by entropy which describes the
complexity or uncertainty of a system. The entropy of the
system A is defined as

= _ZPA

The joint entropy of two systems is defined as

ZPAB (a,b)logp5(a,b). (4)
a,b

a)logp,(a (3)

H(4,B) =

where a€A4, be B, and p 4(a) is the marginal probability density
function, p,4 g(a,b) is the joint probability density function.
The mutual information between the two systems is thus
expressed as

1(4,B) = H(A) + H(B)-H (4, B). (5)

Mutual information is sensitive to the amount of
overlap between images and normalized mutual infor-
mation (NMI) has been proposed to overcome this

problem. It is defined as
H(A)+ H(B)
MI(A,B) = ————.

NI (4,8) = = (©)

Registration method based on stationary wavelet transform

We denoted the normalized mutual information of the original
image as NMIi and that of the synthesized gradient image
based on the SWT as NMIg. They were calculated using
Eq. (1). Jiangang Liu merged original images with gradient
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Fig.2 The images produced after
the decomposition with SWT.
Parts a, b, ¢, d are the low
frequency components, the
horizontal high frequency
components, the vertical high-
frequency components and
diagonal components of the
stationary wavelet transform,
respectively

information using the method described below, and the new
similarity measure was given by [24]:

NMI = f(v(NMI;,NM1,))NMI; + (1=f (v(NM1;, NM1,)))NMI,

(7)

where
f(v) =1/(1 +exp(=(v-0.5)/T)) (8)
v(x,y) = (x+)/2 9)

The weighting function f(v) is shown in Fig. 4, where T
is a time constant used to control the shape of f(v). The
weighting function is essentially a logistic function, which
has the properties of saturation, differentiability and

Fig. 3 The CBCT image and the
gradient image produced after the
SWT. Part a is the original CBCT
image and Part b is the gradient
image after the SWT

@ Springer

nonlinearity. It also has a maximum and a minimum. f(v)
is an ideal weighting function for merging registration
function. According to our experience, T=0.04 is an ap-
propriate value.

Our method follows this procedure:

Step 1: decompose the reference image R and floating
image F respectively using stationary wavelet transform;
Step 2: assign the coefficients of low-frequency in all
levels of stationary wavelet decomposition to zero and
perform inverse transform to reconstruct corresponding
gradient images;

Step 3: combine the original image and the synthesized
gradient image using the weighting function to form a
new similarity measure;
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Fig. 4 Weighting function f(v). The shapes of the weighting function
depends on the parameter T, the blue line, the red line and the green line
are corresponding to the T values of 0.04,0.1 and 0.001, respectively

Step 4: use the Powell multi-parameter optimization al-
gorithm to optimize the space transformation parameters
(Ax, Ay, 0) and the registration is completed.

Optimization algorithm

Two-dimensional image registration is essentially a
multi-parameter optimization problem, namely, searching
three optimal registration parameters (two translational
parameters and a rotational parameter) to maximize the
mutual information. In this paper, the Powell multi-
parameter optimization algorithm and the Brent one-
dimensional search algorithm are used to optimize the
parameters.

Results

Our algorithm was implemented in Matlab R2008a. We se-
lected ten medical images as the reference images, and the
floating images were generated with spatial transformation of
the corresponding reference images. As the preset transforma-
tion parameters in X and Y directions and the rotation angle 6
(As shown in Table 1) were known, judgment of the correct-
ness and registration accuracy of the algorithm was straight-
forward. The smaller the gray level difference between the
image F after registration and the reference image R is, the
higher the registration accuracy is.

Root mean square error (MSE), which is defined as fol-
lows, is employed as the registration error [26—29].

1

MN 4

l

M N
MSE = [R(i, )= F (i, ). (10)
|

=

The smaller the values of MSE are, the higher the registra-
tion accuracy is. If two images are identical, the MSE=0. We
took ten images with preset transformation parameters as the
experiment data, the experiment results of which are shown in
Table 1.

Judged from the above experiment results, the proposed
registration method is accurate (on the order of subpixel) and
robust. However, compared with mutual information registra-
tion, the proposed method is time-consuming, because it
needs to calculate not only the mutual information between
the original images, but also the mutual information with the
gradient images, which increases the computation load.

The CBCT image is shown in Fig. 3a. Because of smaller
image matrix and larger pixel size, CBCT images must be up-
sampled to the size of the CT image before the registration.
Due to a considerable difference between our CT and CBCT

Table 1 Experiment results and

error Image  Preset Our proposed The mutual MSE of pre-  MSEI MSE2
transformation ~ method information registration
parameters (Ax, Ay,0) method
(Av, Ay, ) (A, A 6)
1 10153 10153 10.04 14.96 —2.99  29.2475 0 0.8284
2 1010 -3 1010 -3 10.05 9.96 —2.88 29.0496 0 54321
3 20153 19.9515.04-3.01 2015-3 32.5702 0.5904 0
MSE] registration error of the 4 20-10 -5 20-10-5 20-10 -5 38.3434 0 0
proposed method; MSE2 registra- 5 18-8-345  18-8-3.45 18. -8 —3.45 36.2414 0 0
tion error of the mutual informa-
tion method; 6 30203 3019.99 -3 31.6319.32 -3 32.2632 0.07 8.2306
A, Ay are transformation param- 7 10253 10253 10253 31.3465 0 0
eters along X and Y directions, 8 10 -16 -3 10-16 -3 10.02 —-16.01 -3 35.8125 0 0.1496
both measured in mm; 9 582 582 582 28.4468 0 0
0 is the rotation angle of the trans- 10 10122 10122 10122 30.8140 0 0

formation, measured in rad
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Table 2 Registration results of the CT and CBCT images

Image Preprocessing Results of Results of mutual
parameters proposed method information method
(Ax, Ay, 0) (Ax, Ay,0) (Ax, Ay, 0)

1 80800 —3.28 -46.22-0.30 —2.5000 —45.78 —0.15

2 80850 —1.89 -41.29-0.04 —17.18 -27.90 —3.42

3 80900 —2.13-36.25-0.05 —2.00 —36.34 —0.03

4 80950 -1.71 -31.43 -0.03  —3.73 —29.93 -0.32

5 801000 —2.33-26.11-0.09 —2.36-25.91-0.11

6 85800 246 -46.25-0.06  2.33-45.77-0.16

7 90800 7.26 —46.38 —0.04  8.40 —46.59 0.02

8 95800 12.53 —45.93 -0.11  12.61 —46.09 —0.10

9 100 800 18.39 —46.49 —0.01  17.82 —46.22 —0.06

10 105 80 0 23.58 -46.76 0.05  22.83 —46.22 —0.06

Ax, Ay are transformation parameters along X and Y directions, and the
corresponding units are mm and mm;

0 is the rotation angle of the transformation, and the corresponding unit is
rad

images, the initially linear shifting (80 and 80 mm along X
and Y directions, respectively) of the CBCT images was
performed to manually narrow the difference for the reduc-
tion of latter registration time. In order to test the CT and
CBCT images registration algorithm, we generated ten
images by performing manual spatial transformation to
CBCT images in advance (as shown in Table 2).
Among the ten images, five images were transformed
in Y direction linearly, and other five images were
transformed linearly in X direction. They were then
registered with the corresponding layer of CT images.
If the corresponding translation term of the registration
is linear, and the rotation angle is close to 0°, high registration
accuracy is indicated. The registration results are shown in
Table 2.

25

a —&— manually transformation
~——+—— trans formation of proposed method
E 20l tranformation of standard M| L
£ 3
=
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The manually transformed CBCT Images

Fig. 6 Results of registering CBCT to CT images. Part a is the original P>
CT image; Part b is the CBCT image; Part ¢ is the registration result by
using conventional MI method; Part d is the .registration result by using
our proposed method; Part e is the fusion of CBCT and CT images with
conventional MI method; Part f is the fusion of CBCT and CT images
with our proposed method; Part g is the difference (f-e) of registered
CBCT images by using the two methods

In order to compare our proposed method with standard
mutual information, the linearity of the transforming variation
along X and Y directions was represented in Fig. 5

As can be seen from Table 2 and Fig. 5, with our proposed
method, the translations in the Y direction in the first five
images, and in the X direction in the last five images appear
linear. Therefore, the proposed method is more robust than the
traditional mutual information registration. The registration
results of CBCT to CT images are shown in Fig. 6.

Discussion

Based on mutual information and stationary wavelets trans-
form, the registration of CT and manually transformed CT
images resulted in a lower MMSE compared with standard
mutual information, which indicated that the algorithm we
proposed was more accurate. The registration results of CT
and CBCT images showed that the transformation parameters
of our registration method was more linearly related to the
preprocessing parameters along the corresponding directions,
which indicated that our method was also more robust. The
stationary wavelet transform can be applied to obtain the spatial
information of the registered images and the normalized mutual
information can be used as the similarity measure in the regis-
tration. The combination of the above techniques yielded an
effective registration of CT and CBCT, which is indispensable
for the accurate location of tumor in radiotherapy. In our future

b —&— manually transformation
— —#— transformation of proposed method
E 201 tranformation of standard M| /
=
QL
[
€ 15t /
@
g8
8 10}
€
=
]
g sf -

15 2 25 3 35 4 45 5
The manually transformed CBCT Images

Fig. 5 The linearity of transformation parameters in X and Y directions. Part a shows the transformation in Y direction and part b shows the

transformation in X direction
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investigation, we will focus on improving the speed of the
algorithm. In addition, compared with other methods, the pro-
posed registration algorithm calculated the mutual information
of the original image and the gradient image respectively, which
increases the computational cost. Shortening the algorithm
running time will be the focus of our further research.

There are still some limits in our work. Firstly, we just tried
to use the gradient information to investigate the effects of
registration between CT and CBCT images, so compared with
other state-of-art method performing on multimodal image
registration (such as registration of CT, MRI, PET images,
etc. ) [30-34], our proposed method may not perform so well.
In our future work, we will continue to improve our method
and apply it on multimodal images for a further evolution.

Conclusions

In this paper, we proposed a medical image registration algo-
rithm based on SWT and mutual information. The algorithm
synthesizes a gradient image based on the translational invari-
ance of SWT, and incorporates it into the mutual information
calculation of the original image by the weighting function to
obtain a new similarity measure. The proposed method effec-
tively overcomes the weakness of mutual information regis-
tration for the lack of spatial information. Experiment results
showed that the proposed method is robust and accurate. As
for the registration between planning CT images and setup
CBCT images in radiotherapy, SWT is data redundanct and
translationally invariant, which is conducive to identify sharp
variations in the image. Furthermore, image reconstruction
based on SWT tends to highlight edge features, and enhances
the resolution of edge details. In particular, for noisy CBCT
images, we can extract more accurate gradient information
from the images, thereby the accuracy of the registration can
be improved.
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