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In genetic association studies with high-dimensional genomic data, multiple group testing procedures are often required in 
order to identify disease/trait-related genes or genetic regions, where multiple genetic sites or variants are located within the 
same gene or genetic region. However, statistical testing procedures based on an individual test suffer from multiple testing 
issues such as the control of family-wise error rate and dependent tests. Moreover, detecting only a few of genes associated 
with a phenotype outcome among tens of thousands of genes is of main interest in genetic association studies. In this reason 
regularization procedures, where a phenotype outcome regresses on all genomic markers and then regression coefficients 
are estimated based on a penalized likelihood, have been considered as a good alternative approach to analysis of 
high-dimensional genomic data. But, selection performance of regularization procedures has been rarely compared with 
that of statistical group testing procedures. In this article, we performed extensive simulation studies where commonly used 
group testing procedures such as principal component analysis, Hotelling’s T2 test, and permutation test are compared with 
group lasso (least absolute selection and shrinkage operator) in terms of true positive selection. Also, we applied all methods 
considered in simulation studies to identify genes associated with ovarian cancer from over 20,000 genetic sites generated 
from Illumina Infinium HumanMethylation27K Beadchip. We found a big discrepancy of selected genes between multiple 
group testing procedures and group lasso. 
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Introduction

In human genetic association studies with high-dimen-
sional genomic data, a multiple group testing procedure is 
often required to identify genes or genetic regions that are 
associated with a disease or a trait since a gene or a genetic 
region usually contains multiple genetic sites or variants. For 
instance, single nucleotide polymorphism data, DNA me-
thylation data and sequencing data consist of tens of 
thousands of genes where each gene has multiple genetic 
sites. In order to identify genes or genetic regions associated 
with a phenotype outcome, we need to conduct an individual 
group test for each gene. However, an individual test for 
high-dimensional genomic data suffers from multiple tes-
ting issues such as the control of family-wise error rate 
(FWER) or dependent tests. In this reason, Bonferroni 
adjustment or false discovery rate (FDR) control methods 

[1-3] should be performed after computing the p-value of a 
multiple group test for individual genes or genetic regions. 

Alternatively, regularization procedures using a penalized 
likelihood can be applied for analysis of high-dimensional 
genomic data. Basically, regularization procedures perform 
variable selection based on a parametric regression with a 
penalty function, where a phenotype outcome regresses on 
all of genetic sites. As a tuning parameter for sparsity is 
decreasing, the most outcome-related genetic sites can be 
sequentially selected. One of the most popular regulari-
zation procedures for high-dimensional genomic data is 
lasso (least absolute shrinkage and selection operator) [4-6]. 
For group selection such as a gene or a genetic region, group 
lasso can be applied to high-dimensional genomic data that 
has a group or a cluster structure [7, 8]. Since regularization 
procedures do not test but select a gene or a genetic region 
associated with a phenotype outcome, the control of FWER 
or FDR is not required. However, the selection of the optimal 
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tuning parameter is crucial to determine the number of the 
outcome-related genes or genetic regions. 

The main goal of both the individual group test and the 
group selection procedure is to identify disease/trait-related 
genes or genetic regions in analysis of high-dimensional 
genomic data. Although these two different statistical 
methods have the same goal, there have been rarely 
statistical literatures which compare either test performance 
or selection performance of two statistical methods since 
hypothesis testing and variable selection have been 
considered as completely different approaches in statistics. 
In genetic association studies, however, the testing pro-
cedure essentially determines whether each gene or each 
genetic region is significantly associated with a phenotype 
outcome or not, while variable selection makes a conclusion 
which genes or genetic regions are associated with a 
phenotype outcome. Therefore, we can directly compare the 
true positives of the group test procedure and the group 
selection procedure when they identify the same number of 
disease/trait-related genes or genetic regions. 

In this article, we conduct extensive simulation studies in 
order to compare the performance of both group testing 
procedures and group selection procedure in terms of true 
positives. That is, the total number of correctly identified 
genes or genetic regions is compared when the same number 
of genes or genetic regions is detected. The simulation 
studies focus on a case-control association study with 
high-dimensional genomic data which has a group or a 
cluster structure. For group testing procedures, we consider 
commonly used three methods such as principal component 
analysis (PCA), Hotelling’s T2 test, and permutation test. 
For group selection procedure, we employ group lasso. 
These four statistical methods are also applied to real 
high-dimensional DNA methylation data where DNA 
methylation beta values of CpG sites from approximately 
12,000 genes between ovarian cancer cases and healthy 
controls were generated from Illumina Infinium Human-
Methylation27K Beadchip (Illumina Inc., San Diego, CA, 
USA). 

Methods
Principal component analysis

PCA is one of the most common statistical approaches to 
data dimension reduction [9]. It basically transforms multiple 
variables to have orthogonality so the first principal com-
ponent can be expressed as a weighted linear combination of 
variables. The weights of the first component are computed 
such that the component can account for the greatest 
possible variance of multiple variables. In case-control 
association studies of genomic data with a group structure, 

we can apply PCA for each gene or genetic region, where data 
information of multiple genetic sites within the same gene or 
genetic region can be reduced to a single numerical vector 
corresponding to the first principal component. Then, a 
phenotypic association of the principal component can be 
tested based on the independent two sample T-test. Sta-
tistical approaches based on PCA have been widely applied 
to analysis of high-dimensional genomic data [10-12]. 

Hotelling’s T2 test

Hotelling’s T2 test is one of the representative multivariate 
tests used when significant differences between the mean 
vectors of two multivariate data sets are tested. It is known 
as a powerful multivariate test as long as data satisfies 
necessary assumptions such as random samples, multi-
variate normality and equivalent variance and covariance 
matrices between two groups. In genetic association studies 
with microarray data, the Hotelling’s T2 test is often applied 
to find differentially expressed genes [13, 14]. We also 
applied the Hotelling’s T2 test for each gene or genetic region 
to test a significant difference between cases and controls. 
We employed an R package ‘Hotelling’ for simulation studies 
and real data analysis.

Permutation test

Permutation test is a nonparametric statistical test used 
when an underlying distribution of genetic data is not need 
to be assumed. If the derivation of a theoretical distribution 
of a test statistic is challenging, permutation test can be 
employed to compute an empirical p-value of the test 
statistic. For genomic data with a group structure, we first 
compute an individual p-value of a phenotypic association 
test for each genetic site. We then combine K p-values such 
that ∑    , where  is the p-value of the the i-th 
genetic site, and K is the total number of genetic sites in the 
gene or genetic region. Next, we repeatedly permute 
case-control labels and compute ∑     for each 
permutation set. After we obtain the empirical distribution 
of ∑    , we can easily calculate the empirical 
p-value from the original case and control set. This permu-
tation based test for genomic data with a group structure has 
been demonstrated to be very efficient and powerful when 
we need to aggregate the information of multiple genetic 
sites [15]. 

Group lasso

Statistical association tests above should be conducted to 
each gene or each genetic region one at a time, so the 
individual tests cannot consider genetic correlations among 
genes. But, genes linked with each other on genetic pathways 
or genes that have an interaction effects on a phenotype 
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outcome can have a functional relationship with each other. 
Since their correlations could be important information for 
genetic association studies, a statistical model that can 
includes all of genetic information is often preferred. Regu-
larization procedures can be conducted to entire genomes in 
a regression framework, where a phenotype outcome is 
regressed on all of genetic data. The solution of regression 
coefficients can be achieved, constraining the parameter 
space of regression coefficients. This constraint actually 
enables to obtain the coefficient solution even if the number 
of genes is much greater than a sample size. Depending on 
the parameter space constraint, a type of regularization 
procedure is determined. Group lasso regularizes regression 
coefficients such that the sum of L2 norm of the coefficients 
for each group is less than an arbitrary value [7]. The arbi-
trary value is corresponding to a tuning parameter value for 
sparsity. For a fixed tuning parameter λ, the estimated 
regression coefficients β=(β1,β2,…,βm)T of group lasso 
maximizes  

    
 



∥∥ ,
where l(β) is a logistic likelihood, and mk is the total 

number of genetic sites of the k-th gene, i.e., βk=(βk1,
βk2,…,βkmk)

T. The L2 norm of βk is defined as 

∥∥  ∑   
 .

In genomic data analysis with a group structure, group 
lasso sequentially selects the most outcome-related gene or 
genetic region. The selection results rely on the tuning 
parameter value λ since we have different coefficient esti-
mates for a value of λ. As λ decreases, the number of 
selected genes is gradually increased. In general, we select 
the k-th gene if the estimated regression coefficients βk are 
nonzero. In group lasso, the estimated regression coeffi-
cients of all genetic sites belong to selected genes or genetic 
regions are nonzero while all genetic sites of unselected 
genes or genetic regions have the exactly zero regression 
coefficients. Therefore, group selection can be performed 
based on the solution of regression coefficients for a fixed 
value of λ. Note that the numerical values of estimated 
coefficients βk are not of interest since group lasso performs 
selection but not prediction. That is, we see if βk = 0 or not.

In our simulation studies and real data analysis, we first 
started with a relatively large λ value which is large enough 
that the solution to all regression coefficients can be exactly 
zero. In this case, no genes are selected. We then gradually 
decreased the value of λ until a single gene has nonzero 
regression coefficients of its genetic sites. This gene is 
considered as the top rank gene. In the same way, we can find 

the second ranked gene as λ continues to be decreasing. 
Eventually, we can obtain a list of top ranked genes. Since we 
compared a particular number of top selected genes with the 
same number of top significant genes computed by multiple 
testing procedures, we didn’t need to find the optimal λ 

value in the simulation studies and real data analysis. Group 
lasso has been widely applied for analysis of high-dimen-
sional genomic data [8, 16]. We used an R package ‘gglasso’ 
for simulation studies and real data analysis. 

Results
Simulation studies

In this simulation study, we compared true positive rates 
of three group testing procedures and one selection 
procedure such as PCA, Hotelling’s T2 test, permutation 
test, and group lasso selection procedure when the same 
number of genes is identified by four statistical methods. We 
conducted two different simulation studies, where the first 
simulation assumed that all genes are independent with each 
other and the second simulation assumed that genes are 
correlated with each other according to a given network 
information. 

In the first simulation studies, we assumed that a single 
gene consists of 5 genetic sites. Numerical data of the five 
genetic sites within the same gene were generated from a 
multivariate normal distribution of N(μ,∑), where a mean 
vector μ has a different value between cases and controls if 
the gene is causal, but μ has the same value between cases 
and controls if the gene is noncausal. The covariance matrix 
∑ represents a correlation pattern of the five genetic sites 
within the same gene and we assumed an AR(1) correlation 
matrix, i.e., ∑   ≤   ≤    , where ρ is a 
correlation coefficient fixed as ρ=0.3,0.5, or 0.7 in the 
simulation. We considered 1,000 genes so we have a total of 
5,000 genetic sites in the simulation data, where 100 cases 
and 100 controls were generated. Only 20 genes out of 1,000 
genes are assumed to be causal. Note that the simulated 
1,000 genes are independent with each other.

Three group testing procedures were applied to individual 
genes and the p-values of testing the mean difference bet-
ween cases and controls were computed for 1,000 genes. The 
p-values of each testing procedure were then listed from the 
smallest to the largest. Finally, top 20, 30, and 40 genes were 
selected for each testing procedure based on the 20, 30, and 
40 smallest p-values, respectively. In contrast, group lasso 
procedure sequentially selects the most outcome-related 
genes as a tuning parameter for sparsity is decreasing. Since 
we can easily control the tuning parameter value, we were 
able to select the top 20, 30, and 40 genes. True positives rate 
of the selected genes from the four statistical methods were 
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Fig. 1. Averaged true positive rates of top 20, 30, and 40 genes detected by principal component analysis (PCA), Hotelling’s T2 test
(Hotel), permutation test (Permut), and group lasso are displayed along with a different correlation coefficient ρ of 0.3, 0.5, and 0.7,
and a different mean difference μ of 0.3 and 0.4 between cases and controls.

Fig. 2. An example of a simulated network graph with 100 genes
used in the second simulation study is present. The colored 45 
genes are assumed to be causal genes.

computed along with two different values of μ=0.3 and 0.4. 
That is, only 20 causal genes were assumed to have a mean 
difference by either 0.3 or 0.4 between cases and controls. 
True positive rates stand for the proportion of correctly 
identified genes among the 20 causal genes. The simulation 
was repeated 100 times and averaged true positive rates of 
four statistical methods over 100 simulation replications 

were summarized in Fig. 1. 
In Fig. 1, it appears that all of true positive rates are overall 

increased as the mean difference is increasing and the 
correlation coefficient is decreasing. In high-dimensional 
data analysis, it is often observed that detection power is 
decreased due to highly correlated variables. We can see the 
similar result of decreased true positive rates for highly 
correlated genetic sites. When we compared four statistical 
methods, both PCA and permutation test seem to have the 
largest true positive rates in all simulation settings, while 
Hotelling’s T2 test show the lowest true positive rates in all 
settings. The true positive rates of group lasso procedure 
seem to be higher than those of Hotelling’s T2 test, but 
slightly lower than those of both PCA and permutation test. 
Consequently, we can conclude that group lasso procedure 
shows similar selection performance as the group hypo-
thesis testing procedures in the first simulation study. 

In the second simulation study, we generated 1,000 genes 
where each 100 genes are truly correlated with each other 
according to the simulated genetic network in Fig. 2. So, we 
have 10 network groups each of which consists of 100 genes. 
Similar to the first simulation study, genetic data was 
generated from N(μ,∑), where the covariance matrix ∑ is 
an inverse of a precision matrix Ω In a Gaussian graphical 
model [17], nonzero entries of the precision matrix corre-
spond to links between two genes of a network graph. 
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Fig. 3. Averaged true positive rates of
principal component analysis (PCA), 
Hotelling’s T2 test, permutation test, 
and group lasso are displayed along 
with a different number of selected 
genes when the number of causal ge-
netic sites (N) among 10 sites in a 
gene is 2, 5, or 10, and the standard
deviation of an error terms (σ) to 
control a noise level is 1.5, 2, or 2.5.

Therefore, we could obtain the precision matrix Ω according 
to the given network in Fig. 2 in the same way described [12, 
18]. Our simulation data consists of 100 cases and 100 
controls over 1,000 genes, where only 45 genes within the 
same network have a different mean μ between cases and 
controls. Let us denote the j-th gene by χj . Since our 
simulation study should be conducted for genetic sites with 
a group structure, we additionally generated 10 genetic sites 
for each gene. If the first N genetic sites among 10 sites are 
causal and the other 10 - N genetic sites are noncasual, the N 
sites of the the j-th gene were generated such that χjk  = χj  
+ N(0,σ

2
), k = 1, 2, ..., N and χjk  = N(0,σ

2
) for k = N + 1, 

..., 10. Finally, we have a total of 10,000 genetic sites with 
200 samples. In the simulation, we discarded all simulated 
genes χj  for j = 1, 2, ..., 1,000. Instead, we used only 10,000 
genetic sites where each 10 sites consist of one gene. In this 
simulation setting, 10 genetic sites within the same gene are 
not only correlated with each other, but they are also 
correlated with the other 10 genetic sites within the different 
genes that are linked with each other according to the genetic 
network. 

We also applied four statistical methods used in the first 
simulation study. We fixed the number of causal genetic sites 
per gene as N = 2, 5, or 10. Since only 45 genes are causal, the 
number of causal sites is 90, 225, or 450 among 10,000 sites, 
respectively. The standard deviation σ to control a noise 

level was set to be 1.5, 2, or 2.5. Higher standard deviation is 
likely to produce stronger noises, so true positive rates are 
expected to be decreased. Simulation was repeated 100 
times and averaged true positive rates of top 10 genes to top 
100 genes selected by four methods are summarized in 
Fig. 3.

In Fig. 3, PCA overall shows the best selection perfor-
mance except when the noise level is either moderate or 
strong, and the number of causal genetic sites is small, i.e., 
N = 2 and σ= 2 or 2.5. As the number of causal sites in a 
gene is decreasing, the true positive rates of three group 
testing procedures seem to be decreasing together. However, 
we can see that the true positive rates of group lasso are 
almost the same regardless of the number of causal sites in 
a gene. As we mentioned earlier, group lasso enforces the 
regression coefficients of genetic sites in the selected genes 
to be nonzero even if only a few genetic sites are causal and 
majority is noncausal. In this reason, the selection perfor-
mance of group lasso does not affected by the number of 
causal and noncausal sites in the same gene. When all of 
genetic sites in the same gene are causal (N = 10), both PCA 
and permutation test overwhelm the other two methods. 
Since computation of the test statistics of two methods is 
based on individual genetic sites, they should be statistically 
powerful when all of sites in the same gene are causal. In the 
second simulation, the Hotelling’s T2 test shows the worst 
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Table 1. Top 20 gene lists and their p-values detected by PCA and Hotelling’s T2 test and top 20 gene list selected by group lasso

Top
PCA Hotelling’s T 2 Group lasso

Gene p-value Gene p-value Gene

1 KCNE1 7.70 × 10–17 AIF1 ＜10–18 BRD4
2 LMO2 2.78 × 10–16 BRD4 ＜10–18 C20orf65

3 RNASE3 4.44 × 10–16 FCGR3B ＜10–18 C21orf56

4 GPR97 5.89 × 10–16 KCNE1 ＜10–18 CCL26

5 NFE2 1.39 × 10–15 FYB 1.11 × 10–16 CDH3

6 ENTPD1 4.50 × 10–15 NFE2 2.22 × 10–16 CXorf36

7 CSF3R 5.79 × 10–15 CTSG 4.44 × 10–16 GPR97

8 POR 6.21 × 10–15 PNPLA2 5.55 × 10–16 H2BFS

9 FYB 7.59 × 10–15 LMO2 6.66 × 10–16 HKR1

10 PPP2R4 1.64 × 10–14 GPR97 8.88 × 10–16 HLA-DQB2

11 PNPLA2 3.78 × 10–14 ELOVL3 3.77 × 10–15 KCNE1

12 IL27 4.52 × 10–14 RNASE3 3.77 × 10–15 LAX1

13 CSTA 5.30 × 10–14 NR1I2 4.44 × 10–15 LY9

14 CIAS1 1.32 × 10–13 CSF3R 5.33 × 10–15 NALP2

15 ELOVL3 2.79 × 10–13 POR 8.55 × 10–15 NYD-SP18

16 CD22 2.85 × 10–13 TRPM2 1.27 × 10–14 OLFML2A

17 MPO 2.95 × 10–13 PPP2R4 1.37 × 10–14 PTPN20B

18 CTSG 5.58 × 10–13 CIAS1 1.83 × 10–14 SLC9A2

19 C10orf27 7.96 × 10–13 CSTA 2.86 × 10–14 TM4SF1

20 GPR109A 9.45 × 10–13 ENTPD1 2.89 × 10–14 ZNF681

PCA, principal component analysis.

selection of true positives in all simulation settings. This is 
due to relatively high correlation among genetic sites in the 
same genes. We have already seen that the true positive rates 
of Hotelling’s T2 test were drastically decreased as the 
correlation was increasing in the first simulation study. 

Analysis of ovarian cancer DNA methylation data

Next, we applied four statistical methods to real ovarian 
cancer DNA methylation data. Ovarian cancer DNA meth-
ylation data generated from Illumina Infinium Human-
Methylation27K Beadchip has been already applied to 
identify CpG sites and genes associated with ovarian cancer 
from some different studies [19-21]. The methylation data 
set consists of 20,461 CpG sites from 12,770 genes with 152 
controls and 119 cases. Many genes have either one or two 
CpG sites and some genes have up to 9 CpG sites. Since our 
four statistical methods can be applied to genomic data with 
a group structure, and our main goal of this study is to 
compare group testing procedures with group selection 
procedure, we excluded genes that have only one CpG site in 
the analysis. So, we ended up with 14,627 CpG sites from 
6,936 genes which have at least two CpG sites. 

In the exactly same way used in the simulation studies, we 
identified top 20 genes for each method. Table 1 shows the 
top 20 genes and their p-values computed by PCA and 
Hotelling’s T2 test. Also, 20 selected genes by group lasso 
procedure are included in the table. For the permutation test, 
we permuted the data over 1,000,000 times, but we found 
that the empirical p-values of 246 genes are still less than 10–7. 
Due to time limit, we cannot reduce down the number of 
genes in the top list of permutation test anymore. Therefore, 
we had to finalize with top 246 genes detected by permu-
tation test. For each statistical method, Fig. 4 summarizes 
the number of overlapped genes among top 20 genes by the 
other three methods. 

In Fig. 4, it appears that 15 genes in the top 20 list of PCA 
is also in the top 20 list of Hotelling’s T2 test, while only 2 
genes in the top 20 list of PCA is in the top 20 list of group 
lasso. Similarly, we can see that only 3 genes in the top 20 list 
of Hotelling’s T2 test is in the top 20 list of group lasso. Top 
246 genes detected by permutation test include all of the 20 
genes detected by both PCA and Hotelling’s T2 test, but only 
7 genes among the 246 genes are overlapped with top 20 
genes selected by group lasso. This result indicates that 
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Fig. 4. The number of overlapped genes
and non-overlapped genes in the top
20 lists of principal component an-
alysis (PCA), Hotelling’s T2 test, per-
mutation test, and group lasso are 
displayed in analysis of ovarian cancer
DNA methylation data.

Fig. 5. The number of overlapped 
genes and non-overlapped genes in 
the top 246 lists of principal component
analysis (PCA), Hotelling’s T2 test, pe-
rmutation test, and group lasso are 
displayed in analysis of ovarian cancer
DNA methylation data.

genes selected by group lasso are quite different from genes 
detected by three group testing procedures. 

Next, we identified top 246 genes by each of four different 
statistical methods since the minimum number of genes 
detected by permutation test is 246. Fig. 5 summarizes the 
number of overlapped genes among 246 genes by the other 
three methods. It seems that three group testing procedures 
of PCA, Hotelling’s T2 test and permutation test have from 
164 (66.67%) to 205 (83.73%) overlapped genes with each 
other. In contrast, group lasso selection procedure have only 
24 (9.76%) to 31 (12.60%) overlapped genes with three 

group testing procedures. In this result, we can conclude that 
most of genes selected by group lasso are very different from 
genes detected by multiple group testing procedures in 
high-dimensional DNA methlyation data analysis. 

In the first simulation study three group testing pro-
cedures and group lasso selection procedure show very 
similar selection performance. However, selection perfor-
mance of four methods was quite different from each other 
in the second simulation study. We demonstrated that true 
positive selection could vary on the number of causal sites 
and the noise level. In analysis of ovarian cancer DNA 
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methylation data, we found that group lasso identified quite 
different genes, compared with three group testing pro-
cedures. In general, regularization procedures like group 
lasso are known as a good alternative method to testing 
procedures when we identify disease or trait associated 
genes with high-dimensional genomic data, where the 
number of genes far exceeds the number of samples. 
However, our investigation found that many genes selected 
by group lasso are rarely overlapped with genes detected by 
three group testing procedures, which detected many 
overlapped genes. The similar situation was observed when 
the number of causal sites is small and the noise level is 
relatively large in our second simulation study. In that case, 
true positive rates of group lasso are much higher than those 
of three group testing procedures, where three testing 
procedures shows the almost same selection performance. 
In real DNA methylation data multiple genes are usually 
highly correlated with each other. Moreover, the number of 
causal sites could be small and the noise level could be large. 
But, further biological investigation with genes selected by 
group lasso should be conducted to figure out the main 
reason of this big discrepancy between group lasso and 
group tests in analysis of DNA methylation data. 

Discussion

In this article, we compared group testing procedures with 
group lasso selection procedure when high-dimensional 
genomic data with a group structure are used for case-control 
genetic association studies. In statistics, hypothesis testing 
and variable selection are regarded as totally different 
statistical methods since their objectives are different from 
each other. Therefore, the comparison of these two sta-
tistical approaches has not been studied much. However, in 
genetic association studies with high-dimensional genomic 
data, both testing and selection procedures have the same 
goal which is to identify genes of genetic regions that are 
associated with either a disease or a trait. Particularly, many 
types of high-dimensional genomic data consist of multiple 
groups where each gene or each genetic region contains 
some genetic sites or variants. So, our research focused on 
the comparison of group testing procedures and group lasso 
selection procedure. 

In simulation studies, we found that the selection per-
formance of group lasso and group testing procedures could 
be similar or very different from each other. It depends on 
data structure such as correlation strength and patterns 
among genes, the number of causal sites in a gene and noise 
levels. In real data analysis, it was surprising that group lasso 
identified many different genes that are not detected by 
group testing procedures in ovarian cancer association 

studies of DNA methylation data. Although group lasso is 
known as one of the most commonly used selection methods 
in statistics when the number of variables is much greater 
than a sample size, it shows unexpected selection results in 
ovarian cancer data analysis. In contrast, multiple group 
testing procedures including PCA, Hotelling’s T2 test and 
permutation test identified almost the same genes asso-
ciated with ovarian cancer. Since multiple group testing 
procedures are still the most popular method for medical 
doctors and geneticists to apply for high-dimensional geno-
mic data with a group structure, we might need to further 
investigate the validity of group lasso selection procedure in 
genetic association studies. In future study, our investigation 
will focus on finding additional reasons that we had many 
genes detected by group test procedures but missed by group 
lasso in ovarian cancer data. 
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