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Abstract 

Background: Driven by deep learning, inter-residue contact/distance prediction has 
been significantly improved and substantially enhanced ab initio protein structure 
prediction. Currently, most of the distance prediction methods classify inter-residue 
distances into multiple distance intervals instead of directly predicting real-value 
distances. The output of the former has to be converted into real-value distances to be 
used in tertiary structure prediction.

Results: To explore the potentials of predicting real-value inter-residue distances, 
we develop a multi-task deep learning distance predictor (DeepDist) based on new 
residual convolutional network architectures to simultaneously predict real-value 
inter-residue distances and classify them into multiple distance intervals. Tested on 
43 CASP13 hard domains, DeepDist achieves comparable performance in real-value 
distance prediction and multi-class distance prediction. The average mean square 
error (MSE) of DeepDist’s real-value distance prediction is 0.896 Å2 when filtering out 
the predicted distance ≥ 16 Å, which is lower than 1.003 Å2 of DeepDist’s multi-class 
distance prediction. When distance predictions are converted into contact predictions 
at 8 Å threshold (the standard threshold in the field), the precision of top L/5 and L/2 
contact predictions of DeepDist’s multi-class distance prediction is 79.3% and 66.1%, 
respectively, higher than 78.6% and 64.5% of its real-value distance prediction and the 
best results in the CASP13 experiment.

Conclusions: DeepDist can predict inter-residue distances well and improve binary 
contact prediction over the existing state-of-the-art methods. Moreover, the predicted 
real-value distances can be directly used to reconstruct protein tertiary structures bet-
ter than multi-class distance predictions due to the lower MSE. Finally, we demonstrate 
that predicting the real-value distance map and multi-class distance map at the same 
time performs better than predicting real-value distances alone.
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Background
Recently, the accuracy of protein inter-residue contact prediction has been substan-
tially increased due to the development of residue-residue co-evolution analysis 
methods effectively detecting the directly correlated mutations of contacted residues 
in the sequences of a protein family, such as Direct Coupling Analysis (DCA) [1], 
plmDCA [2], GREMLIN [3], CCMpred [4], and PSICOV [5]. The capability of these 
methods to extract the correlated mutation information for contact prediction largely 
depends on the number of effective sequences in multiple sequence alignment (MSA) 
of a target protein. Due to the advancement in the DNA/RNA sequencing technol-
ogy [6, 7], many proteins have a lot of sufficiently diverse, homologous sequences 
that make their contact/distance prediction fairly accurate. However, for targets 
with a small number of effective homologous sequences (i.e. shallow sequence align-
ments), the co-evolutionary scores are noisy and not reliable for contact prediction. 
The problem can be largely addressed by using noisy co-evolutionary scores as input 
for advanced deep learning techniques that have strong pattern recognition power to 
predict inter-residue contacts and distances.

After deep learning was  introduced for contact prediction in 2012 [8], different 
deep learning architectures have been designed to integrate traditional sequence fea-
tures with inter-residue coevolution scores to substantially improve contact/distance 
prediction [9–12], even for some targets with shallow MSAs.

The improved contact predictions can be converted into inter-residue distance 
information, which has been successfully used with distance-based modeling meth-
ods such as CONFOLD [13], CONFOLD2 [14], and EVFOLD [15] to build accurate 
tertiary structures for ab initio protein targets [16, 17].

In the most recent CASP13 experiment, several groups (e.g., AlphaFold [18] and 
RaptorX [19]) applied deep learning techniques to classify inter-residue distances 
into multiple fine-grained distance intervals (i.e. predict the distance distribution) to 
further improve ab  initio structure prediction substantially. However, the probabili-
ties of a distance belonging to different intervals predicted by the multi-classification 
approach still need to be converted into a distance value to be used for tertiary struc-
ture modeling. There is lack of deep learning regression methods to directly predict 
the exact real value of inter-residue distances.

In this study, we develop a deep residual convolutional neural network method 
(DeepDist) to predict both the full-length real-value distance map and the multi-
class distance map (i.e. distance distribution map) for a target protein. According to 
the test on 43 CASP13 hard domains (i.e. both FM and FM/TBM domains; FM: free 
modeling; TBM: template-based modeling), 37 CASP12 hard (FM) domains, and 268 
CAMEO targets, the method can predict inter-residue distance effectively and per-
form better than existing state-of-the-art methods in terms of the precision of binary 
contact prediction. We further show that predicting both real-value distance map and 
multi-class distance map simultaneously is more accurate than only predicting real-
value distance map, demonstrating the advantage of DeepDist multi-task learning 
framework to improve protein distance prediction.
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Results
Comparing DeepDist with state‑of‑the‑art methods on CASP12 and CASP13 datasets 

in terms of precision of binary contact predictions

As a multi-task predictor, our distance predictor DeepDist can not only classify each 
residue pair into distance intervals (multi-classification) but also predict its real-
value distance (regression). We convert the predicted distances into contact maps in 
order to compare DeepDist with existing methods using the most widely used evalu-
ation metrics—the precision of top L/5, L/2, L long-range contact predictions (long 
range: sequence separation of the residue pair ≥ 24). Figure  1 reports the contact 
prediction precision of the multi-class distance prediction and the real-value dis-
tance prediction of DeepDist and several state-of-the-art methods on two CASP test 
datasets (43 CASP13 FM and FM/TBM domains and 37 CASP12 FM domains). To 
compare our distance prediction result on 43 CASP13 test sets strictly, we extract 
the contact precision results of RaptorX-Contact [19], AlphaFold [18], and Triple-
tRes [12] reported in their paper. For trRosetta [20], we ran it with the same MSAs 
used with DeepDist to predict distance probability distribution map and converted 
it into a binary contact map within 8 Å threshold. On the CASP13 dataset (Fig. 1a), 

Fig. 1 Contact prediction precision of DeepDist and several state-of-art methods on CASP12 and CASP13 
test sets. a Long-range contact prediction precision of DeepDist, RaptorX-Contact, AlphaFold, TripletRes, and 
trRosetta on 43 CASP13 FM and FM/TBM domains. “Top L/5”, “Top L/2” and “Top L” stands for the top L/5, L/2 
and L predicted contacts, where L is the length of the domain. b Long-range contact prediction precision of 
DeepDist and DeepMetaPSICOV on 37 CASP12 FM domains.
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the contact precision of DeepDist is higher than the contact precision of three top 
methods (RaptorX-Contact, AlphaFold, and TripletRes) in CASP13 as well as trRo-
setta in almost all cases. For instance, the precision of top L/5 long-range predicted 
contacts for DeepDist(multi-class) and DeepDist(real_dist) is 0.793 and 0.786 on the 
CASP13 dataset, respectively, higher than 0.751 of trRosetta. The precision of top L/2 
long-range predicted contacts for DeepDist(multi-class) is 0.661, which is also simi-
lar to trRosetta’s precision—0.652. According to this metric, the multi-class distance 
prediction (DeepDist(multi-class)) works slightly better than the real-value distance 
prediction (DeepDist(real_dist)).

We also compare DeepDist with DeepMetaPSICOV [11] on 37 CASP12 FM 
domains. To rigorously evaluate them, we ran DeepMetaPSICOV with the same 
sequence-based features (sequence profile from PSI-BLAST [21] and solvent acces-
sibility from PSIPRED [22]) and MSAs used with DeepDist. Both multi-class distance 
prediction and real-value distance prediction of DeepDist perform consistently better 
than DeepMetaPSICOV (Fig. 1b).

Comparison of predicting real‑value distance map and multi‑class distance map 

simultaneously with predicting real‑value distance map alone

In order to evaluate if predicting real-value distance map and multi-class distance map 
together improves the performance over predicting real-value distance map only, we 
conducted two experiments. Experiment 1 trained real-value distance prediction and 
multi-class distance prediction simultaneously; Experiment 2 trained real-value distance 
prediction only. To ensure a fair comparison, two experiments used the same input fea-
tures (PLM) and the same model architecture (PLM_Net mentioned in Method section).

We evaluated the real-value distance prediction performance of the two experi-
ments based on several evaluation metrics—long-range (residue pair separation ≥ 24) 
contact precision, MSE, and Pearson coefficient. As the evaluation data shown in 
Table  1, the real-value distance prediction trained simultaneously with multi-class 
distance prediction in Experiment 1 performed better than the real-value distance 
prediction trained alone in Experiment 2 according to all the metrics. The results 
demonstrate that DeepDist’s multi-task learning framework can improve the perfor-
mance of real-value distance prediction.

Table 1 The results of  predicting real-value distance map and  multi-class distance map 
at  the  same time versus  predicting real-value distance separately on  43 CASP13 hard 
domains

MSE: average mean square error between predicted distances and true distances; Pearson coefficient: the Pearson’s 
correlation between predicted distance and true distance

Experiment 1: real‑value distance prediction by training real‑value distance prediction and multi‑class distance prediction 
simultaneously

Experiment 2: real‑value distance prediction by training real‑value distance prediction alone. The two experiments used the 
same input features PLM and the same model architecture PLM_Net

L/5 (Precision) L/2 (Precision) L (Precision) MSE Pearson 
coefficient

Experiment 1 0.699 0.580 0.446 1.151 0.979

Experiment 2 0.687 0.558 0.430 1.282 0.978
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Comparison of the ensemble model based on four kinds of inputs and a single model 

based on one input

Table 2 reports the performance of DeepDist (an ensemble of multiple models trained 
on four kinds of inputs) on the CASP13 dataset. The accuracy of DeepDist’s real-
value distance prediction (DeepDist(real-dist)) and multi-class distance prediction 
(DeepDist(multi-class)) in Table  2 is substantially higher than the accuracy of Experi-
ment 1 in Table  1, a single deep model trained on one kind of feature—PLM. For 
instance, the precision for top L/5 contact prediction and MSE of DeepDist (real-dist) 
are 0.786 and 0.896 Å2, better than 0.699 and 1.151 Å2 of the single model PLM_Net. The 
same results are observed for other single models trained on COV, PRE, or OTHER fea-
tures, separately. The results clearly demonstrate that the ensemble approach improves 
the accuracy of inter-residue distance prediction.

Comparison between real‑value distance prediction and multi‑class distance distribution 

prediction in terms of 3D protein structure folding

To test the usefulness of two distance predictions for 3D structure folding, we use the 
real-value distance map and multi-class distance map predicted by DeepDist with 
DFOLD [23] to construct the 3D models for the 43 CASP13 hard domains respectively. 
Table 3 shows the average TM-score of the top 1 model and the best model of the top 5 
models of using real-value distances (DeepDist(real-dist)) and of using multi-class dis-
tances (DeepDist(multi-class)) on the 43 CASP13 FM and FM/TBM domains. The aver-
age TM-scores of top 1 and top 5 models generated from real-value distance predictions 
are 0.487 and 0.522, which demonstrates the feasibility of applying real-value distance 
predictions to build protein tertiary structures with moderate model quality.

Figure 2 illustrates the distribution of TM-score of the top1 models of 43 CASP13 
domains for DeepDist (real-dist) and DeepDist(multi-class). The distribution of Deep-
Dist (real-dist) shifts toward higher scores (TM-score > 0.6). As shown in Additional 
file 1: Table S1, the real-value distance prediction has 13 domains with TM-score > 0.6 

Table 2 The performance of DeepDist on 43 CASP13 hard domains

DeepDist(real‑dist): real‑value distance prediction; DeepDist(multi‑class): multi‑class distance prediction

L/5 (Precision) L/2 (Precision) L (Precision) MSE Pearson 
coefficient

DeepDist (real-dist) 0.786 0.645 0.496 0.896 0.981

DeepDist (multi-class) 0.793 0.661 0.517 1.003 0.981

Table 3 TM-scores of models on CASP13 43 FM and FM/TBM domains for four methods

Method Top 1 Top 5 # of TM‑score ≥ 0.5 (Top 
1)

# 
of TM‑score ≥ 0.5 
(Top 5)

DeepDist (real-dist) 0.487 0.522 21 23

DeepDist (multi-class) 0.463 0.506 21 22

DMPfold 0.438 0.449 16 16

CONFOLD2 0.382 0.466 12 19



Page 6 of 17Wu et al. BMC Bioinformatics           (2021) 22:30 

and the multi-class distance prediction has 12. From the target-by-target compari-
son, when the models of both methods have TM-score > 0.6, models constructed from 
the real-value distance prediction tend to have higher scores. This is also consistent 
with what was observed in Fig. 2, a tendency of the TM-score distribution curve of 
the real-value distance prediction sitting above the curve of the multi-class distance 
prediction when TM-score > 0.6. The reduction of MSE of the predicted distances 
may be one of the factors contributing to the improvement of DeepDist (real-dist) 
over DeepDist(multi-class) for 3D modeling. The average MSE between the predicted 
real-value distance map and the true distance map is 0.8964 Å2, which is lower than 
the average MSE (1.0037 Å2) between the distance map converted from the predicted 
multi-class distance map and the true distance map. The way of converting multi-
class distance predictions to real-value distance constraints and setting the upper and 
lower distance bounds for constructing 3D models can be another two factors that 
affect the final model quality.

On the 43 CASP13 FM and FM/TBM domains, we also compared the models gen-
erated from the predicted distance of DeepDist with two popular ab initio distance-
based model folding methods: DMPfold [24] and CONFOLD2 [14] (Table  3). For 
DMPfold, we applied the same sequence-based features and multiple sequence align-
ment used with DeepDist as input for DMPfold to build 3D models. For CONFOLD2, 
we converted the predicted distance map to the contact map as its input to build 3D 
models. As shown in Table 3, Both DeepDist and DMPfold have a much better per-
formance than the contact-based method CONFOLD2, clearly demonstrating that 
the distance-based 3D modeling is better than contact-based 3D modeling. The aver-
age TM-score of DeepDist (real-dist) is 0.487, higher than 0.438 of DMPfold, prob-
ably due to more accurate distance prediction made by DeepDist. Considering top 
5 models, DeepDist(real_dist) folds 23 out of 43 domains (TM-score > 0.5) correctly, 

Fig. 2 Distribution of TM-scores of the top 1 models of 43 CASP13 FM and FM/TBM domains, built from the 
real-value distance predictions and the multi-class distance predictions
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Fig. 3 DeepDist predicted distance maps for the target T0997 and the four high-quality tertiary structure 
models of CASP13 targets (T0968s2-D1, T0969-D1, T0992-D1, T1000-D2) (TM-score ≥ 0.7) generated from 
DeepDist real-value distance predictions versus their native structures. a Two types of distance outputs from 
DeepDist for the target T0997 are shown as “real-dist” (for real-value distance prediction) and “multi-class” (for 
multi-class distance prediction). The true distance map of T0997 is marked as “ground truth”. The brightness 
of each pixel represents the distance of each residue pair of T0997—the brighter the pixel, the shorter 
the distance. For comparing the two predicted distance maps, the difference of predicted distance maps 
between “multi-class” and “real-dist” is shown. The brightness of each pixel represents the distance difference 
between “multi-class” and “real-dist” in each residue pair, i.e., the brighter the pixel, the smaller the distance 
difference. 3D model comparison is also shown, with the model built from DeepDist real-value distance 
prediction in brown and the native structure in blue. b Model comparison of other four high-quality CASP13 
models (TM-score ≥ 0.7) generated from DeepDist real-value distance predictions versus their native 
structures. Brown: model; Blue: native structure.
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higher than 16 of DMPfold. Figure 3 illustrates the DeepDist distance map for the tar-
get T0997 and other four high-quality CASP13 tertiary structure models built from 
the predicted real-value distances that have the TM-scores ≥ 0.7.

The relationship between 3D models reconstructed from predicted real‑value distances 

and multiple sequence alignments.

The main input features used with DeepDist are derived from MSAs. Figure 4 plots 
the TM-scores of top 1 models of 43 CASP13 domains against the natural logarithm 
of the number of effective sequences in their MSAs. There is a moderate correlation 
(Pearson’s correlation = 0.66) between the two. Moreover, 3D models for 6 domains 
(T0957s2-D1, T0958-D1, T0986s2-D1, T0987-D1, T0989-D1, and T0990-D1) with 
shallow alignments (the number of effective sequences (Neff ) in the alignment < 55) 
have TM-score > 0.5 (i.e. TM-score 0.568, 0.644, 0.658, 0.555, 0.545 and 0.593, respec-
tively), indicating DeepDist works well on some targets with shallow alignments.

Evaluation of CAMEO targets

In order to further evaluate DeepDist on a large dataset, we test DeepDist on 268 
CAMEO targets selected from 08/31/2018 to 08/24/2019. The average precision of 
the top L/5 or L/2 long-range inter-residue contact prediction converted from the 
real-value distance prediction is 0.691, and 0.598, respectively. 191 out of 268 targets 
have the long-range top L/5 contact prediction precision ≥ 0.7. Figure 5 shows 5 high-
quality models constructed from DeepDist predicted real-value distances. For the 14 
targets with the number of effective sequences less than or equal to 50, the average 
top L/5 and top L/2 long-range contact prediction precision is 0.696 and 0.515, which 
is reasonable. Using the predicted distance to build 3D structures for the 14 targets, 
five of them have models with TM-score > 0.5. This further confirms that DeepDist’s 
predicted distances can fold some proteins with very shallow alignments correctly.

Fig. 4 The quality of the top 1 models folded from DeepDist real-value distance predictions versus the 
logarithm of the number of effective sequences (Neff ) on 43 CASP13 FM and FM/TBM domains. The six 
points in red denote domains with shallow alignments (Neff < 55) but correctly predicted structural folds 
(TM-score > 0.5)
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Discussion
Although there are numerous deep learning methods to conduct distance predic-
tion by classifying distance into multiple intervals, there are few deep learning meth-
ods to predict real-value distance via regression. Our results demonstrate that it is 
worthwhile to explore the potentials of real-value distance prediction, which can be 
directly used by 3D modeling methods to build protein tertiary structures. Evaluated 
by the precision of binary contact prediction, the accuracy of predicting real-value 
distance prediction alone is worse than predicting real-value distances and classifying 
distances into multiple intervals at the same time in a multi-task learning framework 
(Table 1). This demonstrates that the strength of DeepDist predicting the two types of 
distances simultaneously to improve the accuracy of predicting real-value distance. 
Moreover, the two distance predictions in DeepDist achieve comparable results. 
The distance multi-classification prediction of DeepDist is slightly better than real-
value distance prediction in terms of precision of contact prediction, but it is a little 
worse in terms of MSE of predicted distance. The p-value (shown in Additional file 1: 
Tables S2 and S3) calculated from the paired t-test of the corresponding MSE value 
pairs between DeepDist(real-dist) and DeepDist(multi-class) suggests the significant 
differences in their mean MSE values. All those results show that the real-value dis-
tance prediction can add some value on top of distance multi-classification predic-
tion. Both the strengths and weaknesses of the two distance prediction methods in 
DeepDist have been demonstrated in this study. Which method should be chosen to 
use may depend on the specific needs of users and multiple factors such as how to 
convert multi-classification distances into real-value distances, how to estimate dis-
tance errors, and which distances can be used by a 3D modeling tool. Moreover, more 
experiments are still needed to investigate if and how real-value distance prediction 
can directly improve the performance of distance multi-classification prediction.

Fig. 5 High-quality 3D models for five CAMEO targets constructed from DeepDist predicted real-value 
distances. The model is shown in brown and the native structure is shown in blue
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Conclusion
We develop an inter-residue distance predictor DeepDist based on new deep residual 
convolutional neural networks to predict both real-value distance map and multi-class 
distance map simultaneously. We demonstrate that predicting the two at the same time 
yields higher accuracy in real-value distance prediction than predicting real-value dis-
tance alone. The overall performance of DeepDist’s real-value distance prediction and 
multi-class distance prediction is comparable according to multiple evaluation metrics. 
Both kinds of distance predictions of DeepDist are more accurate than several state-
of-the-art methods on the CASP13 hard targets. Moreover, DeepDist can work well on 
some targets with shallow multiple sequence alignments. And the real-value distance 
predictions can be used to reconstruct 3D protein structures better than predicted 
multi-class distance predictions, showing that predicting real-value inter-residue dis-
tances can add the value on top of existing distance prediction approaches.

Methods
Overview

The overall workflow of DeepDist is shown in Fig.  6. We use four sets of 2D co-evo-
lutionary and sequence-based features to train four deep residual convolutional neural 
network architectures respectively to predict the Euclidean distance between residues 
in a protein target. Three of four feature sets are mostly coevolution-based features, i.e. 
covariance matrix (COV) [25], precision matrix (PRE) [26], and pseudolikelihood maxi-
mization matrix (PLM) [4]) calculated from multiple sequence alignments. Considering 
that coevolution-based features sometimes cannot provide sufficient information, par-
ticularly when targets have shallow alignments, the fourth set of sequence-based fea-
tures (OTHER), such as the sequence profile generated by PSI-BLAST [21], and solvent 
accessibility from PSIPRED [22] are used. The output of DeepDist is a real-value L × L 
distance map and a multi-class distance map (L: the length of the target protein). The 
two types of distance maps are generated by two prediction branches. For each branch, 
the final output is produced by the ensemble of four deep network models (COV_Net, 
PLM_Net, PRE_Net, and OTHER_Net) named after their input feature sets (COV, PLM, 
PRE, and OTHER). For the prediction of the multi-class distance map, we discretize the 
inter-residue distances into 25 bins: 1 bin for distance < 4.5 Å, 23 bins from 4.5 to 16 Å at 
interval size of 0.5 Å and a final bin for all distances ≥ 16 Å. For the real-value distance 
map, we simply use the true distance map of the native structure as targets to train deep 
learning models without discretization. Because large distances are not useful and not 
predictable, we only predict inter-residue distances less than 16 Å by filtering out true 
distances ≥ 16 Å.

Datasets

We select targets from the training list used in DMPfold [24] and extract their true 
structures from the Protein Data Bank (PDB) to create a training dataset. After filter-
ing out the redundancy with the validation dataset and test datasets according to 25% 
sequence identity threshold, 6463 targets are left in the training dataset. The validation 
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set contains 144 targets used to validate DNCON2 [10]. The three blind test datasets are 
37 CASP12 FM domains, 43 CASP13 FM and FM/TBM domains, and 268 CAMEO tar-
gets collected from 08/31/2018 to 08/24/2019.

Input feature generation

The sequence databases used to search for homologous sequences for feature genera-
tion include Uniclust30 (2017-10) [27], Uniref90 (2018-04), Metaclust50 (2018-01) [28], 
a customized database that combines Uniref100 (2018-04) and metagenomics sequence 
databases (2018-04), and NR90 database (2016). All the sequence databases were con-
structed before the CASP13 experiment.

Co-evolutionary features (i.e. COV, PRE, and PLM) are the main input features for 
DeepDist, where COV is the covariance matrix calculated from marginal and pair fre-
quencies of each amino acid pair [25], PRE [26] is the inverse covariance matrix, and 
PLM is the inverse Potts model coupling matrix optimized by pseudolikelihoods [4]. 
All the three coevolutionary features are generated from multiple sequence alignment 
(MSA). Two methods, DeepMSA [29] and our in-house DeepAln, are used to generate 
MSA for a target. The outputs of both MSA generation methods are the combination 
of the iterative homologous sequence search of HHblits [30] and Jackhmmer [31] on 
several sequence databases. The two methods differ in sequence databases used and the 
strategy of combining the output of HHblits and Jackhmmer searches. DeepMSA trims 
the sequence hits from Jackhmmer and performs sequence clustering, which shortens 
the time for constructing the HHblits database for the next round of search. To leverage 
its fast speed, we apply DeepMSA to search against a large customized sequence data-
base that is composed of UniRef100 and metagenomic sequences. In contrast, DeepAln 
directly uses the full-length Jackhmmer hits for building HHblits customized databases 
and is slower. It is applied to the Metaclust sequences database. The detailed comparison 
of two MSA generation methods is reported in the Additional file 1: Table S4. In addi-
tion to three kinds of co-evolutionary features, 2D features such as the coevolutionary 
contact scores generated by CCMpred, Shannon entropy sum, mean contact potential, 
normalized mutual information, and mutual information are also generated. Moreover, 
some other features used in DNCON2 including sequence profile, solvent accessibility, 
joint entropy, and Pearson correlation are also produced, which are collectively called 
OTHER feature.

The features above are generated for the MSAs of both DeepMSA and DeepAln. Each 
of them is used to train a deep model to predict both real-value distance map and multi-
class distance map, resulting in 8 predicted real-value distance maps and 8 multi-class 
distance maps (Fig. 6).

Deep network architectures for distance prediction

We started training the first network (COV_Net) with a simple feature set which con-
sists of the covariance matrix described above, along with sequence profile (PSSM), 
contact scores (CCMpred), and Pearson correlation. Inspired by COV_Net, two net-
works—PLM_Net and PRE_Net that use two related coevolutionary matrices PLM 
and PRE generated from multiple sequence alignment were then added to use the 
coevolutionary relationship between amino acid pairs more effectively. Since all three 
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networks highly depend on the quality of MSA, the fourth network OTHER_Net was 
constructed by adding only non-coevolutionary sequence-based features as input in 
case the MSA is shallow. To make sure every network works well, we tweaked the 
model architecture for each feature set. In total, there are four different networks in 
DeepDist, which are called COV_Net, PLM_Net, PRE_Net, and OTHER_Net (Fig. 7), 
respectively. PRE_Net and OTHER_Net share almost the same architecture with 
some minor differences. The detailed comparison of four networks is shown in Addi-
tional file 1: Table S5.

COV_Net (Fig.  7a) uses the COV matrix along with sequence profile (PSSM), 
contact scores (CCMpred), and Pearson correlation as input. It starts with a nor-
malization block called RCIN that contains instance normalization (IN) [32], row 
normalization (RN), column normalization (CN) [33] and a ReLU [34] activation 
function, followed by one convolutional layer with 128 kernels of size 1 × 1 and one 
Maxout [35] layer to reduce the input channel from 483 to 64. The output of Max-
out is then fed into 16 residual blocks. Each residual block is composed of two RCIN 
normalization blocks, two convolutional layers that consist of 64 kernels of size 3 × 3, 
and one squeeze-and-excitation block (SE_block) [36]. The output feature maps from 
the block, together with the input of the block are added together as input for a ReLU 
activation function to generate the output of the residual block. The last residual 
block is followed by one convolutional instance normalization layer. The output of the 
layer is converted into two output maps simultaneously. One real-value distance map 
is obtained by a ReLU function through a convolution kernel of size 1 × 1, and one 
multi-class distance map with 25 output channels is obtained by a softmax function.

PLM_Net (Fig. 7b) uses as input the PLM matrix concatenated with the sequence 
profile (PSSM) and Pearson correlation. The input is first fed into an instance normal-
ization layer, followed by one convolutional layer and one Maxout layer. The output of 
Maxout is then fed into 20 residual blocks. Each residual block contains three RCIN 
blocks, four convolutional layers with 64 kernels of size 3 × 3, one SE_block, and one 
dropout layer [37] with a dropout rate of 0.2. The residual block is similar to the bot-
tleneck residual block, except that the middle convolutional layer of kernel size 3 × 3 
is replaced with three convolutional layers of kernel size 3 × 3, 7 × 1, 1 × 7, separately. 
The last residual block is followed by the same layers as in COV_Net to predict a real-
value distance map and a multi-class distance map.

PRE_Net (Fig.  7c) uses as input the PRE matrix as well as entropy scores (joint 
entropy, Shannon entropy) and sequence profile (PSSM). An instance normalization 
layer is first applied to the input. Unlike COV_Net and PLM_Net, one convolutional 
layer with 64 kernels of size 1 × 1 and an RCIN block are applied after the instance 
normalization layer for dimensionality reduction. The output of the RCIN block is 
then fed through 16 residual blocks. Each residual block is made of two stacked sub-
blocks (each containing one convolutional layer with 64 kernels of size 3 × 3, an RCIN 
block, a dropout layer with a dropout rate of 0.2, a SE_block, and the shortcut con-
nection). The final output layers after the residual blocks are the same as in COV_Net.

OTHER_Net uses OTHER features as input. Its architecture is basically the same as 
PRE_Net, except that it has 22 residual blocks and there is no dropout layer in each 
residual block.
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Fig. 7 Deep network architectures for four deep residual network models. a COV_Net; b PLM_Net; c PRE_
Net/OTHER_Net. RCIN: normalization layer; SE_block: squeeze-and-excitation block
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The final output of DeepDist is an average real-value distance map and an average 
multi-class distance map calculated from the output of the four individual network mod-
els, i.e. the output of the ensemble of the individual networks.

Training

The dimension of the input of COV_Net, PLM_Net, and PRE_Net is L × L × 483, 
L × L × 482, and L × L × 484 respectively, which is very large and consumes a lot of 
memory. Therefore, we use data generators from Keras to load large feature data batch 
by batch. The batch size is set as 1. A normal initializer [38] is used to initialize the net-
work. For epochs ≤ 30, Adam optimizer [39] is performed with an initial learning rate of 
0.001. For epochs > 30, stochastic gradient descent (SGD) with momentum [40] is used 
instead, with the initial learning rate of 0.01 and the momentum of 0.9. The real-value 
distance prediction and multi-class distance classification are trained in two parallel 
branches. The mean squared error (MSE) and cross-entropy are used as their loss func-
tion, respectively. At each epoch, the precision of top L/2 long-range contact predic-
tions derived from the average of the two contact maps converted from the real-value 
distance map and the multi-class distance map on the validation dataset is calculated. 
The inter-residue real-value distance map is converted to the contact map by inversing 
the predicted distance to obtain a relative contact probability (i.e. 1/dij: relative contact 
probability score; dij: predicted distance between residues i and j). The multi-class dis-
tance map is converted to the binary contact map by summing up the predicted prob-
abilities of all the distance intervals ≤ 8 Å as contact probabilities.

Ab initio protein folding by predicted distances

We use distances predicted by DeepDist with our in-house tool—DFOLD [23] built on 
top of CNS [41], a software package that implements distance geometry algorithm for 
NMR based structure determination, to convert the distance restraints into 3D struc-
ture models. For the predicted real-value distance map, we select the predicted dis-
tances ≤ 15  Å and with sequence separation ≥ 3 to generate the distance restraints 
between Cb-Cb atoms of residue pairs. 0.1  Å is added to or subtracted from the pre-
dicted distances to set the upper and lower distance bounds. For the predicted multi-
class distance map, we first convert the distance probability distribution matrix to a 
real-value distance map by setting each distance as the probability-weighted mean dis-
tance of all intervals for a residue pair and using the standard deviation to calculate the 
upper and lower distance bounds. Given a final real-value distance map, we prepare five 
different subsets of input distance restraints by filtering out distances ≥ x respectively, 
where x = 11 Å, 12 Å, 13 Å, 14 Å, and 15 Å. For each subset of distance restraints, we 
run DFOLD for 3 iterations. For each iteration, we generate 50 models and select the 
top five models ranked by the CNS energy score, the sum of all violations of all distance 
restraints used to generate a model. The top selected models generated from five subsets 
are further ranked by SBROD [42]. The final top one model is the one with the highest 
SBROD score. PSIPRED is used to predict the secondary structure to generate hydrogen 
bonds and torsion angle constraints for DFOLD to use.
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