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Recent studies have shown that the recognition and monitoring of different

valence emotions can effectively avoid the occurrence of human errors

due to the decline in cognitive ability. The quality of features directly

affects emotion recognition results, so this manuscript explores the effective

electroencephalography (EEG) features for the recognition of different

valence emotions. First, 110 EEG features were extracted from the time

domain, frequency domain, time-frequency domain, spatial domain, and brain

network, including all the current mainly used features. Then, the classification

performance, computing time, and important electrodes of each feature were

systematically compared and analyzed on the self-built dataset involving 40

subjects and the public dataset DEAP. The experimental results show that the

first-order difference, second-order difference, high-frequency power, and

high-frequency differential entropy features perform better in the recognition

of different valence emotions. Also, the time-domain features, especially the

first-order difference features and second-order difference features, have

less computing time, so they are suitable for real-time emotion recognition

applications. Besides, the features extracted from the frontal, temporal, and

occipital lobes are more effective than others for the recognition of different

valence emotions. Especially, when the number of electrodes is reduced by

3/4, the classification accuracy of using features from 16 electrodes located in

these brain regions is 91.8%, which is only about 2% lower than that of using all

electrodes. The study results can provide an important reference for feature

extraction and selection in emotion recognition based on EEG.
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Introduction

Emotions play an important role in our daily life because
they can affect people’s work efficiency, decision-making,
memory et al. Compared with neutral emotions, positive and
negative emotions tend to decline our cognitive ability (Qian
et al., 2015; Wang and Liu, 2020). If people’s cognitive abilities
for special jobs are affected by their emotions, there may be
serious consequences. Therefore, if the emotions that lead to
cognitive decline can be effectively identified and timely warned,
most of the adverse consequences caused by cognitive decline
can be avoided.

Almost everyone experienced the change from a positive
emotional state to a negative emotional state at some point.
According to the continuous emotion model proposed by Lang
et al. (2001), the change of positive emotion and negative
emotion indicates the variations of emotion valence. Previous
studies have pointed out that different valence emotions
have different effects on cognition performance. For example,
although an extremely negative emotional state may reduce
cognitive abilities significantly, a moderately negative emotional
state can enhance alertness and responsiveness (Chen et al.,
2013). Besides, people’s memory and judgment abilities tend
to be weakened in negative valence emotional states, which
makes it easier to make irrational decisions. Compared with
negative emotional states, most positive emotional states are
usually harmless and may even improve people’s cognitive
abilities. Blair et al. (2007) investigated the interaction between
positive, neutral, and negative valence emotions and goal-
directed processing tasks. They found that positive and negative
valence stimuli have a greater impact on goal-directed tasks than
neutral valence stimuli. Based on event-related potentials (ERP)
and functional magnetic resonance imaging (fMRI) research,
Li et al. (2006) found that negative valence emotion has a
greater impact on spatial working memory than on verbal
working memory. Yuan et al. (2007) explored people’s sensitivity
to valence differences in emotional stimuli by using different
valence pictures with no significant difference in arousal as
stimulus materials, and they found that people are more
sensitive to negative valence pictures. Meng et al. explored
the influence of attention on human sensitivity to valence
differences in emotional stimuli. They found that the ERP
amplitude of extremely negative valence pictures was greater
than that of moderately negative and neutral pictures within
150–250, 250–350, and 350–450 ms after the pictures were
presented (Meng et al., 2009). As described above, people have
different sensitivities to emotions with different valence, and
different valence emotions have different effects on people’s
cognitive performance. However, it is not enough to claim that
emotions with different valence have an impact on people’s
cognition. When people are in these emotional states, if early
warning can be given to ask them to stop working, serious

consequences may be avoided. The premise of early warning is
to accurately classify different valence emotions.

Electroencephalography has the advantages of non-
invasiveness, high time resolution, and good portability, and it
has been widely used in emotion recognition research (Hu et al.,
2019). Feature extraction is a key step in emotion recognition
based on EEG. The quality of features will directly affect the
accuracy of emotion recognition (Wang and Wang, 2021). EEG
features in emotion recognition can be mainly divided into time
domain (statistical features), frequency domain, time-frequency
domain, spatial asymmetry, and brain network features (Li
et al., 2016; Gonuguntla et al., 2020). Time-domain features
mainly include first-order difference, second-order difference,
fractal dimension, sample entropy, approximate entropy,
and standard deviation (Lan et al., 2016). Frequency-domain
features mainly include power spectral density and power
(An et al., 2021). Time-frequency domain features are mainly
features extracted based on the discrete Fourier transform or
Hilbert Huang transform (Khare and Bajaj, 2021). Differential
entropy is the most used time-frequency feature, which has
achieved the highest classification accuracy in multiple studies
(Nie et al., 2011; Zheng et al., 2019). Spatial asymmetry feature
refers to the difference or ratio of features from left and right
hemisphere electrodes (Zheng and Lu, 2015). Additionally,
the brain network feature including the connection between
electrodes is a new feature in recent years, which is increasingly
used in emotion recognition and has achieved good results.
Li et al. (2019) proposed to fuse local features extracted from
a single electrode with brain network features containing
global information, which improved the performance of
emotion classification. Our previous study also compared the
performance of EEG network features of different frequency
bands, and the results showed that the high gamma band brain
network features were more closely related to emotion (Yang
et al., 2020). Wu et al. (2022) pointed out that the brain network
features representing the relationship between different
electrodes have better classification performance than the
differential entropy extracted from a single electrode. Though
there are currently many types of features used in emotion
recognition, there is no agreement upon which features are most
appropriate. Since the computational complexity of multiple
feature extraction is high, and the extraction of some features
requires rich experience and professional knowledge, only a
few studies compared the performance of different features.
For example, Jenke et al. (2014) compared multiple features
on a self-recorded dataset of 16 subjects and five emotions. Li
et al. explored two set of features for cross-subject emotion
recognition, and the Hjorth parameter of mobility in the
beta rhythm achieved the best mean recognition. Moreover,
using multiple electrodes will need more preparation time and
lead to unfriendly user experience. Many studies have been
conducted on the electrode selection in emotion recognition.
For instance, Zheng and Lu (2015) explored the four most
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important electrodes on the SEED dataset, and they found FT7,
FT8, T7, and T8 are most important electrodes. Li et al. (2018)
explored the most important 10, 14, and 18 electrodes on the
DEAP dataset, and most of these electrodes are distributed in
the frontal brain region.

Previous studies have investigated feature extraction and
selection in emotion recognition, but a major limitation of
these studies is that they did not explore the effective features
for the recognition of different valence emotions. Meanwhile,
most studies rely on a different and usually small dataset.
This work aims to systematically explore effective features for
the recognition of different valence emotions. According to
previous studies, arousal has a nonspecific effect on valence
(Johnson, 1995; Carretié et al., 1997). Firstly, this study selected
five types of valence pictures from the Chinese Affective
Picture System (CAPS) (Bai et al., 2005), including extremely
negative, moderately negative, neutral, moderately positive, and
extremely positive, which have no significant difference in
arousal. Then, 110 features commonly used in other papers
are extracted from five feature domains of time domain,
frequency domain, time-frequency domain, spatial asymmetry,
and brain network. Finally, the classification performance,
calculation time, and important few electrodes of the features
are systematically compared and analyzed on the self-built big
dataset of 40 subjects and the public dataset DEAP (Koelstra,
2012).

Materials and methods

Participants

This experiment includes 40 healthy subjects (20 women)
of native college students, aged 18–28 years old (average age
22 years old), one of whom is double handed, and the rest
are right-handed. All subjects had no mental illness, did not
take drugs that affected their mental state, and all subjects
with normal mental state tested by Baker depression scale
(Jackson-Koku, 2016) and Baker anxiety scale (Wilson et al.,
1999), and all subjects’ with normal vision or corrected normal
vision. Before the experiment, each subject was informed of
the content and the purpose of the experiment and signed the
informed consent. After the experiment, subjects received a
certain amount experimental fee.

Experiment procedure

Emotion pictures are divided into five categories according
to valence: extremely negative (EN), moderately negative (MN),
neutral, moderately positive (MP), and extremely positive (EP),
and each category contains 30 pictures. The mean value and
standard deviation of valence degrees of the different categories

pictures are EN = 1.87/0.35, MN = 3.56/0.54, neutral = 5.6/0.49,
MP = 6.28/0.17, and EP = 6.81/0.16, and the arousal degrees
are EN = 5.54/0.16, MN = 5.5/0.2, neutral = 5.54/0.28,
MP = 5.49/0.19, and EP = 5.57/0.18. There are significant
differences between the valence degrees of the five categories
of pictures (P < 0.01), and there was no significant difference
(P > 0.05) between the arousal degrees.

The numbers in the digital picture are 2, 3, 4, 5, 6, 7, 8,
and the number of numbers varies from 3 to 6. The content of
the digital picture is 3∗3, and numbers or “∗” appear randomly
at 9 positions. The left and right numbers are not adjacent in
the picture, e.g., the left and right numbers will not be “2”
and “3.” There are two types of digital pictures: consistent and
inconsistent. The consistent situation is that there are more
numbers with large values or fewer numbers with small values,
while the inconsistent situation is that there are more numbers
with small values or fewer numbers with large values.

Each trial begins with a white “+” for 2–4 s in the center
of the screen with black background, then presents an emotion
picture for 2000 ms, then presents a digital picture for 1000 ms,
and then presents the valence and arousal rating pictures.
When the subjects see the digital picture, they need to press
the key quickly and accurately to determine which side of the
numbers on the left and right is larger. If the number on the
left is larger, the subjects should press the alphabet “Q” on the
keyboard with the left index finger; if the number on the right
is larger, they should press the number “0” on the keyboard
with the right index finger, and the key response should be
made within 1000 ms. The digital picture will disappear once
the subjects press the keyboard, and the valence rating picture
will be represented. If the key response is not made after
1000 ms, the valence rating picture will also be represented.
Valence and arousal ratings are achieved by pressing keys 1–
9 on the keyboard (Morris, 1995). The subjects take a 2-min
break between blocks to eliminate the emotional impact of the
previous block on the next block and alleviate the subjects’
mental fatigue. Five blocks are presented randomly, and 30 trials
in each block are presented in random order. The experimental
paradigm was conducted by Tobii Pro Lab software, and the
subjects’ key response values and time were recorded.

Data acquisition and preprocessing

This experiment was carried out in a professional
laboratory with electromagnetic shielding condition and
suitable temperature and light. In the experiment, the subjects
sat on a chair with adjustable height facing the screen, and
their eyes were about 65 cm away from the screen. EEG
signals were recoded with 64 channel G.HIamp system. During
the experiment, the impedance of each electrode was kept
below 10 K�, the electrodes were located according to the
international 10–20 standard system. Electrode AFz was used as
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the ground electrode, electrode Fz and right earlobe were used
as references, and the number of effective electrodes was 62. The
EEG data sampling rate is 600 Hz. Online 0.1–100 Hz band-pass
filtering and 48–52 Hz notch filtering are conducted during
EEG data acquisition. Meanwhile, eye gaze data is collected
by the Tobii Nano device with a sampling rate of 60 Hz. All
these multi-modal data compose the Emotion-Stroop dataset
(ESD). This paper only uses EEG data. In the pre-processing
procedure, the collected original EEG signals are segmented
first, and the data of 500 ms before picture presentation and
the data of 2000 ms during picture presentation are extracted.
The subsequent preprocessing mainly includes 0.1–80 Hz
filtering and performing the blind-source analysis algorithm
Fast-ICA (HyvRinen, 1999) to remove electrooculography
(EOG) artifacts, average reference, and baseline correction.

Feature extraction

This manuscript summarizes the commonly used EEG
features and extraction methods in recent years. Jenke et al.
have extensively studied feature extraction (Jenke et al., 2014),
and our study supplements some recently developed important
features on their basis. The features are roughly divided
into five feature domains: time domain, frequency domain,
time-frequency domain, spatial asymmetry, and brain network
features. In this paper, the total number of EEG electrodes
is denoted as ch, the number of time points per electrode is
denoted as N, and the EEG data of a certain electrode at a certain
time is denoted as x (n). The specific extraction methods of each
feature are as follows.

Time-domain features
The time-domain features extracted in this paper include

standard deviation, first-order difference, second-order
difference, normalized first-order difference, normalized
second-order difference, fractal dimension, sample
entropy, and approximate entropy. The specific calculation
methods are as follows.

• Standard deviation (Std)

δch =

√√√√√ 1
N

N∑
n=1

(
x(n)−

1
N

N∑
n=1

x(n)

)2

(1)

• First-order difference (Fir-dif)

first_diffch =
1

N − 1

N−1∑
n=1

|x(n+ 1)− x(n)| (2)

• Normalized first-order difference (N-fir-dif)

Nor_first_diffch =
first_diffch

δch
(3)

• Second-order difference (Sec-dif)

sec ond_diffch =
1

N − 2

N−2∑
n=1

|x(n+ 2)− x(n)| (4)

• Normalized second-order difference (N-sec-dif)

Nor_ sec ond_diffch =
sec ond_diffch

δch
(5)

• Fractal Dimension (FD)

Fractal dimension (FD) is a non-linear feature used to
measure the complexity of EEG signals. The commonly used
calculation methods of fractal dimension are box dimension
fractal and Higuchi fractal. In this manuscript, the Higuchi
fractal is used to calculate the fractal dimension (Lan et al.,
2016), and the specific calculation process is as follows:

Let the initial sequential EEG signal be X(1), X(2), . . . ,X(N).
The EEG signal sequence is sampled at every k points as follows:

Xm
k : X(m), X(m+ k), ..., X(m+ [N−m

k ] · k)
m = 1, 2, 3, ..., k

(6)

where m is the initial time of sampling, and k is the time
interval of sampling.

Define m sampling points as Lk(m):

Lk(m) =
1
k
·

(∑⌊ N−m
k
⌋

i=1
∣∣X (m+ ik

)
− X (m+ (i− 1)) k

∣∣) (N − 1)⌊N−m
k
⌋

k

 (7)

Denote the mean value of all the sampling points in Lk(m)

as L(k). FD is inversely proportional to L(k) as follows:

FD = − lim
k→∞

log
〈
L(k)

〉
log k

(8)

• Approximate Entropy (ApEn)

Approximate entropy (ApEn) reflects the possibility of new
information in time series. The larger the approximate entropy,
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the more complex the time series. Denote an integer as m and
a real number as r. Then, an m-dimensional vector x(1),x(2),
. . . x(N−m+ 1) can be constructed from the original EEG
signal, where x(i) = [X(1), X(2), ... X(i+M− 1))] counts the
number of vectors that meet the following conditions:

Cm
i (r) = (number of X(j) such that d[X(i), X(j)] ≤ r)/

(N −m+ 1) (9)

where d[X(i), X(j)] = max
∣∣X(i)− X(j)

∣∣,
8m(r) = (N −m+1)−1

N−m+1∑
i=1

log(Cm
i (r)) (10)

Then, the approximate entropy ApEn is defined as:

ApEn = 8m(r)−8m+1(r) (11)

• Sample Entropy (SamEn)

Sample entropy (SamEn) is improved based on approximate
entropy by eliminating the problem of approximate entropy self-
matching, which is equivalent to optimizing the approximate
entropy. In the calculation d[X(i), X(j)] = max

∣∣X(i)− X(j)
∣∣,

i 6= j

Cm(r) = (N −m+1)−1
N−m+1∑

i=1

(Cm
i (r)) (12)

Then, SamEn is defined as:

SampEn(m, r) = lim
N→∞
[− ln

Cm+1(r)
Cm(r)

] (13)

when n is a finite number. SamEn can be further expressed
as:

SampEn(m, r, N) = ln Cm(r)− ln Cm+1(r) (14)

Frequency domain features
• Power Spectral Density (PSD)

Power spectral density (PSD) is commonly used to measure
the frequency-domain information features of EEG signals. In
this manuscript, power spectral density uses the p-welch method
to calculate the frequency band power spectral density:

psd =
fu∑
fl

P(f )/(fu− fl) (15)

where P(f ) is the power spectral density at the frequency; fl
is and f u are the lowest and highest frequency of the band of
interest, respectively.

• Power (P)

Band power is based on short-time Fourier transform
(STFT),

STFTx,γ(n, f ) =
∫
+∞

−∞

x (τ) γ∗ (n− τ) e−j2πf τdτ =

∫
+∞

−∞

x (τ) γ∗n,f e−j2πf τ (16)

power =
fu∑
fl

∣∣S (n, f
)∣∣2 (17)

The power in six frequency bands is calculated for ESD
data, including delta (1–4 Hz), theta (4–8 Hz), alpha (8–
13 Hz), beta (13–30 Hz), gamma (30–50 Hz), and high
gamma (50–80 Hz). Meanwhile, the power in four frequency
bands is calculated for the DEAP dataset, including theta (4–
8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–
50 Hz).

Time frequency domain features
• Different Entropy (DE)

The differential entropy (DE) feature is the most used
feature at present, and its calculation is based on STFT. It
calculates the differential entropy in six frequency bands of
delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–
30 Hz), gamma (30–50 Hz), and high gamma (50–80 Hz)
of the ESD datasets, and it calculates the differential entropy
in four frequency bands of theta (4–8 Hz), alpha (8–13 Hz),
beta (13–30 Hz), and gamma (30- 50 Hz) of the DEAP
datasets:

DE = log

 fu∑
fl

∣∣STFT
(
n, f

)∣∣2 (18)

Brain network features
The brain network connection matrix takes electrodes

as network nodes to calculate the relationship between the
data between electrodes, and the network can be mainly
divided into a directed network and an undirected network.
Here, only three commonly used undirected networks are
considered for calculation: Pearson correlation (Pea), coherence
(Coh), and phase lock value (PLV). Then, the clustering
coefficient (CC), characteristic path length (CPL), and local
efficiency (Le) are calculated based on the network connection
matrix, and the global efficiency (Ge) is characterized by four
commonly used network attributes (Van Straaten and Stam,
2013).
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• Pearson correlation coefficient (Pea)

pearson =
∑N

i=1(X(i)− X)(Y(i)− Y)√∑N
i=1(X(i)− X)2

√∑N
i=1(Y(i)− Y)2

(19)

where X(i), Y(i) indicating the EEG value of two
electrodes at time i.

• Coherence (Coh)

CXY
(
f
)
=

∣∣PXY
(
f
)∣∣2

PXX
(
f
)

PYY
(
f
) (20)

• Phase lock value (PLV)

PLV=

∣∣∣∣∣ 1
ch

N−1∑
i=0

ei(8x(it)−8y(it))

∣∣∣∣∣ (21)

Where ch is the total number of EEG electrodes, t is the
sampling period, 8x(it) and 8y(it) is the instantaneous phase
of two electrodes x(t) and y(t) at time point i.

The CC describes the tightness and clustering characteristic
of nodes in the brain network; the CPL is used to measure
the connectivity degree of the network, and it represents the
average length of the shortest path between any two nodes
in the network; the Le is used to measure the information
interaction ability in the local network, and the Ge describes the
information transmission efficiency of the whole brain network.
The definitions of the four network properties are given below,
where n represents the number of nodes; 2 represents a node
set; wij indicates the network connection value between nodes
i and j; dij represents the shortest path length between nodes
i and j.

CC =

∑
j,h∈2

(
wijwihwjh

)
∑

j∈2 wij

(∑
j∈2 wij − 1

) 1/3

(22)

CPL =
1
n

∑
i∈2

∑
i∈2,j6=i dij

n− 1
(23)

Le =

∑
j,h∈2,j 6=i

(
wijwih[djh (2i)]

−1)∑
j∈2 wij

(∑
j∈2 wij − 1

) 1/3

(24)

Ge =
1
n

∑
i∈2

∑
j∈2,j 6=i

(
dij
)

n− 1

−1

(25)

Spatial asymmetry features
Spatial asymmetry features are based on the asymmetry

characteristic of the brain reported in previous studies, mainly

including differential asymmetry (DA) and rational asymmetry
(RA) (Duan et al., 2012). The DA features represent the
subtraction values of the features from the left and right
hemisphere electrodes, and the RA features represent the ratio
of the features from the left and right hemisphere electrodes. DA
and RA are defined as follows:

• Differential Asymmetry (DA)

DA = feal − fear (26)

• Rational Asymmetry (RA)

RA = feal/fear (27)

Where feal and fear represent the features extracted by
the symmetrical position electrodes of the left and right
hemispheres, respectively. The asymmetry features of ESD data
include 27 pairs of electrodes, and the DEAP dataset includes 17
pairs of electrodes.

Feature selection

The purpose of feature selection is to find the key electrodes
for the recognition of different valence emotions and provide a
foundation for using a few electrodes for emotion recognition in
practical applications.

Currently, the commonly used feature selection methods
mainly include Relief (Jia et al., 2013), min redundancy max
relevance (mRMR) (Ding and Peng, 2005), and forward floating
search (Bhadra and Bandyopadhyay, 2021). Among them,
mRMR is the most famous feature selection algorithm and
has been applied in many emotion recognition studies. mRMR
exploits mutual information to characterize the performance of
feature subsets. This study also used the mRMR feature selection
algorithm to explore the key electrodes for emotion recognition.
This study attempted to find the most important 1, 4, 8, and
16 electrodes for the recognition of different valence emotions.
First, the most important 1, 4, 8, and 16 electrodes in each
subject’s classification are determined based on mRMR. Then,
the frequency of each electrode in 40 subjects is counted, the
most selected electrodes are taken as key electrodes, and the
electrodes’ location in the brain regions is also analyzed.

Classification settings

Classification is to match features with emotions to obtain
classification accuracy. Classifiers can be roughly divided into
two categories. The first category is the current popular
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classifiers based on the deep neural network (DNN). These
classifiers are mainly the convolution neural network (CNN)
(Santamaria-Vazquez et al., 2020), recurrent neural network
(RNN) (Lukosevicius and Jaeger, 2009), long and short-term
memory (LSTM) (Peng et al., 2016), and graph revolutionary
neural network (GCNN) (Zhong et al., 2020). In recent
years, most of these DNN classifiers have achieved excellent
classification results, and most of these DNN classifiers have re-
extracted the input features (Chen et al., 2019). However, due
to the “black box” characteristic of DNNs, the significance of re-
extracted features cannot be clearly explained (Zhou et al., 2016).
The other category is the traditional shallow classifiers, such as
support vector machine (SVM) (Chen et al., 2020), k-nearest
neighbor (KNN) (Keller et al., 2012), linear discriminate analysis
(LDA) (Saeedreza et al., 2009), extremely learning machine
(ELM) (Huang et al., 2006), random forest (RF) (Liaw and
Wiener, 2002), naive Bayes (NB) (Rish, 2001), discriminant
analysis classifier (DAC) (Alkan and Günay, 2012), and boosting
(Sun et al., 2007). Usually, the hyper-parameters in the DNN
need to be tuned (He et al., 2019), and this procedure will change
input features to unknown features (Saha and Fels, 2019), which
makes it difficult to objectively compare the performance of
different features. Most of the shallow classifiers do not need
to tune complex parameters. Therefore, this paper used the
six commonly used shallow classifiers (SVM, KNN, RF, NB,
DAC, and boosting) to compare the classification performance
of different features. Meanwhile, LibSVM (Chen et al., 2020)
was used with a linear kernel, and the parameter was set
to “−s 0−t 0.”

Two experiments were conducted on the classification of
the ESD dataset. The first is a two-category experiment that
separates EN valence emotions from other valence emotions.
In this experiment, 30 samples of EN valence emotions of each
subject are regarded as one category, and 120 samples of MN,
MP, EP, and neutral emotions are mixed as another category.
Because it is a mixture of 4 emotions, each subject is sampled
4 times, 5-fold cross-validation is used for classification, and the
average accuracy of 4∗5 times classification is taken as the final
accuracy of each subject. The second experiment is to classify
five types of valence emotions: EN, MN, MP, EP, and neutral.
Five-fold cross-validation is used in the classification, and the
average accuracy five times classification is used as the final
classification accuracy of each subject.

The DEAP dataset contains multimodal data such as EEG,
galvanic skin response and respiratory rate during 32 subjects
watching 40 1-min music videos with different valence and
arousal. The EEG signals are collected from 32 active electrodes
arranged according to the 10–20 international system. Only
EEG signals are used in this study. To determine the effective
features of different valence emotion classification in the DEAP
dataset, the samples with arousal ratings in the range of 3.5–
6 of each subject are selected, and then these selected samples
are divided into high valence emotion samples with valence

ratings greater than 5 and low valence emotion samples with
valence ratings less than 5. Since the two types of samples
of some subjects are unbalanced, this study calculates the
sample number of two categories and then randomly selects the
same number of samples as the fewer samples category from
the category with more samples. According to experimental
experience and previous research, emotion does not occur
immediately after the stimulus is presented, so only the last
30 s of data induced by each video in the DEAP dataset were
used in the experiment, and the data were divided into 5 s by
non-overlapping segmentation. The preprocessing method of
the EEG data in the DEAP dataset is consistent with that in the
original dataset.

Results

Behavior data

The mean reaction time (RT) of 40 subjects under five
different valence emotions is presented in Table 1. Compared
with neutral valence emotion, the other four valence emotions
all cause the subjects to react more slowly. This indicates
that different valence emotions can affect the subjects’ reaction
ability. When subjects are under an extremely negative valence
emotion, the reaction time is longer than that under other
valence emotions (p < 0.05), and the reaction time is the shortest
when the subjects are under natural emotions. Subjects respond
to trials involving MP and EP more slowly than to natural trials,
but it does not reach significance (P = 0.06). So, different valence
emotions can affect cognitive performance.

Classification performance of different
features

The classification performance of each feature for different
valence emotions was first compared on the ESD dataset and
DEAP dataset. Then, the highest classification accuracy of the
time domain, frequency domain, time-frequency domain, DA,
RA, and brain network features by using the classifiers of
KNN, RF, SVM, DAC, Bayes, and boosting were presented,

TABLE 1 Mean reaction time under different valence emotions.

Emotion RT (ms) Significance

EN 617.8 **

MN 599.6 *

Natural 585.0 –

MP 596.4 *

EP 581.7 –

**P < 0.05; *, in the edge of significance; -, no significance.
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respectively. Two-class and five-class classification experiments
were conducted on the ESD dataset, and high and low
valence two-class classification experiment was carried out on
the DEAP dataset.

Classification performance on the ESD dataset
As shown in Figure 1, all features achieved a classification

accuracy of no less than 70% in recognizing the EN emotion
from other valence emotions, and the highest classification
accuracy of 93.7% is achieved with the second-order difference
by the SVM classifier. According to the classification results,
time-domain features, first-order difference features, and
second-order difference features perform better. The
classification accuracy of first-order difference features
under the KNN classifier is 90.3%, and the classification
accuracy of second-order difference features under the SVM
classifier is 93.7%. High gamma (HG) band power achieved the
highest classification accuracy of 90% under the SVM classifier
among frequency-domain features. The high gamma band DE
obtained the highest accuracy in the time-frequency domain,
and the classification accuracy under the SVM classifier is
92.1%. For brain network features, the CPL of the high gamma
band coherence network performed the best and achieved
a classification accuracy of 71.4% under KNN. For spatial
asymmetric features, the DA feature extracted from second-
order difference features obtained the highest classification
accuracy of 89.7% under the SVM classifier, and the RA features
extracted from first-order difference features performed the best
and achieved a classification accuracy of 88.8% under the SVM
classifier. The results show that the performance of first-order
difference and second-order difference features in the time
domain can achieve higher accuracy than that of power and
differential entropy, which are mostly used in previous studies.
In addition, it can be found that frequency-domain features,
time-frequency domain features, and coherence network
features in higher frequency bands performed better than those
in lower frequency bands, and the high gamma band features
achieved the highest classification accuracy. By comparing the
performance of different classifiers, it can be found that the
SVM classifier performed better in binary classification on ESD
datasets.

As shown in Figure 2, for the classification of five-class
valence emotions on ESD datasets, the highest classification
accuracy of 89.9% is achieved by second-order difference
features under the SVM classifier and by FD features under
the DAC classifier. Among time-domain features, second-
order difference features and FD features achieved the best
performance. In the frequency domain, high gamma band
power performed best, and the classification accuracy achieved
by the SVM classifier was 84.6%. Among time-frequency
features, the high gamma band DE achieved the highest
classification accuracy of 87.5% under the SVM classifier. The
high gamma band CPL of the coherence network performed the

best among all brain network properties, and the classification
accuracy based on the DAC classifier is 60.6%. For spatial
asymmetric features, both the DA features and RA features
extracted from FD features achieved the highest classification
accuracy of 85.7% under the DAC classifier. When classifying
five kinds of valence emotions, it was also found that the
accuracy of features in higher frequency bands is higher than
that in lower frequency bands, and the high gamma band feature
obtained the highest classification accuracy. Comparing the
performance of different classifiers, it can be found that SVM
and DAC classifiers have better classification performance in the
classification of five-class valence emotions on ESD datasets.

Classification performance on the DEAP
dataset

As shown in Figure 3, on the DEAP dataset, the
classification accuracy of various features for high and low
valence emotions is not less than 50%, and the first-order
differential features achieved the highest classification accuracy
of 69.4% under the SVM classifier. Among the time-domain
features, the first-order differential features achieved the highest
classification accuracy of 69.4% under the SVM classifier. In
frequency-domain features, the classification performance of
gamma-band power features is the best, and the classification
accuracy is 66.3% under the RF classifier. In the time-frequency
domain, the gamma band differential entropy obtained the
highest classification accuracy of 67.6% under the SVM
classifier. Among the brain network properties, the gamma
band local efficiency extracted from the coherence network
achieved the highest classification accuracy of 62.7% under the
RF classifier. Among the DA features, the gamma band DE
obtained the highest classification accuracy of 66.4% under
the DAC classifier. The RA features extracted from gamma
band DE features performed the best and achieved the highest
classification accuracy of 66.8% under the DAC classifier. On
the DEAP dataset, it was also found that the features in higher
frequency bands performed better than those in lower frequency
bands, and the gamma band features achieved the highest
classification accuracy, which is consistent with the results
on the ESD dataset. Comparing the performance of different
classifiers, it can be found that SVM and DAC classifiers have
better classification performance.

To show the classification performance of different features
visually, this study selected one subject’s data and adopted the
t-SNE algorithm to map high-dimensional features to two-
dimensional space and compare the distribution of features
within and between classes. On the ESD dataset, six types of
features were selected, namely, first-order difference, second-
order difference, FD, high gamma power, high gamma
differential entropy, and high gamma band CPL of the
coherence network, to visualize by t-SNE. On the DEAP
dataset, first-order difference, second-order difference, FD,
gamma-band power, gamma band DE, and gamma band
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FIGURE 1

The highest two-class classification accuracy in each feature domain on the ESD. The block which including six bars of same color is the results
of same classifier and from left to right, it is the classification results by classifiers KNN, RF, SVM, DAC, NB, and Boosting, respectively.

FIGURE 2

The highest five-class classification accuracy in each feature domain on the ESD. The block which including six bars of same color is the results
of same classifier and from left to right, it is the classification results by classifiers KNN, RF, SVM, DAC, NB, and Boosting, respectively.

Le of the coherence network were selected to visualize by
t-SNE (Donahue et al., 2013). Figures 4, 5 show the feature
distribution maps of the ESD and DEAP dataset. The feature

distribution map shown in Figure 4 indicates that the second-
order difference, FD, high gamma power, and high gamma
DE, which obtained higher classification accuracy on the ESD
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FIGURE 3

The highest classification accuracy for high and low valence emotion in each feature domain on the DEAP. The block which including six bars of
same color is the results of same classifier and from left to right, it is the classification results by classifiers KNN, RF, SVM, DAC, NB, and Boosting,
respectively.

dataset have a small distance within the class and a large distance
between classes. From Figure 5, it can be seen that the first-
order difference, second-order difference, and gamma DE on
the DEAP dataset have a small distance within the class and a
large distance between classes. The feature visualization results
explain why the features performed better in the classification
of different valence emotions, i.e., features with a small intra-
class distance and a large inter-class distance can achieve higher
accuracy.

Important electrodes

From the classification results on both the ESD dataset
and the DEAP dataset, it can be found that the features with
better classification performance are the first-order difference,
the second-order difference in the time domain, the high-
frequency band power, and the high-frequency band DE
features. Based on these four features, this study adopted the
mRMR algorithm to reduce the feature dimension and find
the most important electrodes on the ESD dataset and the
DEAP dataset, respectively. On the ESD dataset, the most
important 1-dimension, 4-dimension, 8-dimension, and 16-
dimension features were selected from all 62 dimensions of each
feature, and on the DEAP dataset, the features were selected
from all 32 dimensions of each feature.

Figures 6, 7 show the most important 1, 4, 8, and 16
electrodes of the first-order difference, second-order difference,

high-frequency band power, and high-frequency band DE on
the ESD dataset and the DEAP dataset, respectively. The blue
rotundities in the figure represent the selected electrodes. From
the results in the table, it can be seen that the electrodes from
the prefrontal and temporal lobes are important for selecting the
most important 1-dimension and 4-dimension features, and the
features from the electrodes distributed in the occipital lobe are
also selected when choosing more features.

According to the above classification performance
comparison results, the first-order difference, second-order
difference, high-frequency band energy, and high-frequency
band DE show better classification performance. Then, this
study investigated the classification performance of the four
features extracted from the above-mentioned most important
1, 4, 8, 16 electrodes and all electrodes. Figures 8, 9 show the
classification results of the features extracted from different
numbers of electrodes on the ESD dataset and DEAP dataset,
respectively. It can be seen from the results that the more
electrodes are used, the higher the classification accuracy is. On
the ESD dataset, when the number of electrodes is reduced by
3/4, i.e., using 16 electrodes located in the frontal lobe, temporal
lobe, and occipital lobe, the classification accuracy is only 2%
lower than that using all 62 electrodes. On the DEAP dataset,
when only 1/2 of all electrodes are used, the gamma band
DE even achieved 0.8% higher accuracy than that of using all
32 electrodes, and the accuracies of the first-order difference,
second-order difference, and gamma band power decreased.
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FIGURE 4

Feature visualization map on ESD dataset. (A) Second-order difference; (B) first-order difference; (C) fractal dimension; (D) high gamma band
power; (E) high gamma band differential entropy; (F) high gamma band CPL of coherence network.

FIGURE 5

Feature visualization map on DEAP dataset. (A) Second-order difference; (B) first-order difference; (C) fractal dimension; (D) gamma band
power; (E) gamma band differential entropy; (F) gamma band CPL of coherence network.
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FIGURE 6

The distribution of the most important1, 4, 8, and 16 electrodes on the ESD dataset. Brown circles mark the most important 1 electrode, blue
circles mark the most important 4 electrodes, brown solid circles mark the most important 8 electrodes, and blue solid circles mark the most
important 16 electrodes. From top to bottom, each row corresponds to first-order difference, second-order difference, high gamma band
power, and high gamma band DE, respectively.

Computing time

In practical applications, the feature extraction time should
be as short as possible. In this paper, the computing time
of features in different feature domains was compared. The
computer used in this experiment is the AMAX server equipped
with two Intel (R) Xeon (R) Gold 5120 2.20GHz CPUs, 256 GB
RAM, and two NVIDIA Titan RTX GPUs, and running the 64-
bit windows10 operating system. The data processing of this
study was conducted on MATLAB 2018a. The feature extraction
time was compared based on one sample 62∗1200 (62 indicates
the electrode number, 1200 indicates the data length, and the
sampling rate is 600 Hz) in the ESD dataset, and the MATLAB
commands “tic” and “toc” were used to record the computing
time of different features. The calculation times of each feature
in different feature domains are presented in Table 2.

It can be seen from Table 2 that the features whose
calculation time is less than 0.1 s are FD, first-order difference,
second-order difference, normalized first-order difference,
normalized second-order difference, standard deviation, CC,
CPL, and Ge extracted from the Pearson correlation network.
The brain network features extracted from the coherence

network need a long computing time, and the computing time
is more than 50 s.

Discussion

Classification performance of features

Through the classification results on the ESD dataset and
DEAP dataset, it can be found that the four features, namely the
first-order difference, second-order difference, high-frequency
band power, and high-frequency band DE performed better
for the classification of different valence emotions. Specifically,
among the four features, the classification performance of time-
domain first-order difference and second-order difference under
the SVM classifier achieved higher accuracy than that of the
most used band power and differential entropy. Lan et al.
(2016) also reported that the time-domain features have better
classification performance than frequency features. Meanwhile,
the feature visualization results show that the first-order
difference and second-order difference have a large inter-class
distance and a small intra-class distance while characterizing
different valence emotions.
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FIGURE 7

The distribution of the most important 1, 4, 8, and 16 electrodes on the DEAP dataset. Brown circles mark the most important 1 electrode, blue
circles mark the most important 4 electrodes, brown solid circles mark the most important 8 electrodes, and blue solid circles mark the most
important 16 electrodes. From top to bottom, each row corresponds to first-order difference, second-order difference, high gamma band
power, and high gamma band DE, respectively.

FIGURE 8

The classification results of features from 1, 4, 8, 16, and all 62 electrodes on the ESD dataset.
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FIGURE 9

The classification results of features from 1, 4, 8, 16, and all 32 electrodes on the DEAP dataset.

From the above results, the feature that performed the
best in each feature domain while classifying different valence
emotions can be found. Among time-domain features, the first-
order difference and second-order difference achieved higher
accuracy than other features. In the frequency domain, the
high-frequency band power performed better than that in low-
frequency bands on both ESD and DEAP datasets. Moreover,
on the ESD dataset, the high gamma band power achieved the
highest accuracy among all frequency-domain features, and on
the DEAP dataset, the gamma band power obtained the highest
accuracy. For the time-frequency domain, high-frequency band
DE features perform better than those of the low-frequency
band, and the high gamma band and gamma band DE achieved
the highest accuracy on the ESD and DEAP dataset, respectively.
Both frequency domain and time-frequency domain features
show that a higher frequency band feature can achieve higher
classification accuracy in the classification of different valence
emotions. Many previous studies have also reported that high-
frequency EEG features have a better performance in emotion
recognition (Zheng and Lu, 2015; Zhuang et al., 2018). Our
previous studies also proved the effectiveness of high-frequency
features in emotion recognition (Yang et al., 2020). This
study also explored the performance of brain network features
that are widely used in recent years’ research. Three brain
network calculation methods were used in this study, and
then four network attributes were extracted as features. The
results showed that the network feature calculated based on
the Pearson correlation network had better performance, and
the classification performance of CPL shows that it is more

effective in characterizing different valence emotions. For DA
and RA features, it can be found that the performance of RA
features is slightly better than that of DA features. In addition,
the performance of spatial asymmetric features is related to
the original feature, i.e., if the classification performance of
the original feature is good, the classification performance
of the corresponding asymmetric feature is also good. This
may be because both RA and DA features are both simple
linear transformations of the original features. Through the
classification results of features in different domains, it can
be found that when classifying different valence emotions, the
commonly used frequency domain and time-frequency domain
features characterizing the rhythm features of EEG should be
considered, and more attention should be given to the time-
domain features that representing the time-varying information
of EEG signals. Overall, when classifying different valence
emotions with a first-order difference, second-order difference,
high-frequency band power, and high-frequency band DE can
achieve better classification results than other features.

Important electrodes

Figures 6, 7 show the most selected electrodes and their
distributions in the classification of different valence emotions.
The most important features are extracted from similar
electrodes of different features, and the results on ESD and
DEAP datasets are consistent. The features are mainly extracted
from the electrodes distributed at the frontal lobe, occipital lobe,
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TABLE 2 Calculation time of different features (s).

Time domain ApEn SamEn FD Fir-dif Sec-dif N-fir-dif N-sec-dif Std

3.053 6.650 0.029 0.003 0.004 0.006 0.006 0.005

Frequency/time-frequency PSD Power DE

0.602 0.208 0.118

PLV CC CPL Le Ge

0.464 0.442 2.926 0.435

Pearson CC CPL Le Ge

0.027 0.058 2.577 0.043

Coherence CC CPL Le Ge

54.338 58.726 56.025 52.621

and temporal lobe. Meanwhile, according to previous research,
the frontal lobe is the brain region that executes high-level
cognitive functions, including emotion processing and memory,
and the occipital lobe mainly processes visual information
related to emotions. Zheng et al. (2019) also pointed out that the
key brain regions for emotion recognition included the frontal
lobe, temporal lobe, and occipital lobe. Shuang et al. (2018) also
found that the electrodes of the frontal lobe, temporal lobe,
occipital lobe, and other brain regions are more important in
exploring key electrodes for emotion classification (Liu et al.,
2018). According to the results in this paper and previous
studies, it can be found that different valence emotions have
stable EEG patterns, and the prefrontal lobe, occipital lobe, and
temporal lobe play an important role in characterizing different
valence emotions. Additionally, the classification performance
of different dimensions features was compared in this study,
and it was found that the classification accuracy decreases with
the reduction in the number of feature dimensions. On the
ESD dataset, when the number of electrodes is reduced by
3/4, the classification accuracy is only about 2% lower than
that of using all 62 electrodes. On the DEAP dataset, the
accuracy of extracting the gamma band DE from only half of
all electrodes is higher than that of using all electrodes. These
classification results indicate that it is feasible to recognize
different valence emotions based on a few electrodes, which can
reduce computing complexity and is more convenient in actual
applications. Therefore, the designing of an EEG acquisition
device with a few electrodes or classifying different valence
emotions based on a few electrodes can refer to the electrodes
located in the frontal lobe, temporal lobe, and occipital lobe.

Calculation time of features

Feature computing time is also very important for emotion
recognition, especially in online emotion recognition because
it affects the result feedback of emotion recognition. This
study compared the calculation time of different features and
presented the features with less calculation time, which can be

used as a reference for other studies. Meanwhile, it was found
that most time-domain features can be extracted in a short
time. Especially, the first-order difference and second-order
difference features have low computational complexity, and they
are suitable for real-time emotion recognition situations.

Comparison of classifiers

In this study, six commonly used shallow classifiers are
used. As shown in the Figures 1–3, in each figure every block
which including six bars of same color is the classification
results of each classifier, and the same sequence location of each
block is the result of same feature domain. By comparing the
results of the same sequence location of each block in same
figure, it can be seen that when feature is fixed, classifiers has
different influence on classification results. The comparison
results show that the SVM classifier has better performance in
two-class classification tasks on both the ESD dataset and DEAP
dataset, and the highest classification accuracy of different
feature domains is mostly achieved by the SVM classifier. In
the classification of five valence emotions, both SVM and DAC
classifiers can obtain excellent results, and for some features, the
DAC classifier may obtain better results than the SVM classifier.
By comparing each block including six bars of same color, it can
be seen, when classifier is fixed, the classification is decided by
feature. And among all the features, the first-order difference,
the second-order difference, the high-frequency band power
and the high-frequency band differential entropy performed
better. Generally, if we want to achieve the highest classification
accuracy, we not only need to select feature but also need
to select classifiers, the optimal combination of classifier and
feature is required.

Limitations

The limitation of this study is that it only explored the
features for different valence emotions, but the effective features
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for different arousal emotions were ignored. Meanwhile, the
combination of different features can provide complementary
information and may contribute to better classification
performance, so feature fusion methods will be explored in
our future work.

Conclusion

This manuscript systematically evaluated the performance
of 110 features extracted from the time domain, frequency
domain, time-frequency domain, spatial domain, and brain
network on our self-built ESD dataset of 40 subjects and
the public dataset DEAP. Meanwhile, the classification
performance, computing time, and important electrodes of
each feature were systematically analyzed and compared. From
the experimental results, it can be seen that the first-order
difference, second-order difference, high-frequency power, and
high-frequency DE features outperform other features for the
recognition of different valence emotions. Also, most time-
domain features have less computing time than other features,
which are more suitable for online emotion recognition. Besides,
the electrodes in the frontal lobe, temporal lobe, and occipital
lobe are more important for the recognition of different valence
emotions, and when the number of electrodes is reduced by 3/4,
the classification accuracy of features from 16 electrodes located
in these brain regions is 91.8%, which is only about 2% lower
than that of using all electrodes. In addition, the SVM classifier
outperforms other shallow classifiers used in this study, and
most features can obtain the highest accuracy with SVM. In
the future, we will explore effective feature fusion methods in
emotion recognition.
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