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Abstract

Proliferative Diabetic Retinopathy (PDR) is a chronic complication of Diabetes and the main

cause of blindness among the world’s working population at present. While there have been

many studies on the pathogenesis of PDR, its intrinsic molecular mechanisms have not yet

been fully elucidated. In recent years, several studies have employed bulk RNA-sequencing

(RNA-seq) and single-cell RNA sequencing (scRNA-seq) to profile differentially expressed

genes (DEGs) and cellular components associated with PDR. This study adds to this

expanding body of work by identifying PDR’s target genes and cellular components by con-

ducting an integrated transcriptome bioinformatics analysis. This study integrately examined

two public bulk RNA-seq datasets(including 11 PDR patients and 7 controls) and one sin-

gle-cell RNA-seq datasets(including 5 PDR patients) of Fibro (Vascular) Membranes

(FVMs) from PDR patients and control. A total of 176 genes were identified as DEGs

between PDR patients and control among both bulk RNA-seq datasets. Based on these

DEGs, 14 proteins were identified in the protein overlap within the significant ligand-receptor

interactions of retinal FVMs and Protein-Protein Interaction (PPI) network, three of which

were associated with PDR (CD44, ICAM1, POSTN), and POSTN might act as key ligand.

This finding may provide novel gene signatures and therapeutic targets for PDR.

Introduction

Proliferative Diabetic Retinopathy (PDR) is a slow-onset, chronic complication of diabetes

and the main cause of blindness among the world’s working population at present [1]. The

global number of diabetic patients is expected to rise to 366 million by 2030, with 11% of them

developing vision-threatening retinopathy [2, 3], making early diagnosis and treatment of

PDR critical. While studies have previously examined the roles of inflammation, oxidative

stress and cytokine production/release in PDR’s pathogenesis [3], its underlying molecular

mechanism has not been fully elucidated, and more studies are needed to provide a deeper

understanding for uncovering more effective therapeutic targets.
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The identification of specific gene expression patterns can help understand disease patho-

genesis and reveal possible theraputeic targets [4]. Recently, bulk RNA-sequencing (RNA-seq)

and single-cell RNA sequencing (scRNA-seq) have been widely used for gene expression pro-

filing and identifying cell populations in Fibro (Vascular) Membranes (FVMs) from PDR

patients [5]. Still, to the best of our knowledge, no previous study on PDR has integrated

RNA-seq and scRNA-seq to identify Differentially Expressed Genes (DEGs) between normal

FVMs and that from PDR patients. Therefore, this study conducts an integrated transcrip-

tomics analysis through RNA-seq and scRNA-seq. We identified three biomarkers of PDR,

among which POSTN and FAK/Akt pathway may be potential therapeutic targets of PDR.

Data and methods

Data collection

The gene expression datasets of PDR were obtained through the Gene Expression Omnibus

(GEO) database (http://www.ncbi.nlm.nih.gov/) [6]. Two bulk RNA-seq datasets (GSE94019

and GSE102485, containing SRR5925083-SRR5925086, SRR5925099- SRR5925100) [7, 8]

were downloaded to profile DEGs, including FVMs from 11 PDR patients and seven controls.

A single-cell RNA-seq dataset consisting of 7,971 FVM cells from five PDR patients was also

downloaded from the GEO database (GSE165784) [5]. Validation studies were then conducted

using data from a microarray dataset (GSE60436) comprised of six PDR patients and three

control subjects [9].

Processing of RNA-seq data

SRA Toolkit (version 2.11.3-ubuntu64) was used to download and preprocess the raw data

from the two datasets. Raw reads were first separated into FASTQ files of pair-end reads, with

FastQC (version 0.11.5) used for data quality control. The clean reads were aligned to the

human reference genome (USCS hg19) by HISAT2 (version 2.1.0). Finally, SAMtools (version

1.9) and HTSeq (version 0.6.1p1) were used to quantify and map the reads to an annotated

document (GENCODE, version 39lift37, Oct 2021).

Differential gene expression analysis

The R package DESeq2 [10] was then used to identify the DEGs among the PDR and control

groups in each RNA-Seq dataset. The cutoff criteria for determining DEGs were |log2 fold

change (FC)| > 1 and FDR < 0.05.

RRA analysis

The Robust Rank Aggregation (RRA) method [11] was used to integrate the results of the

RNA-seq studies and control batch effects introduced by different sequencing platforms. A

lists of up- and down-regulated genes for each RNA-seq dataset were generated from the

expression fold changes between PDR and control groups. RobustRankAggreg package in R

was used to integrate and rank differentially expressed genes from each dataset, and genes with

a score <0.05 were considered significant in the final integrated dataset.

Functional and pathway enrichment analysis and construction of protein-

protein interaction network

Functional enrichment analysis was used to explore the function of the DEGs, including Gene

Ontology (GO) functional enrichment analysis and the Kyoto Encyclopaedia of Genes and

Genomes (KEGG) pathway analysis [12, 13], performed by the clusterProfiler package in R
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[14]. String database (version 11.5) [15] was used to construct a Protein-Protein Interaction

(PPI) network based on the DEGs, allowing the names and protein-coding genes of all proteins

interacting in the network to be extracted.

Processing of single-cell RNA-seq data

The scRNA-seq data was processed by the Seurat package in R. First, Canonical Correlation

Analysis (CCA) was used to find Mutual Nearest Neighbours (MNNs) [16]. Cells with more

than 2,500 or fewer than 200 gene counts, or with more than 5% mitochondria, were filtered out.

The “vst” selection method was used to find variable genes, which were input features for initial

Principal Component Analysis (PCA) [17]. Jackstraw analysis was then performed to select the

Principal Components (PCs) with P-values< 0.05 [18]. Significant PCs were incorporated into

further t-distributed Stochastic Neighbour Embedding (t-SNE) to identify different cell clusters

with DEGs (resolution = 0.5). The distribution and expression of the top 10 DEGs were displayed

on feature plots and heat maps, respectively, while the Blueprint and Encode databases [19–21]

in the R package singleR were used as references for defining each cell cluster.

Identification of the significant cellular communication

The R package CellChat [22] was used to identify ligand-receptor interactions among FVM

cells. Venn diagrams were used to illustrate the communication of proteins in the ligand-

receptor interactions and PPI networks. We then constructed a PPI network and performed

undirected network analysis using cytoscape to identify hub genes. The DisGeNET and DIS-

EASES database was used to identify genes associated with PDR.

Identification of the key regulons

SCENIC (single-cell regulatory network inference and clustering) method [23] was used to

build the regulatory network among FVM cells. We used R packages GENIE3 and RcisTarget

to infer the co-expression network and the transcription factor binding motifs. AUCell pack-

age was used to identify the active regulons in each cell types.

GSVA and co-expression analysis

We used GSVA for pathway enrichment analysis of scRNA-seq data. Limma package in R was

used to screen pathways with significant differences in different cells. Finally, we verified the

correlation between genes and between genes and pathways by the co-expression Pearson cor-

relation analysis of active regulatory genes, key cellular communication genes and differential

pathways.

Validation study

Further validation studies were then conducted using microarray data (GSE60436) on six PDR

and three control patients. The Limma algorithm [24] was used to identify DEGs, and genes

with the |log2 fold change (FC)| > 1 and P-value <0.05 were considered significant.

Result

Differential gene expression analysis

The correlation of biological repeat RNA-seq data is shown in Fig 1. All samples were highly

correlated (R> 0.6). We first identified DEGs in bulk RNA-seq data according to the cut-off

criteria. Volcano plots demonstrating differential expressions are shown in Fig 2A and 2B.
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Results in the RRA integrated analysis

Through Robust Rank Aggregation, 176 significant DEGs (81 up-regulated and 95 down-regu-

lated) were identified. The heatmap of the top 10 up-regulated and down-regulated genes is

shown in Fig 3.

Functional enrichment analysis and PPI network analysis

The 176 DEGs were used to perform GO and KEGG analyses. Functional enrichment analysis

for these DEGs in GO terms and KEGG pathways are shown in Fig 4A and 4B. Results showed

that extracellular matrix structural constituent process (GO:0005201, P-value = 1.67E-11) was

Fig 1. PCA clustering diagram and correlation heatmap of gene expression levels in RNA-seq data. The x-label represents the variance contribution rate of

principal component 1, and the y-label represents the variance contribution rate of principal component 2. The color of the heatmap indicates the correlation

of gene expression levels in the sample, green represents low correlation and red represents high correlation. (A)-(B) GSE94019. (C)-(D) GSE102485.

https://doi.org/10.1371/journal.pone.0277952.g001
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most significantly enriched for molecular function, followed by the integrin binding process

(GO:0005178, P-value = 4.53E-07) and the hyaluronic acid binding process (GO:0005540, P-

value = 1.01E-06) (Table 1). These molecular functions are closely related to fibrosis, cell adhe-

sion and migration, suggesting that these DEGs and their expression products may be involved

in the formation of FVMs. Top five KEGG enriched pathways are shown in Table 2. STRING

database was used to perform the PPI network analysis of the DEGs. All 176 DEGs included

161 proteins and 392 PPI relationships.

The gene expression landscapes of FVMs cells

The t-SNE plot clearly shows eight clusters and five cell types (Macrophages, Monocytes, B

cells, CD8 + T cells, Fibroblasts) (Fig 5). Fig 6A and 6B, respectively, show the expression levels

of the top 10 DEGs in each cluster and cell type. The feature plots of each cell type marker

genes are presented in Fig 7.

Identification of significant cellular communication in FVMs cells

We then use the CellChat package in R to identify the ligand-receptor interactions among

FVMs cells and the DisGeNET database was used to download genes associated with PDR. A

total of 43 significant ligand-receptor interactions related to 110 proteins were identified. In

addition, 14 proteins (CD4, CD44, COL1A1, COL1A2, COL4A1, COL4A2, COL6A2, GRN,

ICAM1, LAMB1, NOTCH3, POSTN, SIGLEC1, THY1) were identified in the overlap of the

DEGs-based PPI network and proteins of significant ligand-receptor interactions of FVMs

cells. Fig 8A and 8B show 43 ligand-receptor interactions and a new PPI network of the inter-

actions between 14 proteins, respectively. Fig 9A and 9B show the gene expression levels of

these 14 proteins in each cell type, respectively. The results show that the coding genes of these

14 proteins are mainly expressed in fibroblasts. We selected the proteins with the top 10 degree

in undirected network analysis as hub genes (CD44, CD4, THY1, COL1A1, COL1A2, POSTN,

Fig 2. Volcano plots of two RNA-Seq data. Red points represent up-regulated genes and blue points represented down-regulated genes. Gray points represent genes

with no significant difference. (A) GSE94019. (B) GSE102485.

https://doi.org/10.1371/journal.pone.0277952.g002
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ICAM1, COL4A1, COL4A2, COL6A2), among these proteins, only three (CD44, ICAM1,

POSTN) were associated with PDR pathogenesis (Fig 10). Fibroblast-derived POSTN binds to

the ITGAV_ITGB5 receptor on fibroblasts through secreted signaling. This interaction may

promote fibroblast migration and proliferation. CD44 is involved in cellular interaction

between CD8+ T-cells and Macrophages through secreted signaling. These interactions may

lead to a direct or indirect control of cellular activities such as adhesion, migration, and prolif-

eration. ICAM1 is mainly involved in cellular interaction between CD8+ T-cells and Macro-

phages through cell-cell contact, which may mediate cell adhesion and play a critical role in a

wide range of biological processes including immune response and inflammation. Altogether,

these observations suggest that POSTN, CD44 and ICAM1 may play a key role in the forma-

tion of FVMs. Results of CellChat analysis, including POSTN, CD44 and ICAM1, are pre-

sented in Table 3.

Fig 3. The heatmap of the top 10 up-regulated and down-regulated genes in the RRA analysis. Red indicates high expression of genes in patients with PDR and blue

indicates low expression.

https://doi.org/10.1371/journal.pone.0277952.g003
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Identification of the key regulons

Through SCENIC analysis, 243 active regulons were identified, 28 of which are associated with

POSTN, CD44 and ICAM1. MYLK was one of the top five regulons in fibroblasts (Fig 11A–

11C). Therefore, we inferred that MYLK and POSTN are key factors involved in the regulation

of fibroblasts.

GSVA and co-expression analysis

We selected the differential pathways in fibroblasts for correlation analysis, showing the co-

expression patterns of the active regulons and key cellular communication genes, and their

correlation with differential pathways. In co-expression analysis, the regulon MYLK had sig-

nificantly co-expression pattern with POSTN (R = 0.33, P-value < 0.001). Besides, the regulon

HIF1A was co-expressed with ITGVA and ITGB5 (R = 0.14 and R = 0.22, P-value < 0.001),

Fig 4. The functional enrichment analysis for DEGs in GO terms and KEGG pathways. (A) The bubble plot of top 10 significant GO terms in biological process (BP),

cellular component (CC) and molecular function (MF). (B) The bubble plot of top 30 significant KEGG pathways.

https://doi.org/10.1371/journal.pone.0277952.g004

Table 1. Top five molecular functions in GO analysis.

ID Description p-value Gene Count

GO:0005201 extracellular matrix structural constituent 1.67E-11 15

GO:0005178 integrin binding 4.53E-07 10

GO:0005540 hyaluronic acid binding 1.01E-06 5

GO:0030020 extracellular matrix structural constituent conferring tensile strength 1.25E-06 6

GO:0048407 platelet-derived growth factor binding 1.62E-06 4

https://doi.org/10.1371/journal.pone.0277952.t001
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which were the receptors of POSTN and also co-expressed with POSTN (R = 0.12, P-

value < 0.001) (Fig 12A). Then we used STRING database to perform MCL (Markov Chains)

cluster analysis of these key proteins, and found that the interaction network of key proteins,

POSTN, MYLK, ITGAV and ITGB5 are in the same cluster, which is similar to the previous

results (Fig 12B). In gene-pathway correlation analysis, POSTN, MYLK, ITGVA and ITGB5

were all significantly associated with pathways related to cell adhesion and migration (P-

values< 0.05) (Fig 13). Overall, our study suggested that MYLK, HIF1A and POSTN maybe

involved in the proliferation and migration of fibroblasts.

The validation of study

Finally, we validated our results by using microarray data GSE60436, and found that POSTN

(P = 1.01−10) and CD44 (P = 5.78−4) had significant differences in the verification dataset.

Only ICAM1 showed no significant difference in the validation dataset (P = 0.09). Verification

results are presented in Fig 14A–14D.

Table 2. Top five KEGG pathway enrichment analysis.

ID Description p-value Gene Count

hsa04744 Phototransduction 1.05E-08 7

hsa04933 AGE-RAGE signaling pathway in diabetic complications 6.56E-06 8

hsa05146 Amoebiasis 7.60E-06 8

hsa04512 ECM-receptor interaction 2.66E-05 7

hsa04974 Protein digestion and absorption 7.36E-05 7

https://doi.org/10.1371/journal.pone.0277952.t002

Fig 5. t-distributed stochastic neighbour embedding (t-SNE) plot. Purple represents Macrophages, orange represents Monocytes, red represents B cells, blue represents

CD8 + T cells and green represents Fibroblasts.

https://doi.org/10.1371/journal.pone.0277952.g005
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Fig 6. The expression level heatmaps of the top 10 DEGs. (A) The top 10 DEGs in each cluster. (B) The top 10 DEGs in each cell type.

https://doi.org/10.1371/journal.pone.0277952.g006
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Discussion

PDR is a common chronic complication in diabetic patients, and progression of the disease

may eventually result in irreversible visual impairment, underscoring the critical importance

of its early diagnosis and treatment. Current PDR treatments include control of metabolic dis-

orders, anti-VEGF therapy, laser therapy and surgery, but all have limitations such as multiple

drug injections, vitreous surgeries and poor prognosis. Through transcriptomic and pathway

Fig 7. The feature plots of each cell type marker genes. Green represents high expression level and grey represents low expression level.

https://doi.org/10.1371/journal.pone.0277952.g007
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analysis, our findings provide new targets and directions for PDR’s early intervention and

treatment.

As PDR develops, the molecular and cellular characteristics of the disease often change,

making it possible to screen out important predictors; thus, DEGs and cell communication in

FVM cells are of interest to this research. This study is the first to perform integrated transcrip-

tomic analyses based on bulk RNA and single-cell RNA sequencing, using two bulk RNA-seq

datasets and one single-cell RNA-seq dataset to compare gene expression profiles between

PDR and control patients and RRA analysis to give results greater statistical power. In addi-

tion, functional annotation and PPI network construction were performed to understand the

potential biological functions of DEGs.

From a total of 176 DEGs and 43 ligand-receptor pathways, 14 proteins involved in both

the DEG-based PPI network and significant ligand-receptor interactions in FVM cells. Three

of them were associated with PDR (POSTN, ICAM1, CD44). By SCENIC analysis, we identi-

fied POSTN as the key ligand.

Periostin (POSTN) is a Fasciclin family stromal cell protein [25] that is believed to initiate

cell proliferation, migration and epithelial-to-mesenchymal transformation by interacting

with several integrins, including αVβ3, αVβ5 and α6β4 [26, 27]. Our study found POSTN to

be significantly expressed in fibroblasts. Fibrosis is a recognised marker of advanced PDR,

with studies showing significantly more active fibroblasts in PDR FVMs than in idiopathic

epiretinal membranes, suggesting that fibroblasts are crucial to PDR development [28].

POSTN in fibroblasts is thought to be involved in many fibrotic diseases through TGF-β
(Transforming Growth Factor -β) and/or TNFα/IL-1α (Tumour Necrosis Factor α/ Interleu-

kin -1α) interactions [29]. POSTN is also believed to act directly on fibroblasts, leading to their

activation and proliferation. One study suggests that POSTN promotes idiopathic pulmonary

fibrosis through mesenchymal effects, cross-linking collagen and stiffening the matrix created

Fig 8. 43 ligand-receptor interactions and the PPI network of the interactions between fourteen proteins. (A) 43 significant ligand-receptor interaction

networks. (B) PPI network of interactions among CD4, CD44, COL1A1, COL1A2, COL4A1, COL4A2, COL6A2, GRN, ICAM1, LAMB1, NOTCH3, POSTN,

SIGLEC1, and THY1. The color represents the degree of protein interactions in the PPI network, with darker color indicating the higher degree.

https://doi.org/10.1371/journal.pone.0277952.g008
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by fibroblasts, thereby activating cells for further production of the extracellular matrix [30].

POSTN directly activates mesenchymal cells, or induces expression of TGF-β from these cells,

to accelerate the inflammation and fibrosis process [29, 30]. Additionally, POSTN is thought

to be involved in cell proliferation and migration by binding to integrins αVβ3 or αVβ5 and

activating FAK/Akt phosphorylation [31], this has also been proved in our research. In the

present study, fibroblast-derived POSTN acted as a ligand for fibroblasts’ integrin αVβ5 recep-

tors by secreting signals, suggesting there may be a POSTN-dependent autocrine effect in

fibroblast proliferation. Besides, studies have showed that POSTN is involved in vascular

remodelling in a variety of diseases [32–34]. These processes may be important for promoting

fibroblast involvement in FVM formation in diabetic retinas, so inhibiting POSTN may con-

tribute to PDR treatment.

In our study, we found that MYLK and HIF1A are involved in the regulation of POSTN.

MYLK is known as an important marker of fibrosis [35, 36]. POSTN has been reported to acti-

vate integrin signaling, which initiates MYLK phosphorylation and leads to reorganization of

the actin cytoskeleton important for the regulation of vascular permeability and cell migration

[37]. This activation of integrin signaling may also lead to increased HIF1A expression by initi-

ating PI3K/Akt/mTOR signaling pathway, resulting in increased VEGF and angiogenesis [38,

Fig 9. Gene expression levels of CD4, CD44, COL1A1, COL1A2, COL4A1, COL4A2, COL6A2, GRN, ICAM1, LAMB1, NOTCH3, POSTN, SIGLEC1, and THY1

in each cell type. (A) A dot plot shows the expression levels of these genes. The dot size and color represent the percentage of cells expressing the gene and p-values. (B)

The violin plot shows the expression distribution of these genes.

https://doi.org/10.1371/journal.pone.0277952.g009
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39], and it has been found that there is a positive feedback loop between HIFs and the POSTN

signal [32]. HIF expression increases during tissue hypoxia, which may be the reason for

POSTN overexpression in PDR patients.

Fig 10. Venn diagram. The Venn diagram shows 14 proteins that not only involved in significant ligand-receptor interactions in FVMs but DEGs-based

PPI networks, three of which were associated with PDR.

https://doi.org/10.1371/journal.pone.0277952.g010

Table 3. The results of cellchat analysis including CD44, ICAM1 and POSTN.

Source Target Ligand Receptor Prob Pathway name Annotation

Fibroblasts Fibroblasts POSTN ITGAV_ITGB5 8.61E-06 PERIOSTIN Secreted Signaling

Macrophages CD8+ T-cells SPP1 CD44 0.0082952 SPP1 Secreted Signaling

Macrophages 0.0467258

Macrophages CD8+ T-cells LGALS9 CD44 0.0022465 GALECTIN Secreted Signaling

Macrophages 0.0123457

Macrophages Macrophages ICAM1 ITGAX_ITGB2 0.0022029 ICAM Cell-Cell Contact

ITGAM_ITGB2 0.0020691

CD8+ T-cells SPN 0.0001336

Macrophages Macrophages ITGB2 ICAM1 0.0058955 ITGB2 Cell-Cell Contact

https://doi.org/10.1371/journal.pone.0277952.t003
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Traditional treatments for PDR include vitreous surgery and intraocular injection of anti-

VEGF drugs, but such treatments are often associated with poor efficacy, multiple surgeries

and treatment resistance, meaning that safer, more effective approaches are necessary. RNA

interference-based therapeutics targeting key genes provides one possible solution. A single-

stranded RNAi agent targeting POSTN has demonstrated inhibiting behaviours to Choroidal

Neovascularization (CNV) formation with good stability and no serious toxicity [40]. In an in-

Fig 11. The heatmaps and regulation network of regulators. (A) The heatmap of active regulators in each cell types. Red represents high regulatory activity and

blue represents low activity. (B) The regulation network among 28 regulons and 3 key cellular communication genes. Diamond represents regulons and circle

represents key cellular communication genes. (C) The heatmap of top five regulons in each cell types. Red represents high regulatory activity and blue represents low

regulatory activity.

https://doi.org/10.1371/journal.pone.0277952.g011
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vitro trial, the POSTN-targeted inhibitor also demonstrated effectiveness in inhibiting retinal

neovascularization [31]. These findings indicate that POSTN is a good prospect as a new thera-

peutic target for PDR, with POSTN inhibitors expected to become new therapeutic agents for

PDR in the future.

ICAM1, or Intercellular Adhesion Molecule 1, is the ligand for the leukocyte adhesion pro-

tein LFA-1 (integrin alpha-L/beta-2). During leukocyte trans-endothelial migration, ICAM1

engagement promotes the assembly of endothelial apical cups through ARHGEF26/SGEF and

RHOG activation, binding cells together or to the extracellular matrix. The molecule contrib-

utes to cell proliferation, differentiation, motility, trafficking, apoptosis and tissue architecture.

Rangasamy et al. [41] suggest that hyperglycemia leads to increased ICAM1 expression in reti-

nal microvascular endothelial cells, activating leukocytes and resulting in their attachment to

endothelial cells. Leukocyte attachment leads to microvascular damage through the secretion

of pro-inflammatory molecules (VEGF, TNFα, Ang-2, proteinases, chemokines) and leukocyte

deposition. In addition, several studies document elevated ICAM1 levels in PDR patients’ vit-

reous fluids [42–44].

The CD44 antigen is the receptor for Hyaluronic Acid (HA), mediating cell-cell and cell-

matrix interactions through affinity for HA and possibly through affinity for other ligands

such as osteopontin, collagens and Matrix Metalloproteinases (MMPs). CD44 is believed to

be involved in tumour growth and metastasis, proliferative diabetic retinopathy and athero-

sclerosis [45]. In a recent study, AGEs (Advanced Glycation Endproducts) were found to

interact with CD44 to form stress fibres and RMP (Retinal Microvascular Pericytes) migra-

tion, causing pericytes to detach from microvessels and damage vascular integrity [46].

Moreover, activation of the CD44 receptor signalling pathway may result in the release of

multiple inflammatory factors, while up-regulation of ICAM-1 indirectly leads to increased

endothelial cell activation [45].

Fig 12. Gene-gene co-expression heatmaps and protein interaction network. (A) The co-expression heatmaps showing R values (the lower triangle) and P-values

(the upper triangle), X targets means P-value> 0.05. Red represents positive correlation and blue represents negative correlation. (B) The MCL cluster analysis

showing that POSTN, MYLK, ITGVA and ITGB5 are grouped into the same cluster, while CD44, ICAM1 and HIF1A are grouped into another cluster.

https://doi.org/10.1371/journal.pone.0277952.g012
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In summary, this study used the Robust Rank Aggregation to integrate multiple bulk RNA-

seq datasets, and combing single-cell expression information to provide deeper insight into

the comprehensive molecular changes of PDR pathogenesis.

Still, several limitations of this study including the scarcity of public data and heterogeneity

introduced by integrating different batches of experiments should be considered. While the

RRA method can reduce these differences, bias may still exist. Future studies should collect

more tissues from PDR patients and controls to identify additional PDR markers and thera-

peutic targets.

Conclusion

By overlapping the DEGs with from PDR-associated gene list from DisGeNET and DISEASES

database, we identified the upregulation of POSTN, ICAM and CD44 as biomarkers of the dis-

ease. Among them, POSTN activates FAK/Akt phosphorylation by binding with integrin αvβ5

on fibroblasts through autocrine, leading to the proliferation and migration of fibroblasts and

the formation of FVMs. This pathway may be considered as potential therapeutic targets for

PDR treatment.

Fig 13. Gene-pathway co-expression heatmap. Red represents positive correlation and blue represents negative correlation. � Indicates p-value< 0.05, �� indicates p-

value< 0.01.

https://doi.org/10.1371/journal.pone.0277952.g013
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