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Abstract: Plant transpiration is considered one of the most important physiological 

functions because it constitutes the plants evolving adaptation to exchange moisture with a 

dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of 

transpiration, accurate measurement methods are required; therefore, a smart sensor that 

fuses five primary sensors is proposed which can measure air temperature, leaf 

temperature, air relative humidity, plant out relative humidity and ambient light. A field 

programmable gate array based unit is used to perform signal processing algorithms as 
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average decimation and infinite impulse response filters to the primary sensor readings in 

order to reduce the signal noise and improve its quality. Once the primary sensor readings 

are filtered, transpiration dynamics such as: transpiration, stomatal conductance,  

leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the 

smart sensor. This permits the user to observe different primary and calculated 

measurements at the same time and the relationship between these which is very useful in 

precision agriculture in the detection of abnormal conditions. Finally, transpiration related 

stress conditions can be detected in real time because of the use of online processing and 

embedded communications capabilities. 

Keywords: smart sensor; transpiration; stomatal conductance; precision agriculture; 

phytomonitoring; water stress; field programmable gate array 

 

1. Introduction 

Plant transpiration is the process in which plants exchange moisture with the atmosphere [1]. This 

process is carried out when plants perform photosynthesis. While the plants are absorbing the carbon 

dioxide (CO2) they also lose a certain amount of water and release oxygen O2 [2]. Also, transpiration is 

performed to maintain temperature equilibrium between plants and their environments, dissipating 

undesirable heat in the lost water vapor. Plant monitoring commonly includes the estimation of 

photosynthesis itself, the assimilation or CO2 uptake and water thermodynamic relations such as: 

transpiration (E), stomatal conductance (Cleaf), vapor pressure deficit (VPD), and leaf-air temperature 

difference (LATD) [3]. Those variables constitute transpiration dynamic indicators which are often 

used in agriculture to optimize the available water resources [4]. 

E is considered one of the most important plant physiological functions because it encompasses 

plants evolving and adapting to exchange moisture in a very dry atmosphere that can dehydrate or 

eventually kill the plant [1]. Cleaf is a transpiration variable that represents a quantitative measurement 

of the stomatal resistance (rs) inverse of plant guard cells plus the inverse boundary resistance (rb) 

against water vapor flux. Those guard cells act as flux valves to control the water vapor movement 

from plant to the atmosphere and CO2 movement in an inverse way [5]. LATD is the difference 

between air temperature (Ta) and leaf temperature (Tleaf) in relation to the global transpiration process 

which is proportional to E. Furthermore, VPD is also a response variable that is calculated by 

subtracting air vapor pressure (ei) content from saturation vapor pressure (es). These variables are very 

important because they can indicate drought stress conditions and condensation problems that may 

cause dangerous plant diseases [2,6,7]. 

Because of this, transpiration dynamic measurement is crucial and necessary to establish 

comparisons and understand plant-soil-atmosphere relationships at leaf, plant, canopy, or community 

levels as well as their interaction and response to environmental [6], chemical [8], or biological [9] 

factors that generate different stress conditions. Therefore, continuous monitoring of the 

aforementioned transpiration dynamics by a single smart sensor system is highly desirable. As a 
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consequence, more accurate measurement methods are required to gather more knowledge about these 

processes. Relative humidity (RH) capacitive sensors and thermistors are the most commonly utilized 

sensors to measure these variables in environmental and agricultural research [2,6,10,11]; however, in 

modern instrumentation the use of intelligent sensors with in situ signal processing capabilities to 

calculate response variables equations from simple sensor measurements is necessary [12-14]. E and 

Cleaf calculation is based mainly on water vapor exchange measurements [2,6]. This method consists of 

temporally isolating a plant leaf sample in a miniature gas exchange chamber which is often used for 

photosynthesis measurements [15]. An air flow is introduced into the leaf chamber to measure the 

intake ei and the amount of leaf out vapor (eo). The absolute amount of water is calculated using RH 

sensors and vapor curve equations from Mollier diagrams by expressing, E and Cleaf as vapor mass for 

each surface unit of each time unit [6,16,17]. Previous monitoring systems have used this technique to 

obtain E and Cleaf from air relative humidity (RHa) and Ta [18,19]. Temperature, light, carbon, and RH 

measurements contain merged transpiration and photosynthesis dynamics information; therefore, the 

extraction of those response variables is desirable for precision agriculture applications. Previously, Ta 

and RH sensors have been used in data acquisition systems for environmental monitoring and 

greenhouse climate controllers [2]. More advanced applications involve offline crop water stress 

detection based on E behavior analysis [20]. Forestry research has also used transpiration dynamics to 

investigate the properties of trees [21]. Intelligent irrigation has been investigated in order to schedule 

irrigation cycles according to the speaking plant concept approach, better known as phytomonitoring 

technique [20,22]. It takes into consideration the plant as the final user of the irrigation line, activating 

water delivery when plant has an excessive E. VPD has been studied in greenhouse climate controller 

design also in order to determine when RH is near to dew point to avoid excessive fogging and 

consequently leaf condensation that leads to plant diseases [7]. However, those systems do not fuse 

their sensors data with other transpiration-related response variables such as ambient light and LATD 

nor do they have online in situ signal processing capabilities to make real-time decisions. 

Consequently, it involves having an agricultural expert technician to manually download data to be 

analyzed offline with at least a one day delay [22]. In precision agriculture, a one day delay can 

sometimes represent the loss of the total crop. It makes necessary the development of a real time 

transpiration dynamics intelligent sensor to early detect stress and disorder conditions. 

The contribution of this project is to develop a smart sensor capable of estimating plant transpiration 

dynamic variables: E, Cleaf, LATD, and VPD, through the fusion of five primary low-cost sensors: two 

RH capacitive sensors, two Resistance Temperature Detector (RTD) sensors, one light quantum sensor, 

average atmospheric pressure data, and fixed volumetric air flow. All the aforementioned 

instrumentation was embedded into a smart sensor system using an aluminum/acrylic leaf chamber 

with automatic open/close mechanism based on a miniature servomotor to perform temporal leaf 

isolation cycles. A vacuum pump is used to generate the air flow through the leaf chamber. 

Transpiration dynamic response variables are extracted from the primary sensors and its computation is 

performed in situ using digital signal processing techniques such as: average decimation filters, 

infinite-impulse-response (IIR) filters, polynomial fitting, and the corresponding E, Cleaf, LATD, and 

VPD equations. The light sensor is fused as a reference to understand daylight information which is 

related to the beginning of daily transpiration dynamic processes. The data acquisition systems, 
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aforementioned computations, data communication and leaf chamber servomotor/vacuum pump 

control system are implemented in a field programmable gate array (FPGA) as an embedded smart 

sensor approach. 

2. Background  

2.1. Plant Transpiration Water-Atmosphere Scheme 

In Figure 1, a plant leaf cut scheme is shown where it can be noticed that the different plant tissues 

(parenchyma, mesophyll and guard cells) which have low CO2 contents and a high amount of water. 

The atmosphere, presented as a gray cloud constitutes a relatively dry environment that can eventually 

dehydrate or even kill the entire plant if the environmental conditions are not adequate [1]. The stomata 

guard cells which are the orange ones in Figure 1, are the plant system that controls the stomatal pores 

open and close process to balance the CO2 and water fluxes between the plant and its environment. 

Here rb is the boundary resistance and rs is the stomatal resistance. 

2.2. Transpiration Process 

As was aforementioned, E is a function that depends primarily on the difference between ei and eo. 

However, primary humidity sensors provide relative humidity measurement values [6] and need to be 

converted into ei and eo. First, it is necessary to determine es in order to know the maximum amount of 

water that air can contain at a specified Ta by using vapor curves in the Mollier thermodynamic 

diagrams [2] or by using the simplified equation (1) as was previously reported [19]. Then ei 
and eo 

can 

easily be obtained with (2) and (3), where RHi is air input RH and RHo is leaf chamber output RH. 

Figure 1. Leaf cut water scheme, showing CO2 and H2O flows. 
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In order to estimate E; it is necessary to calculate another important factor, W which is the mass 

flow rate per leaf area, expressed in mol/m
2
/s for open flow systems. W equation is stated in (4), where 

P is the atmospheric pressure in Bar, V is the volumetric air flow in liters per minute (lpm), TaK is air 

temperature in Kelvin (K) and A is leaf area in cm
2
, which is often used the effective leaf chamber area 

in transpiration and photosynthesis measurement systems [19]. The 2005.39 constant is an adjusted 

coefficient to change mass units to mol, surface to m
2
 and time from minutes to seconds: 
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2.3. Stomatal Conductance 

Stomatal conductance is another important transpiration dynamic variable that represents the guard 

cells vapor conductivity [1,2,5]. It can be estimated from primary temperature and RH sensors data. 

The first step is to calculate the leaf saturation vapor pressure eleaf as a function of Tleaf. For this 

purpose, (1) can be used to calculate eleaf substituting Ta by Tleaf to obtain (6). rb is considered a 

constant of 0.3 m
2
s/mol. Once eleaf is obtained, stomatal conductance (Cleaf) can be calculated by  

using (7), expressing the result in mmol/m
2
/s as was previously utilized [19]:  
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2.4. Vapor Pressure Deficit 

VPD is a variable that represents the margin between air vapor pressure and air saturation vapor 

pressure. If air RH is low, VPD has a large margin; but if RH is high VPD is low and it is easy to get 

undesirable condensation conditions [6]. To calculate VPD it is necessary to subtract ei from es. The 

most common units to represent VPD are kPa [2]: 

is eeVPD   (8)  

3. Smart Sensor Methodology 

The proposed methodology for the smart sensor can be seen in Figure 2. It consists of the following 

stages: primary sensors, data acquisition system (DAS), FPGA-based digital signal processing (DSP), 

RAM memory to storage sensors measurements, RS232 data communication module, and leaf chamber 

mechanism control system. In the first stage, five primary sensor signals are obtained from two RTD 

temperature sensors, two RH capacitive sensors and one light quantum sensor. The second stage 

consists of an eight channel DAS capable of acquiring the signals of the five primary sensors and 

leaving the last three channels disconnected (NC). The signal processing stage is carried out on a 

FPGA-based hardware signal processing (HSP) unit, as reported by [23] for CNC and [24] for robotics 

vibration applications. Atmospheric pressure is provided by external smart sensor input. Volumetric air 

flow is fixed at a constant 0.9 lpm flow rate by using a passive flow limiter. Data communication is 

carried out via RS232 interface embedded in the FPGA unit to send the measurement to a data server 

PC or another system. Finally, the leaf chamber opening mechanism and vacuum pump is controlled by 

the FPGA HSP unit. 

Figure 2. Transpiration smart sensor architecture. 

 

3.1. Transpiration Smart Sensing Cycle Methodology 

Transpiration smart sensing cycle methodology is shown in Figure 3. Here, the green blocks 

represent the open leaf chamber stages and red blocks represent the closed leaf chamber; therefore, 
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isolating the plant leaf. Each measurement starts with the activation of the air vacuum pump and 

closing the leaf chamber by the servomotor controller to isolate the plant sample. The smart sensor 

performs a 1 min delay to wait pneumatic line flow steady state. After that, the data acquisition starts 

by measuring cycles of 1 Hz sampling frequency from the five primary sensors. This process is 

repeated to acquire 64 samples from each sensor in each transpiration measurement cycle. Once 

sufficient data has been acquired, the computation of transpiration dynamics are performed, data can be 

transferred, the leaf chamber is opened and vacuum pump is turned off to save energy. Finally, another 

delay is carried out to complete the 15 min duration of the entire transpiration smart sensing process. 

This measurement period was selected because in commercial equipment, the fastest acquisition period 

is 15 min and this is necessary to establish the same sampling frequency to compare both  

sensing techniques. 

Figure 3. Block diagram of transpiration smart sensing cycle. 

 

3.2. Transpiration Methodology 

In order to calculate plant transpiration E, an FPGA-based signal processing methodology is 

proposed and described in Figure 4. Average decimation filters of 64th order are applied to all the 

primary sensors signals Ta, RHi, and RHo in order to reduce undesired quantization noise as stated  

in (9), (10), and (11) and presented by [14]. Once Ta os, RHi os, and RHo os were estimated, a 1st order 

IIR low-pass filter (LPF) with cut-off frequency (fc) of 1/3600 Hz is applied to obtain the filtered 

versions of the decimated signals known as Ta osf, RHi osf, and RHo osf. To gather E, equations (1) to (5) 

are computed from the filtered signals as presented in Figure 4. 
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Figure 4. Transpiration estimation signal processing methodology. 

 

3.3. Stomatal Conductance Estimation Methodology 

Stomatal conductance is advantageous because it utilizes certain factors previously calculated in 

the transpiration stage. A FPGA-based signal processing methodology is proposed and described in 

Figure 5. 

Figure 5. Stomatal conductance estimation signal processing methodology. 
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Average decimation filters of 64
th

 order are applied to Tleaf sensor signals to reduce undesired 

quantization noise in the same manner as the previous stage according to (12). Once Tleaf os was 

estimated, a 1st order IIR low-pass filter (LPF) stage with fc = 1/3600 Hz is applied to obtain its filtered 

version Tleaf osf. Consequently, eleaf is calculated as stated in (6) and introduced in (7) to obtain Cleaf : 
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3.4. Vapor Pressure Deficit Methodology 

VPD estimation is very simple once es and ei are calculated in the transpiration calculation stage. 

VPD is obtained from the subtraction stated in (13). VPD implementation can be noted in Figure 6:  

)()100( is eeVPD   (13)  

Figure 6. VPD, LATD and Light estimation signal processing methodology. 

 

3.5. Leaf-Air Temperature Difference Methodology 

LATD calculation requires subtracting the filtered air temperature and filtered leaf temperature. As 

occurred in previous calculation stages, once Ta osf and Tleaf osf was calculated, LATD computation is 

simple by using (14), as demonstrated in Figure 6: 

osfleafosfa TTLATD   (14)  
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3.6. Ambient Light Smart Sensor Methodology 

To measure ambient light in a smoother signal manner, the same average decimation filter (15)  

plus 1st order IIR LPF with fc = 1/3600 Hz was applied to the signal light in order to obtain its 

improved version lightosf: 
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4. Experimental Setup 

4.1. Experiment Setup 

The experimental setup can be seen in Figure 7, which shows the development of a smart sensor 

setup and the commercial Phytech PTM-48M, see Figure 7a and Figure 7b used for performance 

comparisons. For this experiment, tomato (Lycopersicon esculentum) plants were chosen as biological 

material to measure transpiration responses in the proposed smart sensor testing. The proposed smart 

sensor consists on an instrumentation platform capable of measuring Ta, Tleaf, RHi, RHo and Light. To 

measure temperature readings, Honeywell Pt1000 RTD primary sensors were used which have a 

measurement range from −200 °C to 540 °C, but are configured for a 0 to 65 °C range with an accuracy 

rate of ±0.3 °C considered suitable for plant temperature ranges [10]. A RTD-signal conditioning 

system was developed to convert the resistance variation into a 0 to 5 volt format. For RH 

measurements, Honeywell HIH-4000 capacitive RH sensors with a range from 0 to 95% RH and 

accuracy of ±2.5% were selected and connected through a developed RH-signal conditioning  

system [11]. Ambient light measurement is achieved by using an OSRAM SFH-5711 light sensor with 

range from 0 to 100,000 lux and an accuracy of ±0.04% of its measured value, providing a 0 to 50 µA 

current signal [25], converted into 0 to 5 V by a designed light-signal conditioning system. The results 

are suitable in order to measure light intensities in rooms from total darkness to complete sunlight. 

Each primary sensor reading passes through a 2nd order analog anti-alias LPF with 20 Hz cut-off 

frequency embedded in the proposed smart sensor. An eight channel 12-bit data acquisition system 

based on the Burr Brown ADS7844 analog to digital converter instrumentation platform was 

developed to read the primary sensors [26]. An FPGA based hardware digital signal processing unit 

was utilized to compute the transpiration response variables from the primary sensors readings based 

on an Altera Cyclone III EP3C16F484C6N device with 16,000 LE [27]. For the open/close leaf 

chamber mechanism, a miniature servomotor model E-Sky 000155 was utilized because of its low 

power consumption. The air flow was induced using a dc-motor piston based vacuum pump. The 

FPGA IP core was implemented in VHDL language, integrating the DAS driver, leaf chamber motors 

control, signal processing unit and communications blocks. 

The experiment was designed to monitor transpiration variables every 15 min to compare the 

proposed smart sensor with a Phytech PTM-48M photosynthesis and transpiration monitor configured 

at its fastest sampling period which is 15 min [18]. Both were connected to the same tomato plant to 

prove the effectiveness of the proposed smart sensor. The experiment ran for 24 hours beginning  

at 12:00AM and finishing at 12:00AM of the next day. It permits the acquisition of four measurement 
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cycles per hour for a total of 96 measurements every 24 h. As was aforementioned, each measurement 

cycle acquires 64 samples from each primary sensor at a sampling frequency of 1 Hz to apply the 64th 

averaging decimation filters. The data can be sent to a data server for massive storage via an Analog 

Devices ADM3232 RS232 transceiver [28]. 

Figure 7. (a) Transpiration smart sensor experimental setup. (b) Phytech PTM-48M setup. 

 

4.2. Primary Sensor Signal Improvement Results 

In this subsection, a comparison between the Ta and RHi readings from the proposed smart sensor 

and the commercial PTM-48M is presented. Figure 8 illustrates this comparison where blue signals 

correspond to PTM-48M readings and red ones to the proposed smart sensor primary readings. Here, it 

can be noted that a similar tendency occurs for both measurements, but a lower amount of noise in the 

red signals is present due to the 64-sample average decimation filters and 1st order IIR filters that 

reduces undesirable variations. In this manner, the filtering advantages of the smart-sensor signal 

processing can be clearly noticed. RHo, Tleaf, and Light readings are not compared because PTM-48M 

does not provide RHo measurement in the data output table and does not have Tleaf and Light sensors. 
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Figure 8. Primary sensors signal comparison. The proposed smart sensor signals are in red 

and Phytech PTM-48M readings in blue. 

 

4.3. Transpiration Results and Comparison 

This subsection shows a comparison between the proposed smart sensor transpiration estimation 

and the reference PTM-48M. In Figure 9, this comparison is represented by using blue for the  

PTM-48M transpiration signal and red for the smart-sensor transpiration estimation signal. Here, it is 

noteworthy that a similar transpiration signal behavior between both instruments occurs. 

Figure 9. Comparison between the developed smart sensor and the PTM-48M  

transpiration estimations. 

 

4.4. Fused Transpiration Dynamics Smart Sensing Results 

The proposed smart sensor fuses Ta, Tleaf, RHi, Rho and Light measurements in a single device which 

is considered highly desirable for precision agriculture applications to be able to monitor different 

environmental factors that can affect the crops. In Figure 10, the monitoring results of the primary 

sensors in this experiment are presented. All of these were previously oversampled 64 times for the 

average filtering process and passed through an IIR 1st order LPF with a cut-off frequency  

of fc = 1/(3600). As it can be seen, the amount of noise in these primary signals is very low. 
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Figure 10. Primary sensor readings of the proposed smart sensor. 

 

 

In Figure 11, transpiration dynamics response variables (E, Cleaf, LATD, and VPD) can be observed. 

These parameters share a similar dynamic behavior because they are related to the entire 

photosynthesis and transpiration processes which involve different phenomena.  

Figure 11. Transpiration dynamics results. 
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The computation of the required equations to obtain these results is achieved using FPGA 

reconfigurability and open architecture that permits implementation of any digital system such as data 

acquisition, memory management, signal processing, and data communication. The developed smart 

sensor fuses five primary sensors and can measure the necessary environmental variables to calculate 

transpiration dynamics and permits the user to observe and record different primary and response 

measurements at the same time and the relationship between these. This is very useful in precision 

agriculture in order to detect abnormal conditions. In contrast, commercial equipment as noted  

in [18,19] can measure time series of transpiration information; however, they do not provide the 

readings for all the primary sensors. In some cases, they are not equipped with the necessary sensors. 

The FPGA-based unit permits improvements of the primary sensor signals by oversampling and digital 

filtering that is consequently reflected in superior accuracy, and overall transpiration variables signal 

quality. The integration of these elements merge different variables at the same time that can be 

acquired and used to take specific control actions by communicating these transpiration measured 

values to other systems via RS232 interface like PC data servers, an irrigation controller, or a climatic 

control unit due to the online processing and remote communications capabilities of the proposed 

smart sensor. Taken together they constitute a smart sensor solution to monitor transpiration variables 

in precision agriculture applications by using a single FPGA-based system.  

5. Conclusions 

In this investigation the development of a novel smart sensor that can estimate plant-transpiration 

dynamic variables as: transpiration, stomatal conductance, leaf-air temperature difference, and water 

vapor deficit in real time is presented. This smart sensor fuses five primary sensors: two temperature 

sensors, two relative humidity sensors and one light sensor. To show the effectiveness of the proposed 

smart sensor, it was compared with a commercial Phytech PTM-48M transpiration monitoring system. 

Results show that the proposed sensor can obtain very similar results compared to the reference system 

with less noise due to the digital filtering applied to the primary measurements. The transpiration 

dynamics variables are calculated in real time from the primary sensor data providing very useful 

information related to the plant transpiration which is valuable to schedule irrigation, prevent diseases, 

and detect drought conditions in precision agriculture. Similar behavior of the estimated transpiration 

variables shows the relationship between these and how they depend on the primary sensor readings. 

The necessary computations in order to obtain the transpiration dynamics are computed in a low-cost 

FPGA platform in which parallel architecture is utilized to implement the transpiration equations. This 

permits the integration of the data communication, memory management data acquisition and signal 

processing in a single embedded sensor which can be used to monitor plant transpiration variables and 

their relationships in a wide range of precision agriculture applications. Finally, transpiration related 

stress conditions can be detected in real time because of the online processing and communications 

capabilities. All of which constitutes a very useful precision agriculture smart sensor. 
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