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Simple Summary: Breast cancer is one of the most commonly diagnosed malignant tumors, possess-
ing high incidence and mortality rates that threaten women’s health. Thus, early and effective breast
cancer diagnosis is crucial for enhancing the survival rate. Radionuclide molecular imaging displays
its advantages for detecting breast cancer from a functional perspective. Noninvasive visualization
of biological processes with radionuclide-labeled small metabolic compounds helps elucidate the
metabolic state of breast cancer, while radionuclide-labeled ligands/antibodies for receptor-targeted
radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed
molecular markers in breast cancer. This review focuses on the most recent developments of novel
radiotracers as promising tools for early breast cancer diagnosis.

Abstract: Breast cancer is a malignant tumor that can affect women worldwide and endanger their
health and wellbeing. Early detection of breast cancer can significantly improve the prognosis and
survival rate of patients, but with traditional anatomical imagine methods, it is difficult to detect le-
sions before morphological changes occur. Radionuclide-based molecular imaging based on positron
emission tomography (PET) and single-photon emission computed tomography (SPECT) displays its
advantages for detecting breast cancer from a functional perspective. Radionuclide labeling of small
metabolic compounds can be used for imaging biological processes, while radionuclide labeling
of ligands/antibodies can be used for imaging receptors. Noninvasive visualization of biological
processes helps elucidate the metabolic state of breast cancer, while receptor-targeted radionuclide
molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers
in breast cancer, contributing to early diagnosis and better management of cancer patients. The rapid
development of radionuclide probes aids the diagnosis of breast cancer in various aspects. These
probes target metabolism, amino acid transporters, cell proliferation, hypoxia, estrogen receptor (ER),
progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), gastrin-releasing
peptide receptor (GRPR) and so on. This article provides an overview of the development of radionu-
clide molecular imaging techniques present in preclinical or clinical studies, which are used as tools
for early breast cancer diagnosis.

Keywords: breast cancer; radionuclide; molecular imaging; positron emission tomography (PET);
single-photon emission computed tomography (SPECT)

1. Introduction

Breast cancer is one of the most commonly diagnosed malignant tumors, possessing
high incidence and mortality rates that threaten women’s health [1]. It is a heterogeneous
carcinoma, and according to different molecular subtypes, breast cancer is divided into
five basic subtypes (luminal A, luminal B, HER2-enriched, basal-like, and normal-like).
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Different types possess different biological features, which ultimately affect prognosis,
therapy response, and relapse rates. Additionally, in 2018, it was the principal cause of
cancer-related deaths among females [2]. Thus, early and effective breast cancer diagnosis
is crucial for enhancing the survival rate. Traditional diagnostic imaging, such as mammog-
raphy, ultrasound, magnetic resonance imaging (MRI), and computed tomography (CT),
is largely based on detecting changes in the anatomical structure of tumors and cannot
provide information relating to the molecular characteristics of breast cancer at the early
stage. Tumor invasion and metastasis are closely related to the variety of biomarkers, and
although histological analysis is the primary method used to determine the expression
of molecular markers, it is limited by sampling a single site at a single time point, which
does not sufficiently address tumor heterogeneity [3]. In addition, this process is invasive
and may cause a series of surgical complications including seroma, axillary lymphedema,
and local wound infection. As a result, noninvasive molecular imaging studies have been
rapidly developed in order to obtain more comprehensive biological tumor information
and earlier lesion detection [4].

Molecular imaging evaluates in vivo pathophysiological processes by visualizing a
specific biomarker expression—the changes in biomarkers at the cellular and molecular
levels before pathological structure changes. Therefore, it can detect small lesions early
and be further implemented for differential diagnosis and curative effect tracking. A
molecular probe is a tool used in molecular imaging that can generate imaging signals
(optical, magnetic, electrical, etc.) to achieve precise and personalized imaging. Among the
various molecular probes, radionuclide probes are advantageous for clinical usage because
of their 3D imaging, high sensitivity, and high specificity.

A schematic diagram of radionuclide-based imaging for breast cancer is shown in
Figure 1. A radionuclide probe has three elements: targets, target agents, and radionuclides.
Receptors (targets) overexpressed on tumor cells can be targeted with synthesized target
ligands coupled to a chelator, often via a linker. The chelator enables labeling with radionu-
clides, with ligands binding their targets with high affinity and specificity. The ‘ideal’ probe
for molecular imaging should have some consistent properties, including reaching the
tumor site(s) rapidly, good tissue penetration, high affinity, and specificity for the tumor [3].
Since the imaging techniques and biochemical markers of breast cancer diagnosis have
been reviewed elsewhere [5], this review focuses on the most recent developments of
novel radiotracers as promising tools for early breast cancer diagnosis and provides an
overview of novel radiotracers in different preclinical and clinical phases. These tracers
can be divided into several categories, as discussed in the following sections. The graphical
abstract displays an overview of several molecular pathways of breast cancer cells and
targets for molecular imaging, with Table 1 providing a summary of various radiotracers
for breast cancer imaging.
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Table 1. Summary of various radiotracers for breast cancer imaging.

Receptor Type Target Imaging
Modality

Imaging
Targeting Agents Examples Characteristics Limitations Ref.

Imaging
biological
processes

Glycolysis PET Glucose analog 18F-FDG

1. Reflects cellular glycolysis
2. Has been applied in breast cancer

screening, staging, molecular subtype
determination, and treatment

monitoring

1. Not supposed to diagnose
inflammatory breast cancer
2. Limited spatial resolution

[6]

Amino acid
transporter PET

Methionine 11C-MET
Can be used for predicting the early

treatment response Short half-life of 11C [7]

Leucine analog 18F-fluciclovine
1. Long half-life

2. Detects bone, lung, brain, and
axillary nodal metastases

Limitations in detecting liver
metastases [8]

Cellular
proliferation PET Thymidine

analog
18F-FLT

Can visualize the status of cell
proliferation and avoid the false

positive results occurring in 18F-FDG
imaging

Physiological uptake occurs in
highly proliferative tissues [9]

Hypoxia PET Small molecules 18F-FMISO Evaluation of tumor hypoxia in vivo
1. Slow clearance from the blood
2. Modest hypoxic-to-normoxic

ratio and limited contrast images
[10]

Imaging
receptors

ER

PET Estradiol 18F-FES
The sensitivity and specificity of

18F-FES for tumor detection were
69–100% and 80–100%

1. Lack of precise SUV
(standardized uptake value)

thresholds to distinguish specific
uptake from nonspecific uptake

2. Less selectivity for ERα and ERβ

[11]

SPECT Estradiol
99mTc-DTPA-

estradiol
Satisfactory labeling efficiency and

stability High background/liver uptake [12]

PR PET
Progestin 18F-FENP A high binding affinity for PR

1. High lipophilicity and metabolic
liability led to increased adipose

tissue and liver uptake
2. Low target/background ratio

[13]

Progestin 18F-FFNP
Specifically binds to PR with high

affinity and high selectivity Small sample size [14]
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Table 1. Cont.

Receptor Type Target Imaging
Modality

Imaging
Targeting Agents Examples Characteristics Limitations Ref.

HER2

PET
Antibody 89Zr-trastuzumab

1. Radiolabeling efficiency: 77.6 ± 3.9%
2. Radiochemical purity: 98.1 ± 1.1%

1. Low sensitivity
2. Liver and spleen had higher

uptake
[15]

Antibody
fragments

68Ga-DOTA-F(ab’)2-
trastuzumab

Can identify HER2 downregulation by
Hsp90 inhibition

Lack of sufficient sensitivity for
clinical use [16]

SPECT Antibody
111In-DPTA-
trastuzumab

1. High stability
2. High labeling yields

3. Maintains immunoreactivity and
internalization properties

1. Low sensitivity
2. Low tumor-to-blood ratio

3. Liver, kidney, and spleen had
tracer uptake

[17]

Other receptors

PET Antibody

89Zr-labeled
atezolizumab

(targeting PD-L1)

Can help assess the PD-L1 status and
clinical response predictions

1. A small patient population
2. No tumor biopsies that were
immunohistochemically highly

PD-L1 positive

[18]

PET Peptide
68Ga-DOTA-TOC
(targeting SSTR)

Could be used for the detection of
breast tumors not detected with

18F-FDG
[19]

PET CXCR4 antago-
nist

64Cu-AuNCs-
AMD3100 (targeting

CXCR4)

1. Flexible and straightforward
preparation

2. High radiolabeling specific activity
3. Sensitive and accurate detection of

CXCR4

The ability to determine tumor
progression and burden needs

further improvement
[20]

SPECT scFv

99mTc-HYNIC-
VCAM-1scFv

(targeting VCAM-1)

The probe can reach the tumor site
quickly based on the high tissue
penetrability of small antibody

fragments

High activity in blood and liver [21]
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Table 1. Cont.

Receptor Type Target Imaging
Modality

Imaging
Targeting Agents Examples Characteristics Limitations Ref.

Dual receptor
targeted

PET Peptide

64Cu-NOTA-RGD-
BBN (targeting
αvβ3 and GRPR)

Favorable in vivo kinetics and
enhanced tumor uptake

Did not set other controls such as
the RAD-bombesin heterodimer and

RGD-scramble bombesin
heterodimer

[22]

PET Peptide

68Ga-NGR-RGD
(targeting αvβ3 and

CD13)

Dual receptor-targeting tracers showed
higher binding avidities, targeting

efficiency, and longer tumor retention
time

The uptake of 68Ga-NGR-RGD in
tumors is still relatively low

[23]

Biomaterial-
based
probes

Membrane

PET Cancer cell
membrane CCm-UCNPs

1. Exhibited homologous targeting and
immune escaping abilities

2. Can be used for ultra-sensitive
in vivo UCL/MRI/PET multimodality
precise imaging of triple-negative breast

cancer (TNBC)

[24]

PET Red blood cell
membrane RBC-UCNPs

1. The combination of a pre-targeting
strategy and in vivo click chemistry
successfully realized 4T1 tumor PET

imaging by short half-life
nuclide-labeled biomimetic

nanoparticles
2. The inserted FA was used to increase

the tumor-targeting ability of
RBC-UCNPs

[25]

Exosomes PET Exosome
64Cu-NOTA-

exosome-PEG

1. One of the first examples of
radiolabeling and in vivo PET imaging

of exosomes
2. PEGylation reduced hepatic

clearance of exosomes
3. Exhibited enhanced tumor uptake

and imaging capacity

The radiolabeling yield of
NOTA−exosome−PEG was slightly
lower than that of NOTA−exosome

[26]

Peptide nucleic
acid SPECT PNA

99mTc-
CCND1 antisense

probe

Establish the proof of principle for
identifying oncogene activity in breast

cancer xenografts
[27]
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Figure 1. Schematic overview of receptor-targeting molecular imaging for breast cancer. The molec-
ular probes consist of a ligand, linker, chelator, and radionuclide. Ligands that bind to the overex-
pressed receptors on breast cancer cells can be coupled to a chelator often through a linker. Chelators
enable the labeling of ligands with radionuclides such as 68Ga and 99mTc, which are combined
through a linker.

2. Imaging Biological Processes of Breast Cancer

2.1. Imaging Glucose Metabolism (18F-FDG)

The energy metabolic state of breast cancer is an important indicator for diagnosis,
stratification, metastasis localization, and therapy monitoring. The tumor is characterized
by augmented glycolysis even under sufficient oxygen conditions, which is known as the
Warburg effect [28]. This is a common phenomenon of many types of tumors, including
breast cancer, with an increased glucose metabolism usually implying a malignant phe-
notype and a worse prognosis. Therefore, visualizing glycolysis has become essential for
tumor diagnosis. The classical PET radiotracer is 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG,
Figure 2A) [6]. As a glucose analog, 18F-FDG is imported into cells by glucose transporters
and subsequently phosphorylated by hexokinase, metabolizing to 18F-FDG-6-phosphate.
However, unlike glucose, 18F-FDG-6-phosphate cannot metabolize further and is trapped
in the cell, meaning 18F-FDG imaging reflects the cellular glycolysis because of a propor-
tional ratio between glucose metabolism and 18F-FDG metabolism, known as the lumped
constant [29,30]. Compared to normal cells, the proliferation rate of breast cancer cells is
faster, in addition to the aerobic and anaerobic glycolysis of glucose. Additionally, the car-
bohydrate utilization rate is increased in breast cancer cells, with an increased hexokinase
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concentration present in the cytoplasm [31]. Thus, most malignant breast tumors exhibit
high 18F-FDG uptake [32].

Figure 2. Chemical structure of (A) glucose, 18F-FDG, and 18F-FDG-NPY; (B) an invasive ductal
carcinoma patient with a liver lesion at the right lobe, segment 5 [33]; (C) a female patient with
infiltrating lobular carcinoma. 18F-FDG PET/CT detected multiple bone metastases [33].

18F-FDG imaging can be used for breast cancer staging, molecular subtype determina-
tion, and treatment monitoring. The European Society for Medical Oncology guidelines [34]
recommend using 18F-FDG in early-stage breast cancer when conventional examination
methods are inconclusive. A study held in Japan showed that the sensitivity and positive
predictive value (PPV) of 18F-FDG PET screening for breast cancer were 83.9% and 41.7%,
respectively [35]. However, Bertagna et al. [36] indicated SUV alone should not be used to
differentiate between malignant and benign incidentalomas because there is overlap be-
tween SUVs, drawing the conclusion that 18F-FDG PET/CT is not routinely recommended
for the initial diagnosis of primary breast cancer [37,38].

In relation to staging, one study performed a comprehensive literature review assess-
ing indications for FDG-PET/CT in breast cancer and indicated that FDG-PET/CT is useful
for staging patients with breast cancer independently of tumor phenotype and regardless
of tumor grade [39]. In a recent study, Yararbas et al. [33] concluded that 18F-FDG made
a significant contribution to the accurate staging of breast cancer, starting from stage IIA
(Figure 2B,C). 18F-FDG can detect metastases to mediastinal, axial, and internal mammary
nodes, and a meta-analysis revealed 18F-FDG PET/MRI demonstrates high diagnostic
value in the TNM staging in breast cancer patients and can serve as a promising imaging
biomarker for future evaluation of the TNM stage of breast cancer [40]. Han et al. [41]
performed a systematic review and meta-analysis to evaluate the impact of 18F-FDG on
staging and management as an initial staging modality of breast cancer. The results sug-
gested that routine clinical use of 18F-FDG PET, PET/CT, or PET/MRI imaging leads to
significant modification of the initial staging in newly diagnosed breast cancer patients.

Additionally, in a study conducted by Arslan et al. [42], 18F-FDG was used to evaluate
the molecular subtypes and clincopathological features of primary breast cancer, revealing
an association between a high maximum SUV (SUVmax) and more aggressive behavior.
Moreover, 18F-FDG uptake is related to molecular subtypes luminal A, luminal B, human
epidermal growth factor receptor 2 (HER2)-positive, and triple-negative [43]. In 2015,
Kitajima et al. [44] reported that triple-negative and HER2-positive breast cancers have a
higher SUVmax, while the luminal A subtype has a lower SUVmax.
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For treatment monitoring, 18F-FDG has been widely applied in the management of
neoadjuvant chemotherapy (NAC) for locally advanced breast cancer patients. It can
effectively monitor the therapeutic response and improve patients’ quality of life [45].
A meta-analysis in 2013 concluded that 18F-FDG imaging can accurately predict NAC’s
curative effect on breast cancer in the early to mid stage, which has moderately high sensi-
tivity and specificity [46]. Han et al. [47] also reported that 18F-FDG provided significant
predictive value for the evaluation of responses to NAC in breast cancer patients and might
guide rational management. Caldarella et al. [48] performed a meta-analysis of 8 studies
with 873 suspected breast cancer cases and came to a similar conclusion. In an international
multicenter prospective study, Gebhart et al. [49] evaluated the efficacy of lapatinib and
trastuzumab on developing breast cancer patients. 18F-FDG imaging was performed in
the baseline period before treatment, and on the second and sixth weeks after treatment.
The results showed a correlation between 18F-FDG uptake at 2 weeks and 6 weeks after
treatment, meaning patients who are effective in the second week after targeted therapy are
usually effective in the sixth week after treatment. This study indicated that 18F-FDG PET
imaging can predict the efficacy of targeted therapy at the early stage, without waiting for
the middle stage or the end of treatment. Therefore, 18F-FDG PET imaging was included in
future studies as an essential biological detection method, providing a reference for the
clinical decision of NAC and endocrine therapy. However, the specific threshold value [50]
and the definition of good histopathologic response varies [51], and the optimal timing of
interim PET is unclear [52]. These disparities need to be standardized.

It is important to note that 18F-FDG is not supposed to diagnose inflammatory breast
cancer [34,53] due to its uptake within inflammatory cells complicating the interpretation of
imaging results [54]. Roughly 25% of 18F-FDG uptake concentrates in granulation or fibrous
tissues [55], resulting in confusion between residual tumor tissues and changes occurring
after treatment [56]. In the early period of post-therapy, there is an inflammatory response
in tumor cells and the surrounding normal cells, meaning 18F-FDG uptake tentatively
increases in both types of cells, which ultimately decreases specificity. 18F-FDG uptake
can only reflect the glucose metabolism of tumor cells without providing the distribution
of receptors or tumor proliferation. Other benign lesions with high 18F-FDG uptake will
also affect diagnostic accuracies, such as infection, fibroadenoma, and ductal adenoma.
Furthermore, the sensitivity is relatively low for the diagnosis of sub-millimeter tumors
due to the limited spatial resolution [48].

2.2. Imaging Amino Acid Metabolism

The uncontrolled proliferation of tumor cells enhances cellular biosynthesis and
division, including the processes of glycolysis, nucleotide synthesis, protein synthesis, and
lipid synthesis. The enhanced protein synthesis requires increased amino acid (AA) intake.
The most commonly used amino acid PET imaging agent is L-methyl-11C-methionine
(11C-MET) [7]. Methionine, an essential amino acid of the human body, is crucial for tumor
growth [57], playing a vital role in protein synthesis and methylation. 11C-MET has been
applied to measure methionine accumulation in breast cancer patients, with high uptake
of 11C-MET correlating with a high S-phase fraction of breast cancers, measured by flow
cytometry [58]. This result indicates that 11C-MET uptake might relate to the proliferation
rate of breast cancer.

11C-MET PET imaging can evaluate the early curative effect of advanced breast cancer.
In one study, Huovinen et al. [59] studied eight patients with breast cancer metastases
using 11C-MET, evaluating the effect of treatment. They found that 11C-MET uptake de-
creased in metastases that responded to treatment, whereas it increased when subsequently
developed metastases occurred during treatment. Jansson et al. [60] established similar
findings in 1995, studying 16 patients with locally advanced, recurrent, or metastatic breast
cancer using the radiotracer 11C-MET. Lindholm et al. [7] in 2009 assessed the early re-
sponse to therapy of metastatic breast cancers using 11C-MET PET imaging. In their study,
13 advanced breast cancer patients underwent 11C-MET PET imaging both before and
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after the first period of polychemotherapy, or after the first month of hormone therapy, or
low-dose weekly cytostatics. The curative effect of treatment was evaluated by comparing
SUV changes before and after treatment. In responders, the SUVs decreased significantly
after treatment. However, the SUVs declined mildly, remained stable, or increased up-
take in non-responders, with these results confirming previous conclusions. In another
study, Inoue et al. [61] compared the ability of 18F-FDG and 11C-MET to detect residual or
recurrent tumors. They studied 24 patients with 34 lesions using 18F-FDG and 11C-MET,
finding equal effectivity among these two approaches, with the uptake of 18F-FDG being
somewhat higher than that of 11C-MET. However, for small tumors, both showed a limited
diagnostic value.

The physiological intake in the pancreas, liver, bone marrow, and other normal tissues
limited the further clinical application of 11C-MET in breast cancer for therapeutic effect
evaluation [62]. Furthermore, the short half-life of 11C leads to rapid metabolism and places
time constraints on image acquisition, which can reduce the image quality and hinder
11C-MET PET’s application in tumor imaging [63,64].

Fluorine-18-labeled AAs have longer half-lives than 11C-MET, enabling better detec-
tion of tumor AA metabolism and amino acid transporters [65–68]. Ideally, an 18F-labeled
AA PET probe should conform to some specific conditions. Firstly, it should be transported
into tumor cells rapidly with a high uptake rate. Secondly, it should stay in the cell for a
certain amount of time. Thirdly, the blood clearance rate should be high. Fourthly, it should
not combine with the non-protein or inflammatory tissues. Lastly, the labeling method
should be relatively simple and practical [69,70]. Many commonly used clinical fluorine-18-
labeled AAs have been developed and meet the above conditions, including18F-FDOPA for
gliomas [71–73] and neuroendocrine tumors [74–78]; 18F-OMFD [79] and 18F-FET [80–82]
for brain tumors; 18F-FAMT for brain, oral cavity, and non-small cell lung cancers [83];
18F-FACPC [84–86] and 18F-FACBC [87–94] for prostate cancers; and 18F-FGln [95], 18F-
FASu [96,97], and 18F-fluciclovine [8,98–100] for breast cancers.

18F-(2S, 4R) 4-fluoroglutamine (18F-FGln) could be used to measure the glutamine pool
size of TNBC cells [95]. Many aggressive tumors utilize glutamine for survival through
glutaminolysis. High glutaminase (GLS) activity leads to a small glutamine pool size,
whereas GLS inhibition markedly increases the glutamine pool size. The change in the
glutamine pool size may reveal a drug’s pharmacodynamic effect on the glutaminolysis
pathway. 18F-5-fluoro-aminosuberic acid (18F-FASu) may be a valuable target for monitor-
ing the diagnosis and therapeutic effect of breast cancers [96]. As an endogenous cellular
antioxidant, glutathione plays an important role in coping with oxidative stress (OS) by
neutralizing free radicals. Cysteine/glutamate transporter activity represents glutathione
biosynthesis in the process of responding to oxidative stress and is expressed relatively
low in most normal tissues. While cells are under OS, they are upregulated for the antioxi-
dant response. 18F-FASu was developed as a potentially useful PET imaging tracer that
targets the cysteine/glutamate transporter and might be more sensitive to certain tumors
compared to 18F-FDG [97].

18F-labeled 1-amino-3-fluorocyclobutane-1-carboxylic acid (18F-fluciclovine, 18F-FACBC)
is a leucine analog radiotracer that depicts amino acid transport into cells [8]. Its uptake in
malignant breast cancers was higher than benign lesions and normal surrounding tissues.
18F-fluciclovine PET/CT imaging provides a new method for visualizing invasive lobular
and invasive ductal breast cancer. Ulaner et al. [98] found that 18F-fluciclovine can also
readily detect bone, lung, brain, and axillary nodal metastases, but its ability to detect liver
metastases was limited due to the prominent physiologic uptake in the liver parenchyma.
Tade et al. [99] studied the correlation of 18F-fluciclovine uptake with the histologic and
immunohistochemical features in breast cancer, finding that the radiotracer uptake in the
triple-negative and Nottingham grade 3 subtypes was the highest.
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2.3. Imaging Cell Proliferation

Increased cell proliferation is one of the essential characteristics associated with tumor
biological behavior. The prognosis and aggressiveness of a tumor can be understood
by detecting the state of tumor proliferation. Generally, most studies have focused on
imaging the thymidine salvage pathway during DNA synthesis because thymidine is the
only pyrimidine or purine base incorporated into DNA rather than RNA [101,102]. This
process uses thymidine analog radionuclide probes, including 11C-thymidine, 3′-deoxy-3-
18F-fluorothymidine (18F-FLT), and 1-(2′-deoxy-2′-fluoro-1-β-D-arabinofuranosyl)-thymine
(FMAU). 11C-thymidine, one of the first thymidine proliferation probes, measures the
different protein synthesis rates between normal and tumor cells, with studies showing a
connection between 11C-thymidine uptake and the S-phase fraction in cancer [58,60]. How-
ever, the short half-life of 11C, rapid catabolism after injection, complicated radiosynthesis
and modeling analysis, and low tumor uptake indicate that it is not an ideal radiotracer for
imaging tumors’ proliferative status, and it has generally been abandoned [103].

Currently, the most promising radiotracer for cell proliferation is 18F-FLT (Figure 3) [9].
18F-FLT is phosphorylated by thymidine kinase-1 (TK-1) but cannot further participate in
DNA synthesis and is trapped within the tumor cells due to the lack of the 3′-hydroxy
group. 18F-FLT uptake has been reported to significantly relate to Ki-67 expression in
breast cancer [104]. By studying this radiotracer’s uptake and kinetics, the status of cell
proliferation and DNA synthesis can be visualized in vivo. Unlike 18F-FDG, 18F-FLT is
not concentrated in inflammatory tissues, avoiding false positives [105]. However, the
tumor uptake rate and tumor-to-normal tissue contrast of 18F-FLT are lower than those
of 18F-FDG, as proliferative cells grow asynchronously, whereas glucose metabolism is
associated with many factors, not only cell proliferation. The lower normal tissue uptake
and limited accumulation within inflamed tissues resulted in a higher contrast of 18F-FLT
in tumors. In addition, the physiological concentration of 18F-FLT in the hyperproliferative
tissues, such as the liver and bone marrow, may limit its utility in tumor imaging to some
degree [9]. The high background uptake in the liver for glucuronidation may limit its
clinical application for liver metastases [106]. No studies have reported 18F-FLT uptake in
benign lesions related to high proliferation rates.

Several experimental studies have used 18F-FLT to evaluate the early response to breast
cancer treatment. In one study, Ellis et al. [107] showed that changes in cell proliferation
status after chemotherapy or endocrine therapy were associated with prognosis in breast
cancer. The evaluation of cell proliferation status is essential to determine the efficacy
and prognosis of breast cancer patients. A study from the University of California also
showed that 18F-FLT uptake can predict changes in tumor proliferation after one course
of treatment with cytotoxic chemotherapy for breast cancer [108]. Pio et al. prospectively
studied 14 patients with newly diagnosed early or advanced breast cancer, implementing a
new pharmacologic treatment schedule. Patients were scanned with 18F-FLT three times:
before starting the new regimen, 2 weeks after the first course of treatment, and at the
end of chemotherapy. After the first cycle of treatment, the change in SUV values was
significantly associated with the tumor marker CA27-29 of breast cancer. There was also a
high correlation between tracer uptake and tumor size changes measured by CT, further
revealing the usefulness of 18F-FLT when monitoring the efficacy of chemotherapy for
breast cancer patients. Kenny et al. [109] found that 18F-FLT uptake is significantly different
between responders and non-responders 6–12 days after treatment. The 18F-FLT response
is usually earlier than the changes in the tumor diameter. These results demonstrated
the potential utility of 18F-FLT in determining a positive response as early as 1 week after
chemotherapy, which is superior to the 5 weeks posttreatment of 18F-FDG [108].
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Figure 3. Chemical structure of (A) thymidine, 18F-FLT, and 18F-FMAU; (B) 18F-FLT PET imaging
of a patient with grade II breast cancer 1 week after administration of combination chemotherapy.
(a) pretreatment and (b) posttreatment of a patient with lobular breast cancer who responded to
treatment. (c) pretreatment and (d) posttreatment of a patient with invasive ductal breast cancer who
did not respond to treatment [104].

FMAU is another fluorine-18 labeled thymidine analog that can be easily incorporated
into DNA after phosphorylation by TK-1. This occurs because it contains the 3′-hydroxy
group and offers a direct method for DNA synthesis. Sun et al. [110] reported good tumor-
to-normal tissue ratios of FMAU after studying 14 cases. In breast cancer, the average SUV
value was 2.17, which can clearly show lesion areas. Compared with 18F-FLT, 5–10 times
lower uptake of FMAU was noted in tumors such as TNBC. In addition, the bone marrow
uptake level was also lower, but physiologic liver uptake was also observed because FMAU
is a substrate of the mitochondrial enzyme thymidine kinase-2 (TK-2) with low specificity
for TK-1. It can participate in mitochondrial DNA synthesis, leading to higher physiologic
uptake in normal tissues [110]. Therefore, FMAU is less desirable than 18F-FLT for imaging
the proliferative status of tumors.
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2.4. Imaging Hypoxia

Hypoxia is an independent negative prognostic factor that contributes to tumor
progression, invasion, and metastasis. Patients with hypoxic cancers often have a poorer
prognosis, low chemotherapy/radiotherapy efficiency, and a lower survival rate. Given its
prominent role in oncology, affecting prognosis and treatment planning, noninvasive and
accurate monitoring of tumor hypoxia is highly clinically significant.

Tumor hypoxia is associated with decreased oxygen partial pressure compared to
the surrounding normal tissue. A variety of techniques have been developed to monitor
hypoxia, including oxygen electrodes, near-infrared spectroscopy, electron paramagnetic
resonance spectroscopy, blood or tissue oxygen level-dependent MRI, SPECT, and PET.
Among these techniques, hypoxia PET scanning provides noninvasive 3D imaging and
quantifies intratumor oxygen levels through various hypoxia probes.

The cell’s response to hypoxia is principally controlled by hypoxia-inducible factors
(HIF). Karakashev et al. [111] showed that hypoxia and its biological marker HIF are
connected with a tumor’s cell proliferation, metastasis, recurrence, and drug resistance to
treatment. HIF-1 therein plays the most crucial role in the cellular response to hypoxia.
The findings by Generali et al. [112] in a 2011 study show that the combined treatment of
breast cancer with the new adjuvant chemotherapy drug letrozole and cyclophosphamide
increased the HIF-1 level, thereby increasing the antagonistic response of treatment. These
results indicate that hypoxia may be associated with ineffective endocrine therapy for some
breast cancers.

18F-fluoromisonidazole (18F-FMISO, Figure 4A) is one of the most used PET hypoxia
imaging probes [10]. The sufficiently lipophilic nature ensures easy facilitation to penetrate
the cell membrane, enter the cell, and be uniformly distributed within the tissue. 18F-
FMISO has been demonstrated in several tumor types including gliomas [113] and breast
cancers [114]. A study led by Cheng et al. [114] examined ER-positive breast cancer patients
using 18F-FMISO PET/CT for baseline and post-endocrine therapy imaging to predict
treatment outcomes (Figure 4B). Following the analysis of 33 lesions within 16 ER-positive
breast cancer patients, the predicted values of tumor metastasis and partial remission were
up to 88% and 100% with the application of a 4 h tumor-to-background ratio cutoff of ≥1.2.

Figure 4. Chemical structure of (A) 18F-FMISO, 18F-FAZA, 18F-FETNIM, and 64Cu-ATSM; (B) 18F-
FMISO PET imaging of a patient with right breast tumor in situ (green arrow), CT and PET images,
and a patient with right axillary node metastasis (red arrow), CT and PET images [114].
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Many studies confirmed that 18F-FMISO could evaluate tumor hypoxia in vivo, and
it became the lead candidate to assess hypoxia with PET. However, 18F-FMISO has not
been used for routine clinical diagnostics because of its slow pharmacokinetics: a slow
clearance from blood and normal tissues leads to a modest hypoxic-to-normoxic ratio and
limited contrast images. The contrast is limited in defining hypoxic tumor imaging by
using a tumor/background ratio of≥1.2, which makes visual examination of hypoxic areas
difficult and hinders its diagnostic application in clinical oncology. Therefore, hypoxia
tracers with improved pharmacokinetic properties that are more amenable to clinical use
are in high demand, especially ones with enhanced clearance from normoxic tissues.

Fleming et al. [10] summarized the available hypoxia probes in 2015 and presented
the properties of ideal hypoxia tracers. These characteristics include a high specificity
to hypoxia, a good lipid–water distribution ratio, high in vivo stability, accessibility to
synthesis, and efficiency to various tumor types. Other new fluorine-18 labeling nitroimi-
dazoles radioactive drugs have been studied intensively. For example, 18F-fluoroazomycin-
arabinofuranoside (18F-FAZA, Figure 4) [115], with good serum metabolism, may have
applications in breast cancer’s therapeutic effect evaluation in the near future. Compared
with 18F-FMISO, 18F-FAZA is more hydrophilic and has faster clearance kinetics. There-
fore, its tumor-to-reference tissue ratios, specifically the hypoxia-to-normoxia contrast, are
improved. The radiolabeled probe 18F-FAZA has been successfully applied in gliomas,
lymphomas, etc. [116]. Although 18F-FAZA is not currently widely used, it is gradually
becoming popular for tumor hypoxia PET imaging.

Other hypoxia probes include 18F-fluoroerythronitroimidazole (18F-FETNIM) [117], 18F-
1-(2-1-(1H-methyl) ethoxy)-methyl-2-nitroimidazole (18F-RP-170) [118], and 18F-3-fluoro-2-
(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)propan-1-ol (18F-HX4) [119]. Fur-
thermore, 64Cu-ATSM, a hypoxia probe based on diacetyl-bis(N4-methylthiosemicarbazone)
ligands, is characterized by high membrane permeability on the account of its lipophilicity
and lower molecular weight, which can rapidly diffuse into cells. Compared to other
tracers, 64Cu-ATSM has several advantages for tumor hypoxia imaging, including a sim-
pler radiolabeling method, faster clearance rates, shortened intervals from injection to
imaging, and a higher hypoxic-to-normoxic contrast. The effectiveness of 64Cu-ATSM
has been verified in lung carcinomas [120], cervical cancers [121], rectal tumors [122], and
gliomas [123]. However, its effectiveness for breast cancer diagnosis is yet to be evaluated.

2.5. Imaging Cellular Transmembrane Electrical Potential

Tumor cells are characterized by greater energy-dependent metabolism, a higher
proliferation rate, and increased resistance against apoptosis. One of the main contributors
is the significantly increased mitochondrial membrane potential (MMP) in tumor cells.
The increased cellular transmembrane electrical potential leads to increased uptake of
cell-permeant cationic compounds. With hints of this mechanism, lipophilic cation analogs
are labeled with radionuclides for breast scintigraphy, of which 99mTc-sestamibi and 99mTc-
tetrofosmin are the two most widely used radiotracers.

99mTc-methoxy isobutyl isonitrile, also known as 99mTc-sestamibi (99mTc-MIBI), is
a small lipophilic cationic radiopharmaceutical. 99mTc-tetrofosmin (1,2-bis bis(2-ethoxy-
ethylphosphine)ethane) is a lipophilic diphosphine compound. These two radiotracers
concentrate most in mitochondria and are taken as probes for MMP, denoting the cellular
transmembrane electrical potentials. They are accumulated in various neoplasms and the
myocardium. Therefore, they are used as tumor imaging probes as well as myocardial per-
fusion imaging agents. Typically, they are commonly used to evaluate malignant pathology
within breast tissues. They can not only reveal the lesion site but also reflect the specific
biological and functional characteristics of the lesion, including perfusion, proliferation po-
tential, metabolic activity, and receptor status. The early tracer uptake mechanism is driven
by a negative transmembrane potential depending on mitochondria, which is related to an
increased energy-dependent metabolism and cell proliferation. Due to the biochemical and
physiological characteristics of malignant tumors, the increase in neovascularization, blood
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perfusion, cell proliferation, and metabolism leads to negative transmembrane potential
enlargement. Therefore, 99mTc-MIBI and 99mTc-tetrofosmin imaging showed an obvious
radioactive concentration in tumor lesions.

Notably, 99mTc-MIBI was approved by the Food and Drug Administration in June
1997 and is the first radiopharmaceutical used for radionuclide breast imaging, which
promoted the research of scintimammography in breast cancer detection [124]. Scintimam-
mography is considered as a complementary diagnostic procedure to mammography when
the breasts are mammographically dense or mammography is doubtful, inadequate, or
indeterminate. Khalkhali et al. [125] reported a multicenter study performed in 558 women
that prospectively enrolled 580 abnormal breasts, including 276 dense breasts, and con-
cluded that the diagnostic accuracy of 99mTc-MIBI breast scintigraphy is not affected by
breast density. Lumachi et al. [126] evaluated the effectiveness of 99mTc-MIBI scintimam-
mography and mammography in 87 premenopausal patients with suspicious breast lesions
smaller than 2 cm. The sensitivity, specificity, positive predictive value, negative predictive
value, and diagnostic rate were 81% vs. 81%, 93% vs. 60%, 98% vs. 91%, 50% vs. 39%, and
83% vs. 77%, respectively. In particular, scintimammography is more specific than mam-
mography for patients with architectural distortions of the breast resulting from previous
breast surgery, radiation therapy, chemotherapy, or biopsy [127].

Conventional scintimammography uses the planar acquisition method, which has
a low sensitivity to lesions smaller than 10 mm. Early clinical studies reported that the
sensitivity and accuracy of SPECT are higher than those of planar imaging in the detec-
tion of both small non-palpable primary breast cancer and axillary lymph node metas-
tasis [128,129]. Using a pinhole collimator (pinhole SPECT) can further improve the
performance of SPECT. The better spatial resolution allows it to determine the number of
involved nodes, thus guiding the physician more accurately in fine-needle aspiration [130].
The development of hybrid SPECT/CT devices, especially high-resolution specific breast
cameras, has significantly improved the detection rate of subcentimeter malignant lesions.
A prospective study reported that 99mTc-tetrofosmin SPECT/CT proved a useful diagnostic
tool in the detection of both residual breast tumors and axillary lymph node metastases
following neoadjuvant therapy, and that it may guide the surgeon to the most appropriate
breast surgical treatment and select the most suitable axillary lymph node sampling [131].
With the implementation of a high-resolution dedicated breast camera (DBC), planar
scintimammography was found to have much improved sensitivity in monitoring the
neoadjuvant chemo/hormonotherapy response in locally advanced primary breast cancer,
especially in detecting microscopic residual tumor foci [132]. Planar scintimammography
equipped with a high-resolution DBC showed technical advantages and better clinical
performance than SPECT in the detection of subcentrimetric carcinoma and the assessment
of multifocal/multicentric disease [133,134]. Breast-specific gamma imaging (BSGI), a high-
resolution radionuclide imaging approach, uses a small field-of-view gamma camera to
visualize breast tissues that are confined to the breast region. BSGI with 99mTc-tetrofosmin
has proved to be a highly sensitive diagnostic tool in the detection of ductal carcinoma
in situ (DCIS) independent of histologic subtype, and it has demonstrated slightly higher
sensitivity than mammography and a better assessment of the local disease extent [135].
Moreover, BSGI proved a highly sensitive diagnostic tool with a high specificity even in
small size carcinoma detection, which increased the sensitivity and specificity of mam-
mography [136]. The study by Rhodes et al. [137] on the assessment of the diagnostic
performance of BSGI or molecular breast imaging (MBI) at a reduced radiation dose in
women with dense breasts reported that the supplemental cancer detection rate of MBI was
8.8 cancers per 1000 women (increased from 3.2 to 12.0) when added to mammography.
Thus, MBI offers a supplemental screening option in women with mammographically
dense breast tissue [138]. From a meta-analysis, Liu et al. [139] retrospectively analyzed
data from 177 women with BI-RADS 4 category lesions that had undergone BSGI and
were originally detected via ultrasound and/or mammography, and compared the relative
diagnostic utility of these three approaches. The results indicated that BSGI is highly
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sensitive for the detection of BI-RADS 4 category lesions, achieving good positive/negative
predictive values, and is superior to ultrasound and mammography for invasive ductal
carcinomas. A recent retrospective review summarized that MBI with 99mTc-tetrofosmin
using a high-resolution, solid-state dedicated breast camera was a highly accurate diagnos-
tic tool in predicting the complete tumor response to neoadjuvant therapy and residual
tumor extent [140].

One has to be cautious when interpreting the images obtained from 99mTc-MIBI or
99mTc-tetrofosmin imaging because these two radiotracers are also found to be related to
multidrug resistance. Researches demonstrated that 99mTc-MIBI and 99mTc-tetrofosmin
are transmembrane P-glycoprotein (Pgp) transport substrates which are responsible for
multidrug resistance [141,142]. Human Pgp is encoded by the multidrug resistance gene
(MDR1) and acts as an energy-dependent drug efflux pump [143]. The tracer clearance
reflects the activity of Pgp. The efflux rate for 99mTc-MIBI of breast cancer tumors with high
Pgp expression was 2.7-fold higher than that of tumors with low or no Pgp expression [144].
Therefore, 99mTc-MIBI uptake can be significantly decreased in tumor cells overexpressing
MDR1, complicating the interpretation of the imaging results. The effect of MMP on
tumor cell 99mTc-MIBI and 99mTc-tetrofosmin uptake is confounded in the presence of high
MDR1 protein expression that contributes to the tracer efflux [145]. Therefore, for better
interpretation of images, it is useful to explore the history of drug resistance in patients and
measure the expression levels of Pgp in patients. On the other side, scintimammography
using these two radiotracers can provide functional imaging to evaluate and predict the
tumor response to chemotherapy for breast carcinoma [146].

3. Imaging Receptors in Breast Cancer
3.1. Targeting Estrogen Receptor (ER)

Estrogen has a significant influence on the growth, differentiation, and function within
many tissues, including the breasts [147]. Tumor growth is strictly regulated by steroid
hormones such as estrogen and peptide growth factors such as HER2 [148]. About 70%
of breast cancers are ER positive [149], which relates to abnormal ER signaling pathways,
namely, estrogen-dependent breast cancer [150]. There is little to no expression of ER in
normal cells [151], but it is highly expressed in malignant breast cells [152]. Currently,
endocrine therapy selection among breast cancer patients is mainly based on the expression
of ER, progesterone receptor (PR), and HER2. ER and PR play an essential role in the
prognosis of breast cancer. ER- or PR-positive breast cancers are usually less aggressive
and have a more favorable prognosis due to their positive response to anti-hormone
therapy [153]. Compared with primary breast cancer, ER, PR, and HER2 expression
changes in 20% of tumors after metastasis [154].

Immunohistochemistry staining is considered the ‘gold standard’ for assessing these
receptors [155]. However, due to tumor heterogeneity and phenotypic receptor changes
over time, biopsy occasionally does not necessarily capture useful information [156]. More-
over, biopsy samples are complicated by decalcification after advanced breast cancer
metastases to bone. Multiple tissue sampling is required, which is not in line with clinical
practice. Therefore, noninvasive detection can accurately evaluate the expression of these
receptors and can predict the therapeutic response more reliably. In recent years, the appli-
cation of 18F-labeled ER PET probes has become a research hotspot in the early diagnosis
of breast cancer.

ER imaging has been extensively studied in recent years. The probes are compounds
obtained from ER ligands (especially endogenous estradiol, E2), appropriately modified and
labeled with radionuclides. ER has two specific intracellular subtypes, ERα and ERβ [157],
both with different tissue distributions and biological roles [158]. In many types of breast
cancer, the predominant ER expression is ERα, which mainly promotes cell proliferation
and is closely associated with breast cancer. Various radioactive probes with high affinity
and specificity of ER have been developed successively. The latest ERα-targeting PET
probes are fluorine-18-labeled E2, and 16α-18F-17β-estradiol (18F-FES) (Figure 5A) [159],
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which has been the most successful in clinical trials. 18F-FES is an E2 analog, and its
binding specificity is similar to E2, with the affinity for ERα being even slightly higher
than that of E2 [160]. 18F-FES can be specifically combined with ER after its injection
into the body, which can dynamically and quantitatively reflect the expression level and
distribution of ERα [161,162]. It can not only reveal the primary and metastatic lesions of
breast cancer but also show normal, benign, and malignant uterine fibroids [163,164]. The
tissue uptake level of 18F-FES correlated well with the ER expression levels obtained by
immunohistochemical detection of fresh tissues [165]. Previous clinical studies reported
that the sensitivity and specificity of 18F-FES for tumor detection were 69–100% and 80–
100%, respectively [11]. By measuring the SUV of tumor ER expression, 18F-FES can predict
whether tumors are effective for endocrine therapy drugs such as selective ER modulators
or aromatase inhibitors [166]. For responders, tumor imaging has a significantly higher
SUV, while negative patients with low or no ER expression are unlikely to benefit from
endocrine therapy. Therefore, 18F-FES PET imaging can help patients avoid the adverse
reactions caused by unnecessary treatment.

One disadvantage of 18F-FES is the lack of precise SUV thresholds when distinguish-
ing specific uptake from nonspecific uptake. Further enhancing 18F-FES’s ability to predict
therapeutic outcomes and allow application to more multicenter therapeutic evaluation
studies is essential. Moreover, 18F-FES is mainly metabolized by the hepatobiliary system
and excreted through the intestines [167], with rapid blood clearance resulting in lower
tumor uptake. E2 has no selectivity for ERα and ERβ. 18F-FES is still less selective, which
also limits the specificity of 18F-FES PET imaging. Over the past 20 years, researchers have
synthesized a series of 18F-FES derivatives to improve the metabolic stability and affinity
of 18F-FES—the modified sites include C-16α, C-11β, C-7α, and C-17α [168]. For example,
Paquette et al. [169] reported that 4-fluoro-11β-methoxy-16α-18F-fluoroestradiol (4FM-18F-
FES, Figure 5A) achieved significantly higher tumor uptake and tumor-to-background
contrast compared to 18F-FES, making it a promising probe for ER imaging (Figure 5C).
However, as with many other published FES derivatives, 4FM-18F-FES still fails to ef-
fectively address the metabolism problem of rapid blood clearance in vivo. Recently,
Xu et al. [170] developed a novel probe, 1(2-(2-(2-[18F]fluoroethoxy)ethoxy)ethyl)-1H-
1,2,3 triazole estradiol (18F-FETE). It showed a high radiochemical yield, purity, molar
activity, and good in vitro stability. 17α ethinyl estradiol, part of 18F-FETE, possesses a
high affinity with ER, which is 1.9 times that of E2 [171]. In vivo bio-evaluation revealed
that 18F-FETE had high uptake in the uterus of normal mice and the tumors of ER-positive
MCF-7-bearing mice, with effective inhibition occurring as well. However, in ER-negative
MDA-MB-231-bearing mice, tumor uptake was relatively low. Compared to the tumor
uptake in ER-positive mice of 18F-FES, 18F-FETE might be a promising probe in ER-positive
breast cancer PET imaging. The addition of polyethylene glycol (PEG) moieties can theo-
retically lower lipophilicity, decrease liver metabolism, and prolong its lifetime within the
blood [12]. Although 18F-FETE has a lower log P value than other estrogen radiotracers
and lower lipophilicity than 18F-FES, the experimental result was unsatisfactory. The rapid
metabolism problem in vivo was still present. In the future, this research team plans to add
different PEG modifications to 17α-ethinyl estradiol.
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Figure 5. (A) chemical structure of ERα receptor probes marked by 18F. Estradiol (E2), 18F-FES, and
4FM-18F-FES; (B) image of the bone scan (left) and 18F-FES PET (right) of a patient after multiple lines
of anti-hormonal therapy and chemotherapy [172]; (C) biodistribution data of MC7-L1 and MC4-L2
(ER+ and ERαKD, respectively) tumor uptake for FES and 4FM-18F-FES [169]. * p < 0.05; ** p < 0.01.

ERβ is an inactive subtype of ER compared with ERα, with relatively fewer studies
involving ERβ. The level of ERβ in tumor cells was correlated with breast cancer progres-
sion. PET imaging targeting ERβ could also be applied for early diagnosis of breast cancer.
There are mainly two types of ERβ probes. One is based on diarylpropionitrile (DPN)
pharmacophore with high selectivity and is a structurally modified DPN, labeled with 18F
and synthesized as 18F-FEDPN [173]. PET imaging showed that 18F-FEDPN had uptake in
the animal uterus and ovary, but its specificity was not strong enough for ERβ imaging.
Moon et al. [174] eventually synthesized DPN analogs that contain substituents such as
methyl, hydroxymethyl, and fluoroethyl, which had a higher selectivity of ERα/ERβ than
DPN. However, the absolute ER-β binding affinity was not sufficient and not available for
PET imaging. Therefore, scientists need to develop a more optimized binding affinity and
adequate selectivity ligands for in vivo ERβ imaging.

Other types of probes are cyclofenil (C4-18F-Fluorocyclofenil, 18F-FCF) and its deriva-
tives (C3-18F-fluoroethylcyclofenil, 18F-FECF). Both types of probes can be prepared with
high radiochemical purity, radiochemical yields, and high affinity. However, there was
no effective uptake in the target tissue in animal experiments, and the imaging results
were unsatisfactory. In 2012, Lee et al. [175] prepared fluorine-18-radiolabeled 8β-(2-
fluoroethyl)estradiol (18F-8BFEE2) with limited potential for PET imaging of ERβ as well.

In addition to PET probes, many SPECT imaging agents have been successively
developed. Marc B. Skaddan et al. [176] first labeled estradiol at the 7α position with
99mTc in 2000. The emergence of the 99mTc(I)-estradiol-pyridin-2-yl hydrazine deriva-
tive represents a solid step forward in the design of estrogen-based 99mTc-labeled tracers
with improved imaging characteristics [177]. Our group synthesized a novel estradiol-
based probe, 99mTc-DTPA-estradiol, with satisfactory labeling efficiency and stability [171].
It showed favorable properties in vitro and in vivo, demonstrating potential use in ER-
positive tumor imaging. The in vivo pharmacokinetics of this probe should be optimized
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further, especially to reduce the liver uptake. Although SPECT imaging of ER is an
alternative option for 18F-FES PET imaging, it still possesses a low tumor uptake and
high background problem. The development of neutral non-steroidal analogs specif-
ically binding to each ER subtype with high-affinity specificity would be a potential
development direction.

3.2. Targeting Progesterone Receptor (PR)

Approximately 70% of breast cancer patients are estrogen-dependent and half of these
patients also have high progesterone expression. Progesterone regulates the function of
the reproductive tract as well as target tissues such as the ovary, uterus, and mammary
gland [178], while also serving as a precursor for the synthesis of estrogens, androgens, and
adrenocortical steroids [179], which play essential hormonal roles in the female reproduc-
tive system. Progesterone induces biological effects by combining with its receptors, with
PR expression occurring in the brain, pituitary gland, mammary gland, and the female
reproductive tract [180]. PR is regulated by an estrogen-related gene, and its expression is
highly dependent on ER [181]. Tumors with ER−/PR+ make up less than 1% of all breast
cancers [182]. The expression of ER and PR is thought to have a directional effect on the
display of functional ER bypass. Studies have shown that nearly 75% of ER+/PR+ tumors
respond positively to endocrine therapy, while ER+/PR− tumors are likely to be ineffec-
tive [105]. PR status may be a better response variant to endocrine therapy than ER status
within metastatic breast cancers [183], meaning breast cancer without PR expression is gen-
erally associated with poor prognosis and strong invasiveness [184]. Routinely evaluating
PR status is helpful for therapeutic decision making and predicting the prognosis.

In recent years, various radioactive molecular probes targeting PR have been devel-
oped. Despite this, only a few radiotracers have been tested in clinical trials, including
18F-FENP, 18F-FMNP, 6α-18F-Fluoroprogesterone, 18F-FPTP, and 18F-FFNP (Figure 6A).
18F-FENP was the first radiofluorinated progestin and possessed a high binding affinity for
PR, which was 60 times more potent than that of progesterone [185]. However, its high
lipophilicity and metabolic liability led to increased adipose tissue and liver uptake, high
background activity, and a low target/background ratio, with metabolic defluorination
also resulting in high bone uptake. Thus, 18F-FENP is not an ideal PR imaging probe.

18F-FMNP is a 16-methyl analog of 18F-FENP. Although in competitive binding assays,
it displayed high affinity and specificity for PR, 18F-FMNP also had high lipophilicity
and metabolic liability, and no clinical application has occurred yet [13]. An alternative
compound, 6α-18F-Fluoroprogesterone, had the same problem, possessing a low uterus
uptake because of its high fat uptake and relatively low target tissue selectivity. It also
cannot avoid the high bone uptake resulting from metabolic defluorination [186]. As for
18F-FPTP, the complicated synthetic process and low radiochemical yield prevent further
application [187].

The most promising PR imaging radioligand is 18F-FFNP (21-18F-fluoro-16α, 17α-[(R)-
(1′-α-furylmethylidene)-19-norpregn-4-ene-3, 20-dione), the only PR-based probe that has
been clinically evaluated in humans. It can specifically bind to PR with high affinity and
high selectivity, and show better imaging effects [188]. In a first-in-human feasibility study,
18F-FFNP imaging showed drug safety and organ radiation dose safety among breast
cancer patients. The tumor-to-normal breast tissue uptake ratio showed that progesterone-
positive tumors had significantly higher uptake than negative tumors. A preclinical study
carried out by Fowler et al. [189] revealed an increased uptake of 18F-FFNP in SSM3 tumor-
bearing mice after using estrogen therapy. This is mainly due to the synergistic stimulation
involved in the expression of estrogen-related progesterone genes. Research by Linden
et al. [105] also showed that when tamoxifen was used to treat advanced breast cancer
patients, there was a synergistic increase at the early stage. The uptake of 18F-FFNP was
significantly reduced after taking the anti-estrogen drug fulvestrant [189]. Therefore, future
studies will focus on anti-estrogen therapy of breast cancer patients, especially patients
with reduced estrogen levels, using 18F-FFNP PET imaging to evaluate the therapeutic
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effect. Furthermore, 18F-FFNP can be combined with the ER probe 18F-FES to improve the
diagnostic accuracy further.

Figure 6. Chemical structure of PET imaging and tumor uptakes in PR-positive MCF-7 and PR-
negative MDA-MB-231 tumor-bearing mice at different times after injection of 18F-EAEF. (A) micro-
PET images of MCF-7 tumor with 18F-EAEF (up), co-injected excessive precursor (middle), and
MDA-MB-231 tumor with 18F-EAEF (bottom); (B) tumor uptakes and (C) tumor-to-muscle ratios at
15 min, 1 h, 2 h, and 4 h post-injection according to PET imaging [14].

In 2017, Wu et al. [14] designed and prepared a novel PR-targeting probe, 18F-EAEF
(Figure 6A), with a high radiochemical yield, good radiochemical purity, good specificity,
and high stability in saline and serum. In biodistribution and PET imaging, PR-expressing
tissues within the uterus and ovary had high levels of 18F-EAEF accumulation at 2 h
post-injection, while muscle uptake was very low. In PR-positive MCF-7 tumors, 18F-EAEF
had a high uptake, and the tumor-to-muscle ratio was 2.90. Meanwhile, in an EAEF
blocking group and a PR-negative MDA-MB-231 control group, tumor uptake was lower
(Figure 6C). This shows that 18F-EAEF may be a useful PR imaging probe and worth further
investigation. However, only limited progress has been made, and more suitable tracers
for PR imaging still require further research.

3.3. Targeting HER2

Epidermal growth factor receptors (EGFR) play a crucial role in regulating cellular
processes, including tumor cell growth and differentiation, proliferation, angiogenesis, and
antiapoptotic functions. They can also upregulate the expression of genes that activate
epithelial–mesenchymal transition, leading to the initiation of metastasis [190]. HER2 is one
member of the EGFR family of tyrosine kinases. About 15–20% of primary breast cancer
patients have HER2/erbB2 oncogene overexpression or exhibit amplification, which is
associated with aggressive tumor behavior and a poor clinical outcome [191,192]. Therefore,
HER2 has become an important prognostic and predictive factor, as well as a target for
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molecular therapies [193]. Studies have shown that HER2 expression variability is as high as
13% to 30% [194], and patients with different levels of HER2 expression respond differently
to tumor therapy [195]. Therefore, it is considered important to monitor HER2 expression
levels during HER2-targeted treatment for the classification and efficacy evaluation of
breast cancer tumors.

Recently, a series of imaging probes has been used for noninvasive detection and
evaluation of breast cancer HER2 expression. 64Cu-Trastuzumab, 64Cu-DOTA-Zher2:477,
68Ga-Trastuzumab (Fab’), 68Ga-ABY-002, and 89Zr-Trastuzumab have all been used for
noninvasive detection and evaluation of HER2 expression in breast cancer [193]. Due
to its high uptake in the liver and kidney, 68Ga-ABY-002, the first reported clinical imag-
ing agent using a non-immunoglobulin-based scaffold protein, was only used for the
detection of abdominal tumor metastasis of breast cancer [196]. Compared with 18F-FDG,
68Ga-DOTA-F(ab’)2-trastuzumab PET imaging showed a better downregulation effect of
HER2 associated with Hsp90 inhibition [197]. Recently, 111In-DPTA-trastuzumab has been
used for SPECT imaging to evaluate the efficacy of trastuzumab therapy. However, its
low tumor-to-blood ratio limits the specific identification of tumor sites [16]. The positive
electron probe 89Zr-Trastuzumab displayed a high image quality in preclinical studies
and obtained good spatial resolution and sensitivity [15,17]. Due to the long half-life of
89Zr, it can be visualized up to 7 days after a single injection. Dijkers et al. [198] first
applied 89Zr-trastuzumab to the human body, with the PET imaging results clearly show-
ing HER2-positive tumors, as well as liver, lung, bone, and even intracranial metastases
(Figure 7). The imaging could still detect occult metastatic lesions 5 days after injecting
89Zr-trastuzumab. Perhaps 89Zr-trastuzumab will be a potential probe for breast cancer
assessment, and further research is ongoing.

3.4. Targeting Gastrin-Releasing Peptide Receptor (GRPR)

GRPR, namely, bombesin (BBN) receptor subtype II, is a seven-transmembrane G
protein-coupled receptor conjugated with BBN. Over recent decades, GRPR has been
found to be highly expressed in various human cancers such as lung, gastric, breast,
pancreas, prostate, colorectal, ovarian, and endometrial cancers, and gliomas, but it has a
low expression or no expression in normal tissues [199]. It has been reported that GRPR is
overexpressed in 65% of ductal carcinomas and 68% of invasive ductal carcinomas of the
breast [200]. The amino acid sequence of BBN, Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2, is
identical to the C-terminal of human GRPR. BBN has been extensively investigated in the
development of various molecular probes that label different isotopes for the visualization
of GRPR expression [201,202]. Preclinical studies have demonstrated these tracers’ potential
to evaluate GRPR expression in GRPR-positive tumors [203], with some radiotracers being
used in breast cancer imaging [204].

3.5. Other Receptors

In addition to the probes mentioned above, other radiolabeled molecular imaging
probes have proved effective in breast cancer detection. For example, radionuclide imaging
of immune checkpoint proteins helps improve therapeutic efficacy by identifying patients
who will potentially benefit from immunotherapy. A preclinical study with 89Zr-labeled
atezolizumab (an anti-PD-L1 antibody) carried out in a group of 22 patients with blad-
der cancer, non-small cell lung cancer, and TNBC suggested that the radionuclide probe
uptake appeared to be a good predictor of treatment response (Figure 8A) [205]. Somato-
statin receptor (SSTR) is also a useful target since SSTR has been reported in breast cancer.
Chereau et al. [18] observed that 68Ga-DOTA-TOC PET imaging was able to visualize breast
cancer xenografts overexpressing SSTR that were barely visible using 18F-FDG. Chemokines
and their receptors are other target pairs for imaging since a growing body of evidence
reveals that their interaction is critical in cancer progression. For example, CXCR4 overex-
pression has been identified as an adverse prognostic factor in breast cancer. In preclinical
studies, tumor uptake of 64Cu-AuNCs-AMD3100 correlated with CXCR4 expression in
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both primary lesions and lung metastases of a mouse 4T1 orthotopic breast cancer model
(Figure 8B) [19]. Other targets that are not directly expressed in tumor cells but are highly
expressed in tumor vasculatures also exerted moderate potential for breast cancer imaging.
Our group synthesized 99mTc-HYNIC-VCAM-1scFv using a single-chain variable fragment
(scFv) of anti-vascular cell adhesion molecule-1 (VCAM-1) antibodies with a high radiola-
beling yield [20]. In vivo SPECT imaging demonstrated that tumor uptake was observed in
a xenograft with human MDA-MB-231 breast cancer. 99mTc-HYNIC-VCAM-1scFv provided
a qualitative and semiquantitative method for the noninvasive evaluation of VCAM-1 ex-
pression. Cyclin-dependent kinases 4/6 (CDK4/6) control the cell cycle from the G1 to
the S phase and are overexpressed in many cancers, including breast cancer. The use
of radiolabeled CDK4/6 inhibitor (CDKi) for tumor imaging has gained increased atten-
tion. Ramos et al. [206] reported 18F-CDKi as a novel PET imaging agent to quantify
CDK4/6 expression in ER-positive, HER2-negative breast cancer. Phosphatidylinositol
3-kinase (PI3K) is another intracellular kinase that regulates cell proliferation, survival, and
migration, and about 70% of breast cancers have been found to have abnormal activation
of PI3K/Akt/mTOR. Our group labeled the PI3K inhibitor GDC-0941 with 11C for PET
imaging in MCF-7 xenograft models, demonstrating excellent tumor penetration.

Figure 7. 18F-FDG and 89Zr-trastuzumab PET scans of a patient with a 89Zr-trastuzumab PET
scan considered HER2-positive breast cancer (up) and a 89Zr-trastuzumab PET scan considered
HER2 negative (bottom) [15].
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Figure 8. Other radiolabeled molecular imaging probes to detect breast cancer. (A) PET/CT image of
a bone metastasis in a TNBC patient with heterogeneous intralesional 89Zr-atezolizumab uptake on
day 7 post-injection [205]. (B) representative PET/CT image of 64Cu-AuNCs-AMD3100 showing the
tracer accumulation in a 4T1 tumor model at 1 week post-tumor implant [19].

3.6. Dual Receptor-Targeted Molecular Imaging

For tumor single-target imaging, cell surface receptors must be highly expressed in
tumors compared to normal tissues, which may not occur throughout the whole devel-
opment process of tumors or in all types of breast cancers [21]. Moreover, the relatively
weak affinity and pharmacokinetic characteristics in vivo lead to unsatisfactory imaging.
Therefore, the development of dual receptor-targeted moleculer imaging agents has gradu-
ally drawn researchers’ attention [207]. Compared with monovalent binding, molecular
imaging probes based on heterodimers that bind two different biomarkers can signifi-
cantly improve tumor targeting efficacy [208]. Dual receptor-targeted moleculer imaging
agents have greater imaging contrast and higher specificity for diseased tissues due to their
increased maximum binding and improved pharmacokinetic profiles.

Recently, Liu et al. designed a heterodimeric peptide that specifically targeted inte-
grin αvβ3 and GRPR–Glu-c(RGDyK)-bombesin (RGD-BBN) [209]. This single molecule
contains two promising pharmaceuticals that can be used to sensitively detect tumors as
long as a high expression of integrin αvβ3 or GRPR is present. RGD-BBN was labeled
with three different radionuclides (18F, 64Cu, and 68Ga), and the tumor targeting affinity
and pharmacokinetics of their corresponding PET radiotracers in breast cancer models
were studied. Micro-animal PET imaging results demonstrated that all three radiotracers
possessed both integrin αvβ3 and GRPR binding affinity in vitro and can visualize the
tumor areas. Compared to the other two probes, 18F-FB-PEG3-RGD-BBN had the lowest
tumor uptake rate, and its synthesis method was the most complex. Although 68Ga-NOTA-
RGD-BBN (Figure 9) showed high tumor signals, its background uptake was also relatively
high. Zhang et al. [210] reported that 68Ga-NOTA-RGD-BBN could discern primary and
metastatic breast cancers and may potentially be used in breast cancer diagnosis, staging,
and surgery guidance. 64Cu-NOTA-RGD-BBN had a prolonged tumor uptake time, but
also higher liver retention. Despite this, it exhibited significantly higher tumor uptake and
improved in vivo kinetics compared to its corresponding RGD and BBN monomers or the
combined mixture [211]. As mentioned earlier, this is precisely due to the advantages of
dual-target imaging. Even if only one receptor is expressed, 64Cu-NOTA-RGD-BBN can
create a good image.

For SPECT, Liu et al. [22] synthesized 99mTc-RGD-BBN, and its ability to identify
tumors (2.69 ± 0.66% ID/g, 1 h post-injection) from inflammation (1.20 ± 0.32% ID/g) was
superior to 18F-FDG. Furthermore, 99mTc-3P4-RGD2 can only detect GRPR-positive cancer,
while 99mTc-RGD-BBN can successfully detect tumors when integrin αvβ3 or GRPR is not
expressed at the same time [21]. In addition, Chen et al. [21] studied the safety, radiation
dosimetry, and diagnostic performance of 99mTc-RGD-BBN with six female breast cancer
patients and six healthy volunteers for the first time. This probe exhibited good stability
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and excellent properties for detecting breast cancer. This preliminary study demonstrated
the powerful potential of 99mTc-RGD-BBN in unknown breast cancer diagnosis.

Figure 9. (A) chemical structure of 68Ga-BBN-RGD. (B) 68Ga-BBN-RGD PET/CT in patient with
invasive ductal carcinoma (a–c). The lesion had a strong GRPR expression (d) and weak integrin
αvβ3 expression (e). (C) A 57-year-old woman who underwent breast cancer radical mastectomy
and follow-up with 68Ga-BBN (a) and 68Ga-BBN-RGD (b) PET/CT, respectively. 68Ga-BBN-RGD
PET/CT had a significantly higher SUVmax in tumor lesions than that of 68Ga-BBN PET/CT [210].
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Our group developed a heterodimeric tracer consisting of RGD and asparagine−glycine−
arginine (NGR) peptides for PET imaging of breast cancer targeting αvβ3 and CD13, respec-
tively. Compared with monomeric 68Ga-NGR and 68Ga-RGD, the dual receptor-targeting
tracer 68Ga-NGR-RGD showed higher binding affinities and targeting efficiency, and a
longer tumor retention time [212]. Additionally, amivantamab is a novel bispecific antibody
that simultaneously targets EGFR and the hepatocyte growth factor receptor (HGFR/c-
MET) that are overexpressed in TNBC. In a recent report, Cavaliere et al. [213] radiolabeled
amivantamab with 89Zr, and it demonstrated higher tumor uptake than that of the radiola-
beled single-arm parent antibodies.

4. Biomaterial-Based Probes for Imaging of Breast Cancer

Biomaterial-based probes include membrane-based, exosome-based, and peptide
nucleic acid-based imaging probes.

4.1. Membrane-Based Imaging Probes

The development of nanotechnology prompted its application in tumor diagnosis and
therapy [23]. However, synthetic nanoparticles are often rapidly recognized and eliminated
by the mononuclear phagocyte system when exposed to body fluids [214]. Therefore,
modifying nanoparticles is particularly important for reducing their uptake within the
reticuloendothelial system. For this purpose, surface functionalization of nanoparticles
with polymer materials [215] and cell membranes [216] represents two representative ap-
proaches. However, the effectiveness and safety of synthetic polymers remain problematic
due to blood clotting, cell agglutination, and the production of PEG antibodies [217]. In
contrast, using cell membranes as a natural, safer, and more biocompatible vector offers
lower immunogenicity. Recently, the application of cell membranes for nanoparticle surface
functionalization has become a focus of research, such as the erythrocyte membrane [218],
platelet membrane [219], and cancer cell membrane [220].

Our group used the cancer cell membrane of MDA-MB-231 to modify upconversion
nanoparticles (CCm231-UCNPs) for in vivo multimodality imaging of TNBC [221]. This
probe exhibited homologous targeting and immune-escaping abilities, and performed
well in breast cancer molecular classification which can successfully differentiate MDA-
MB-231 in MCF-7 tumor-bearing mouse models in vivo (Figure 10A). The probe has the
potential to be used as a drug delivery system for the treatment of TNBC. In addition,
our group designed RBC-derived membrane-coated UCNPs, which can be used for the
targeted UCL/MRI/PET tri-modality imaging of 4T1 breast cancer [24]. The ability of
tumor targeting was obtained by inserting FA into the cell membranes (Figure 10B). Our
team creatively realized the efficacy of 4T1 tumor PET imaging based on a short half-life
radionuclide-labeled biomimetic nanoparticle, using pre-targeting strategies and an in vivo
click chemistry methodology. Our work provides a new direction for multiple clinical
applications of these biomimetic nanoparticles. The biomimetic cell membrane-coated
nanoparticles have the potential for future imaging and treatment of diseases. However,
there are also many limitations and challenges that need to be elucidated in more detail,
including long-term safety and stability and the sourcing and purification efficiency of the
cell membrane.
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Figure 10. (A) micro-PET static imaging was performed at 0.5, 1, 2, and 4 h after injection of
Al18F-L-NETA-DBCO in MDA-MB-231 tumor-bearing mice pretreated with N3-DSPE-PEG-CCm231-
UCNPs [221]. (B) PET imaging of 4T1 breast cancer-bearing mice at different time points in the
N3(FA)-PEG-DSPE-RBC-UCNP group after injection of DBCO-L-NETA-Al18F [24].

4.2. Exosome-Based Imaging Probes

Over the years, exosomes have attracted tremendous attention for carrying cellular
proteins and genetic information and facilitating antigen presentation [25]. Exosomes are
small, naturally secreted membrane vesicles consisting of a lipid bilayer, with a size of
40–100 nm [222]. Many different cells such as immune cells, epithelial cells, mesenchymal
cells, and tumor cells can release exosomes, and researchers have successfully isolated them
from blood plasma, serum, and urine. Exosomes are involved in intercellular communica-
tion, immune response, and cancer metastasis and have been used as a promising natural
drug delivery vector due to their biocompatibility and inherent targeting ability [223].

The radiolabeling of exosome vesicles for SPECT imaging, with the purpose of study-
ing their biodistribution in vivo imaging performance, has only been reported in a few
studies [224–226]. Shi et al. [227] first used 64Cu-radiolabeled PEG-modified exosomes
and studied their systemic biodistribution. Compared with traditionally reported native
exosomes, 64Cu−NOTA−exosome−PEG reduced premature hepatic clearance, prolonged
blood circulation, and exhibited higher accumulation in a 4T1 tumor after 24 h post-
injection. Therefore, the radiolabeling of exosomes is a reliable and accurate approach to
tumor imaging, with exosomes showing promising potential as novel theranostic vesicles.
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4.3. Peptide Nucleic Acid-Based Imaging Probes

It is well known that the occurrence and progression of cancer are regulated by genes.
Peptide nucleic acids (PNAs) are antisense oligonucleotides that hybridize more strongly
and specifically to RNA and DNA, resisting attack by both nucleases and proteases [26].
PNAs do not induce RNase degradation of bound RNA but solely inhibit mRNA transla-
tion, which provides an opportunity for molecular imaging and gene therapy. Noninvasive
antisense imaging with high sensitivity and specificity using PNAs could image oncogene
expression in vivo and further determine cell malignancy at an early stage.

Tian et al. [228] showed scintigraphic detection of CCND1 mRNA with a 99mTc-
chelator-PNA-peptide probe in MCF7 breast cancer xenografts in mice. Paudyal et al. [27]
synthesized a 64Cu-DOTA-PNA-peptide targeting HER2 mRNA expression. They de-
termined that treatment effectiveness or resistance in human BT474 xenografts could be
detected sooner than the currently available modalities, such as CT or MRI. Our group suc-
cessfully prepared a 99mTc-labeled PNA sequence that undergoes complementary binding
to the oncogene miR-155 [229]. Compared to [99mTc]mis-PNA, [99mTc]anti-PNA-155 can
visualize MCF-7 tumors with a relatively high expression of miR-155. When injected with
excessive anti-PNA-155, the tumor visibility of MCF-7 was less visible, suggesting better
probe specificity. This provides helpful information at the gene level for breast cancer
imaging, but the relatively higher radioactivity in the blood and relatively low tumor
uptake still require further improvement.

5. Conclusions and Future Perspectives

Molecular imaging is a rapidly emerging technology that allows for noninvasive
imaging of receptor expression at the molecular level and creates the possibility to diagnose
breast cancer accurately. Since breast cancer is a heterogeneous tumor and the expression
of markers can vary as the disease progresses, radiotracer selection according to imaging
purposes appears to be particularly important. As mentioned in the article, various
molecular probes have their advantages and disadvantages. As novel markers are identified
and new imaging probes are continuously developed, molecular imaging can become an
indispensable tool in oncology.
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