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Abstract: Ebola virus (EBOV) is one of the most lethal pathogens that can infect humans. The Ebola
viral protein VP35 (EBOV VP35) inhibits host IFN-α/β production by interfering with host immune
responses to viral invasion and is thus considered as a plausible drug target. The aim of this study
was to identify potential novel lead compounds against EBOV VP35 using computational techniques
in drug discovery. The 3D structure of the EBOV VP35 with PDB ID: 3FKE was used for molecular
docking studies. An integrated library of 7675 African natural product was pre-filtered using ADMET
risk, with a threshold of 7 and, as a result, 1470 ligands were obtained for the downstream molecular
docking using AutoDock Vina, after an energy minimization of the protein via GROMACS. Five
known inhibitors, namely, amodiaquine, chloroquine, gossypetin, taxifolin and EGCG were used
as standard control compounds for this study. The area under the curve (AUC) value, evaluating
the docking protocol obtained from the receiver operating characteristic (ROC) curve, generated
was 0.72, which was considered to be acceptable. The four identified potential lead compounds of
NANPDB4048, NANPDB2412, ZINC000095486250 and NANPDB2476 had binding affinities of −8.2,
−8.2, −8.1 and −8.0 kcal/mol, respectively, and were predicted to possess desirable antiviral activity
including the inhibition of RNA synthesis and membrane permeability, with the probable activity (Pa)
being greater than the probable inactivity (Pi) values. The predicted anti-EBOV inhibition efficiency
values (IC50), found using a random forest classifier, ranged from 3.35 to 11.99 µM, while the Ki
values ranged from 0.97 to 1.37 µM. The compounds NANPDB4048 and NANPDB2412 had the
lowest binding energy of −8.2 kcal/mol, implying a higher binding affinity to EBOV VP35 which
was greater than those of the known inhibitors. The compounds were predicted to possess a low
toxicity risk and to possess reasonably good pharmacological profiles. Molecular dynamics (MD)
simulations of the protein–ligand complexes, lasting 50 ns, and molecular mechanisms Poisson-
Boltzmann surface area (MM-PBSA) calculations corroborated the binding affinities of the identified
compounds and identified novel critical interacting residues. The antiviral potential of the molecules
could be confirmed experimentally, while the scaffolds could be optimized for the design of future
novel anti-EBOV chemotherapeutics.

Keywords: Ebola virus; molecular docking; molecular dynamics simulations; Ebola virus protein
VP35; Ebola virus inhibitors
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1. Introduction

Ebola virus disease (EVD), formerly Ebola haemorrhagic fever is a rare and severe
viral infection with a high mortality rate in humans [1]. EVD was first recorded in 1976 in
Zaire, now Democratic Republic of the Congo (DRC) [2]. There was a near simultaneous
emergence of the disease in Southern Sudan in 1976. During this time, 284 cases were
observed in Sudan and 318 cases were observed in the DRC with a case fatality rate (CFR)
of 53% and 88%, respectively [2,3]. Ebola virus, the agent responsible for EVD is named
after a village near Ebola river in Zaire/DRC, where the first case was recorded [4,5].
Two different species of the Ebola virus were confirmed, namely EBOV-Zaire (EBOV-Z)
and EBOV-Sudan (EBOV-S) [6]. The largest outbreak of EVD so far, from December 2013 to
January 2016 resulted in around 28,000 recorded cases, and led to over 11,000 deaths [7].
A re-emergence of the EVD occurred in Gouécké, Nzérékoré Region, Guinea between
18 January and 13 February 2021.

The entry points of Ebola viruses include mucosal surfaces, broken skin, abrasions
or by direct parenteral transmission [8]. Laboratory associated and nosocomial infections
through needle accidents or exposure to infected materials have also been reported as
entry points [9]. The mode of transmission of the virus contributes to the disease outcome,
as demonstrated in the 1976 outbreak, for which transmission by injection was 100% as
opposed to 80% transmission through contact exposure for the CFR recorded [10]. The po-
tential use of Ebola as a bioweapon with high CFR has led to the extensive study of the
pathogenesis of EVD for several years [11,12]. The Ebola virus has been studied in vivo
through the use of guinea pigs, rodents and nonhuman primates as well as through in vitro
models, providing relevant data to represent infection in humans [13]. Experimentally
infected animal models and post mortem studies have showed that upon entry, EBOV
infects immune cells such as macrophages, dendritic cells, epithelial cells, and fibrob-
lasts [14]. Prominent characteristics of EVD include viral hemorrhagic fever (VHF), which
is characterized by profuse bleeding in infected patients [15,16]. Studies have also shown
that the infection of endothelial cells with EBOV does not directly result in hemorrhage,
although data on this theory is currently still insufficient [11].

Ebola virus (EBOV) is an enveloped, negative sense, non-segmented, single-stranded,
filamentous or thread-like shaped RNA virus which belongs to the Filoviridae family [17].
The genome of the Ebola virus is linearly arranged as follows: 3′-leader-NP-VP35-VP40-
GP/sGP-VP30-VP24-Ltrailer- 5′ [18]. The genomic RNA is composed of approximately
19,000 nucleotides, which encode seven structural proteins: glycoprotein (GP), nucleopro-
tein (NP), RNA polymerase (L), matrix protein (VP40), and three nucleocapsid proteins
(VP24, VP30, and VP35) [17,19]. The genomic RNA also encodes two non-structural
proteins, the secretory glycoprotein (sGP) and the small secretory glycoprotein (ssGP) [20].

The primary targets of the viral replication are the human immune dendritic cells
(DCs) and macrophages, potent antigen presenting cells (APCs), that are found at the site
of infection [21]. The viral protein VP35 blocks human type I interferons (IFNs) to prevent
the DCs from responding to the viral infection, thereby avoiding the nuclear accumulation
of signal transducers, activators of transcription 1 (STAT1), and signal transducers in
infected cellular targets. Furthermore, VP35 blocks the activation of the dsRNA-dependent
protein kinase receptor (PKR) responsible for the synthesis of IFN [22]. VP35 is reported
to successfully block IFN expression by binding to dsRNA via its C-terminal dsRNA-
binding domain, which is also referred to as the IFN inhibitory domain [23,24]. The multi-
functional protein VP35 is critical for viral replication and virulence [25,26] and therefore,
is a plausible drug target. Compounds such as amodiaquine, chloroquine, gossypetin,
taxifolin and epigallocatechin gallate (EGCG) have been identified to inhibit the viral
replication of the Ebola virus [27–29]. Currently, there is only one FDA-approved drug for
Ebola virus disease, known as INMAZEB™. It comprises of three monoclonal antibodies,
namely, atoltivimab, maftivimab and odesivimab-ebgn [30]. It is thus imperative to identify
and validate other therapeutic agents to consolidate and support efforts to facilitate the
prevention, management and eradication of EVD.
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Many natural products have been used as therapeutic agents over the past millennium
and are currently still in use on a large scale for the treatment of many infectious diseases.
Studies have suggested that approximately 50% of new drugs approved by the FDA are
either natural compounds or analogs of natural compounds [31].

The re-emergence of EVD has led to an accelerated search for potential therapeutics
for the treatment of EBOV, which involves the high-throughput screening of hundreds
of small molecules within a short period. The African continent possesses a vast and
diverse variety of natural flora worthy of exploration to identify natural products that
may act as lead compounds in the inhibition of EBOV VP35 [32]. This study aimed to
identify potential novel compound leads to inhibit the replication of Ebola virus in host
cells through the screening of naturally derived compounds of African origin against the
EBOV VP35. In addition, we aim to elucidate novel insights into the mechanisms of binding
between the target EBOV VP35 and ligands using molecular dynamic (MD) simulation
and MM-PBSA calculations. The biological activity and the mechanisms of action of the
potential leads were also predicted to aid in understanding their potential inhibitory roles
in viral replication. The drug-likeness of the compounds were further predicted via in
silico physicochemical, pharmacological and toxicity profiling.

2. Materials and Methods

The schematic workflow used in this study involves the generation of a ligand library,
physicochemical and pharmacological profiling, the preparation of the EBOV protein VP35
structure, molecular docking, molecular dynamics (MD) simulations, and predictions on
biological activity (Figure 1).

2.1. Protein Retrieval

The three-dimensional structure of EBOV VP35, with a resolution of 1.4 Å, was re-
trieved from the Protein Data Bank (PDB) with the PDB ID: 3FKE [33]. It was visualised
and analysed using PyMOL (PyMOL Molecular Graphics System, Version 2.0, Schrödinger,
LLC) [34] to remove water molecules.

2.2. Retrieval of Compounds from Natural Products Databases

A total of 7675 compounds were retrieved from the library of African Medicinal Plants
(AfroDB) and Northern African Natural Products Database (NANPDB) [35,36]. The library
consisted of 6842 compounds that were obtained from NANPDB, and 833 compounds
from the ZINC database catalogue of AfroDB. The natural compounds were labeled with
the prefixes ‘ZINC’ or ‘NANPDB’ to represent their respective libraries. Amodiaquine,
chloroquine, gossypetin, taxifolin and epigallocatechin gallate (EGCG) were identified as
known compounds that could inhibit the viral replication of the Ebola virus via EBOV
VP35 [27–29].

2.3. Protein Active Site Evaluation

The active site of the EBOV VP35 was characterised through the Computed Atlas
of Surface Topography of proteins (CASTp) [37] (available online: http://sts.bioe.uic.
edu/castp/calculation.html accessed on 20 March, 2020), and analysed with Chimera
version 1.12 [38]. The binding pocket of the EBOV VP35 is characterised by surface area,
volume and the cavities in a solvent [39].

2.4. Pre-Filtering of Ligand Library

Ligands were filtered using ADMET Predictor version 8.0 [40] to ensure compliance
with the Lipinski’s Rule of five (RO5), which is as follows: compounds with a molecular
mass of less than 500 Da, have no more than 5 hydrogen bond donors, no more than 10
hydrogen bond acceptors, and the octanol-water partition coefficient log is no greater than
5 [41,42]. The ADMET Risk model helps to identify any potential liabilities that are likely
to impede the success of the prospective drug design. The ADMET risk ranges from 0

http://sts.bioe.uic.edu/castp/calculation.html
http://sts.bioe.uic.edu/castp/calculation.html
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to 24, whereby scores of less than 7 indicate the characteristics of the compound to be more
drug-like [43].

Biomedicines 2021, 9, x FOR PEER REVIEW 4 of 27 
 

 
Biomedicines 2021, 9, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/biomedicines 

mass of less than 500 Da, have no more than 5 hydrogen bond donors, no more than 10 
hydrogen bond acceptors, and the octanol-water partition coefficient log is no greater than 
5 [41,42]. The ADMET Risk model helps to identify any potential liabilities that are likely 
to impede the success of the prospective drug design. The ADMET risk ranges from 0 to 
24, whereby scores of less than 7 indicate the characteristics of the compound to be more 
drug-like [43]. 

 
Figure 1. Detailed workflow used to implement this study. The methods involved in this study include molecular docking, 
analysis of intermolecular interactions, ADMET profiling, prediction of antiviral activity and molecular dynamics simu-
lations. 

2.5. Protein and Ligand Preparation 
The energy minimisation of the protein was performed using the GROningen MA-

chine for Chemical Simulations (GROMACS version 2018), and by utilising Optimized 
Potentials for Liquid Simulations (OPLS)/All Atom (AA) force field [19,44]. The 
GROMACS file, in a ‘gro’ format, of the minimised protein was visualised in PyMOL and 
the structure was exported in accordance with the Protein Data Bank format (‘.pdb’). The 
ligands were retrieved in a structure data file ‘.sdf’ format and imported to the Open Babel 
module in PyRx, where they were subject to energy minimisation over 200 steps using an 
MMFF94 force field and Conjugate gradient algorithm. The ligands and EBOV VP35 pro-
tein were finally converted into the Protein Data Bank partial charge and atom type 
‘.pdbqt’ file format for docking [45]. 

Figure 1. Detailed workflow used to implement this study. The methods involved in this study include molecu-
lar docking, analysis of intermolecular interactions, ADMET profiling, prediction of antiviral activity and molecular
dynamics simulations.

2.5. Protein and Ligand Preparation

The energy minimisation of the protein was performed using the GROningen MAchine
for Chemical Simulations (GROMACS version 2018), and by utilising Optimized Potentials
for Liquid Simulations (OPLS)/All Atom (AA) force field [19,44]. The GROMACS file,
in a ‘gro’ format, of the minimised protein was visualised in PyMOL and the structure
was exported in accordance with the Protein Data Bank format (‘.pdb’). The ligands were
retrieved in a structure data file ‘.sdf’ format and imported to the Open Babel module in
PyRx, where they were subject to energy minimisation over 200 steps using an MMFF94
force field and Conjugate gradient algorithm. The ligands and EBOV VP35 protein were
finally converted into the Protein Data Bank partial charge and atom type ‘.pdbqt’ file
format for docking [45].

2.6. Virtual Screening and Validation of Docking Protocol

The Auto-Dock Vina module, embedded in PyRx [46], was used to screen the com-
pounds against the EBOV VP35 protein and the complexes were analysed using Py-
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MOL [34,47]. The grid box was maximised to cover all the binding sites of the protein,
with the following dimensions and spacing: center_x = 48.7160 Å, center_y = 48.6696 Å
and center_z = 48.7246 Å, and size_x = 139 Å, size_y = 95 Å and size_z = 190 Å. The ability
to discriminate between active compounds and decoys was essential in evaluating the
performance of the docking protocol [48]. As such, five known EBOV VP35 inhibitors in-
cluding amodiaquine, chloroquine, EGCG, gossypetin and taxifolin were used to generate
50 decoys, each from the Directory of useful decoys, and enhanced (DUDE) (available:
http://dude.docking.org accessed on 9 April 2020) [49]. The decoys possess different 2D
topologies but similar physiochemical properties. The area under the curve (AUC) for
the Receiver Operator Characteristic (ROC) curve was generated using easyROC (version
1.3) [50] after screening 250 decoys and 5 known inhibitors against the EBOV VP35 protein.
This was performed to evaluate the performance of the docking tool [49,51].

2.7. Molecular Interaction Profiling

The Protein–ligand interactions of the compounds and EBOV VP35 were predicted
using Discovery Studio (DS) and Maestro in Schrödinger suite [52,53]. The distance
between the interacting amino acid residues of the protein and the ligand atoms were
then calculated. A 2D schematic diagram was generated to represent the hydrogen and
hydrophobic interactions.

2.8. Pharmacokinetic Profiling

In order to assess their pharmacokinetic properties and drug-likeness, the hit com-
pounds were screened using SwissADME as described previously [54]. The pharmacoki-
netic properties such as gastro intestinal (GI) absorption, the crossing of the blood–brain
barrier (BBB), p-glycoprotein and the inhibition of isoforms of the cytochrome P450 (CYP)
family were analyzed. In order to determine the drug-likeness of the compounds, parame-
ters such as RO5, Veber’s and Ghose rules were applied [55,56]. Promising compounds
and five known inhibitors were selected for toxicity evaluations that were conducted using
OSIRIS Property Explorer in DataWarrior version 4.7.2, to determine their mutagenic,
tumorigenic, reproductive and irritant traits [57].

2.9. Prediction of Anti-Viral Activity of Lead Compounds

The Prediction of Activity Spectra for Substances (PASS) tool was used to charac-
terize the biological activity of the compounds using their structures in the SMILES file
format [58,59]. The anti-EBOV inhibition efficiency was predicted using the SDF files of the
compounds via a random forest-based model [60].

2.10. Quality and Efficiency of Evaluation of Potential Lead Compounds

Their compound-level efficiency metrics were computed to determine the quality of
the selected compounds [61]. Additionally, the ligand efficiency (LE) is used to measure
the effectiveness of the compounds relative to the size of the protein. This is expressed in
Equations (1)–(5):

Ligand Efficiency (LE) =
∆G
HA

, (1)

∆G is the binding energy of the compound [61] and HA is the number of heavy atoms.
Additionally, specific ligand quality indices such as Fit Quality (FQ), the inhibitory

constant (Ki), ligand efficiency-dependent lipophilicity (LELP) and the ligand efficiency
scale were also calculated [62,63].

Fit Quality (FQ) =
LE

LE Scale
, (2)

Ligand Efficiency Scale = 0873× e−0.026×HA − 0.06, (3)

Ligand Efficiency Dependent Lipophilicity (LELP) =
log P
LE

, (4)

http://dude.docking.org
http://dude.docking.org
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Ki = e
−∆G

RT , (5)

R is a gas constant of 1.987 × 10−3 kcal/K-mol; T represents the absolute temperature
of 298.15 K [64], and Ki denotes the inhibitory constant.

2.11. Molecular Dynamic Simulations of Protein-Ligand Complexes

The top four ligand–protein and two known inhibitor-protein complexes underwent
MD using GROMACS version 2018 [19]. The protein complexes were simulated for a 50 ns
timescale to provide insight into their modes of interaction and the ways in which they
behave dynamically [65]. The six complexes were prepared using a CHARMM36 all-atom
force field. The charge topology of the compounds was generated using the CGenFF [66]
and solvated in a cubic boundary box with a distance of 1.0 nm, using the TIP3P water
model [67]. The charged system was neutralized with the precise addition of concentrations
of chloride (Cl−) ions and its energy was minimized at 10 kJ/mol/nm using the steepest
descent algorithm for 1000 steps to prevent steric clashes [68]. Furthermore, the systems
were subjected to equilibration by position-restrained dynamics simulations (via NVT and
NPT ensemble) at a constant temperature of 300K and a pressure of 1 atm for 1000 ps [69].
Finally, MD simulation was conducted for all the complexes, for 50 ns, with time steps of
2 fs. The radius of gyration (Rg) and the root mean square deviation (RMSD) graphs were
plotted using XMGRACE [70,71].

2.12. Binding Free Energy Calculations of Protein-Ligand Complexes by MM-PBSA

The MM-PBSA approach was used to calculate the binding free energies of the com-
plexes, employing both the continuum solvent models and the molecular mechanics ex-
tracted from MD simulations. MM-PBSA calculations were carried out using GMXPBSA [72]
script and were statistically analyzed using the R programming package [73].

3. Results
3.1. Structural and Binding Site Analysis

The structure of EBOV VP35 C-terminal domain (also known as the interferon in-
hibitory domain, IID), with a high resolution of 1.40 Å, was obtained from the PDB database
with ID 3FKE [74]. The structure is comprised of 2 subdomains which are an N-proximal
α-helical subdomain and a C-terminal β-sheet subdomain, of approximately 120 residues
each [74]. The residues lining the binding sites of EBOV VP35 were predicted using CASTp
(Table 1). Three major binding pockets were also predicted via CASTp (Figure 2 and
Table 1), which were then analyzed using Chimera version 1.12. Pockets with a small
surface area and volume were not considered as reasonable binding pockets for the virtual
screening of ligands. Pocket 2 and 3 are located on chains B and A of the protein, respec-
tively, while pocket 1 is composed of residues found on both chains (Table 1). Previous
structural studies identified residues lining the carboxy-terminal dsRNA-binding domain
of EBOV VP35 as critical for the viral polymerase cofactor function [75–78]. Residues
Lys319, Arg322, and Lys339 of the EBOV VP35 have previously been identified as critical
residues for dsRNA binding [33,74].

The EBOV VP35 structure has two basic patches, the first basic patch (FBP) and
the central basic patch (CBP), which are highly conserved among Ebola virus species.
The FBP is crucial for molecular interactions with the Ebola virus nucleoprotein and VP35
polymerase cofactor function, whilst the CBP is involved in dsRNA binding and the
inhibition of IFN [79]. Residues Ala221, Arg225, Gln241, Leu242, Lys248, Lys251, Pro293,
Ile295, Ile297, Asp302 and Phe328 are located near and inside the FBP groove [79,80].
A recent study also identified Ala221, Arg225, Gln241, Leu242, Lys248, Lys251, Pro293,
Pro292, Ile295, Ile297, His296, Asp302, Phe328 Ala238, Val245, Ile246, Leu249, Ile278, Ile280,
Phe287, Ala306, Cys307, Pro315, Pro318, Ile320, Asp321, Gly323, Trp324, Val325, Leu338
and Ile340 as residues that line the binding site of the VP35 protein, based on their literature
review and by visualizing the protein structure [81]. These residues are consistent with
pocket 1 as predicted via CASTp (Table 1).
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Table 1. Major binding sites of EBOV VP35 predicted using CASTp and the amino acid residues within each binding pocket.
SA: Solvent accessible.

Binding Sites Chain Amino Acid Residues Surface Area
(SA)/Å2 Volume/Å3

Pocket 1 A

Val245, Lys248, Leu249, Asp252, Ser253, Ile286, Phe287,
Gln288, Asp289, Ala290, Ala291, Pro292, Pro293, Val294, Ile295,
His296, Ile297, Arg298, Val314, Pro315, Pro316, Ser317, Pro318,

Lys319, Val327, Gln329, Leu330, Gln331, Gly333, Thr335.

1155.05 1078.689

B

Gln241, Gln244, Val245, Lys248, Leu249, Asp252, Ser253,
Ile286, Gln288, Asp289, Ala290, Ala291, Pro292, Pro293, Val294,
Ile295, His296, Val314, Pro315, Pro316, Ser317, Pro318, Lys319,

Val327, Gln329, Leu330, Gln331, Gly333, Lys334, Thr335.

Pocket 2 B Asp218, Ile219, Asn254, Leu256, Asp257 48.092 35.5916

Pocket 3 A Asp218, Ile219, Asn254, Leu256, Asp257 52.040 34.782
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3.2. Molecular Docking Studies

A total of 1470 pre-filtered ligands and five known EBOV VP35 inhibitors comprising
amodiaquine, chloroquine, gossypetin, taxifolin and epigallocatechin gallate (EGCG) were
docked in the binding pockets of the EBOV VP35 protein. The docking protocol was
validated using a ROC curve, which was computed after the screening of decoys and
obtained using DUDE, against the EBOV VP35. The area under the curve (AUC) represents
the ability of the docking tool to distinguish between active ligands and decoys [82].
AUC values range between 0 and 1; where values closer to 1 indicate a higher discrimination
potential and 0 represents poor discrimination [83]. The docking protocol was validated
with an AUC of 0.72 (Figure S1), thereby indicating the high discrimination potential of
AutoDock Vina to distinguish between active and inactive compounds.

Although a recent study employed a barrier of −7.0 kcal/mol to shortlist compounds,
a more stringent threshold of −8.0 kcal/mol was used in this study [84] to enhance the
classification between specific and non-specific binding [85]. Ninety-four compounds with
binding energies of −8.0 kcal/mol or below were selected for further analysis. These
binding energies indicate the high binding affinity of the compounds to EBOV VP35.
The ability of a compound to successfully bind is an indication of its potential inhibition [86].
All the compounds shortlisted had a greater binding affinity than that of the known
inhibitors except for EGCG, which had a binding affinity of −8.1 kcal/mol (Table 2).
Amodiaquine and chloroquine are FDA-approved drugs that are found to be inhibitors
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of the viral replication of EBOV while the anti-EBOV compounds EGCG, gossypetin and
taxifolin have yet to be approved [27–29]. Additionally, these compounds possessed better
binding affinities in this study than in previous studies [80,81] (Table 2).

Table 2. The binding energies of selected compounds and known inhibitors as well as their intermolecular bonds with
EBOV VP35.

Compound ID
Binding
Energy

(kcal/mol)

Number of
Hydrogen

Bonds

Hydrogen
Bond

Residues

Hydrogen
Bond Length

(Å)
Hydrophobic Contacts

NANPDB86 −8.5 1 Gln329 2.0 Val245, Leu249, Pro293, Val294, Ile295

NANPDB95 −8.1 0 - -
Pro316, Ala291, Pro292, Leu249, Pro293,
Val294, Val327, Ile286, Ala290, Pro315,

Pro318, Val314

NANPDB142 −8.0 0 - - Pro318, Ala291, Pro315, Pro316, Ala290,
Val294, Val327, Val314, Leu249

NANPDB205 −8.3 0 - - Leu249, Pro293, Val245, Ile295

NANPDB397 −8.1 0 - - Pro318, Val314, Ala291, Pro292, Pro293,
Val327, Val294

NANPDB2412 −8.2 0 - - Pro318, Pro316, Ala290, Pro315, Ala291,
Val314, Pro292, Val294, Pro293, Val327

NANPDB2476 −8.0 0 - - Pro316, Ala291, Pro315, Pro318, Pro292,
Val314, Val327, Val294

NANPDB3355 −8.2 0 - - Pro316, Ala290, Ala291, Pro292, Val314,
Pro318, Val294, Val327

NANPDB4048 −8.2 0 - - Pro318, Ala291, Val314, Pro292, Pro293,
Leu249, Val294, Val327

ZINC000014612849 −8.1 0 - - Val314, Pro292, Ala291, Pro318, Pro315,
Val327, Val294

ZINC000033831303 −8.0 0 - - Pro293, Leu249, Ile295, Val245, Val294

ZINC000095486250 −8.1 0 - - Ala291, Pro318, Pro292, Val314, Pro293,
Val327, Val294

Amodiaquine −7.0 0 - - Ala291, Pro318, Ala291, Pro315, Val327,
Val294, Pro292, Val314

Chloroquine −5.9 0 - - Pro318, Val314, Val327, Pro292, Ala291,
Val294, Pro293

EGCG −8.1 1 Gln244 2.01 Val294, Pro293, Leu249, Val245, Cys247,
Ile297, Leu330

Gossypetin −7.5 1 Leu330 1.97 Ile295, Val294, Pro293, Leu249, Val245

Taxifolin −7.4 0 - - Val314, Ala290, Ala291, Pro318, Val294,
Val327, Pro292, Leu249

3.3. ADMET Profiling for Identification of Drug-Likeliness

The compounds were physicochemically profiled using Swiss ADME and OSIRIS
Property Explorer. RO5, Ghose and Veber’s rules were used to evaluate the drug-likeness
of the compounds [87]. Most of the compounds that violated more than one drug-like
parameter were eliminated from the study (Table 3). Selected compounds were predicted
to be soluble and to possess high gastrointestinal (GI) absorption, which would indicate
that they could easily be absorbed through the intestinal tract into the blood stream when
orally administered [88] (Table 3).

In this study, compounds that were predicted to be blood-brain barrier (BBB) perme-
ants were considered for a downstream analysis. Recent studies have shown that most
survivors of Ebola infection suffer neurologic complications including seizures, memory
loss, headaches, cranial nerve abnormalities, and tremor [89,90]. Ebola has been sug-
gested to cross the brain–blood barrier and may perform a pathogenic role in the onset
of encephalitis [91,92]. Ebola has also been reported to exist in some immunologically
privileged sites, including the central nervous system (CNS), although the mechanisms
through which Ebola affects the CNS remains unclear [90,93]. Potent EBOV drugs with
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evidence of penetration into the CNS, will therefore be beneficial in the treatment of EVD
in the CNS and in other parts of the body. An effective neurologic drug should be able
to permeate the blood–brain barrier (BBB) so as to bind to specific receptors and initiate
signaling pathways [94]. Therefore, compounds that were not predicted to be able to
permeate the BBB were excluded from further analysis.

Table 3. Pharmacokinetic profile of the top 12 compounds and 5 known EBOV VP35 inhibitors comprising of Estimated
Solubility (ESOL). Blood Brain Barrier (BBB), Gastrointestinal (GI) and P-glycoprotein (Pgp).

Compound ID Estimated
Solubility Log S

Estimated
Solubility Class GI Absorption BBB Permeant P-glycoprotein

Substrate

NANPDB86 −3.79 Soluble High Yes No
NANPDB95 −3.57 Soluble High Yes No

NANPDB142 −3.77 Soluble High Yes No
NANPDB205 −2.61 Soluble High Yes No
NANPDB397 −3.09 Soluble High Yes No

NANPDB2412 −3.99 Soluble High Yes No
NANPDB2476 −3.89 Soluble High Yes No
NANPDB3355 −3.25 Soluble High Yes No
NANPDB4048 −3.73 Soluble High Yes No

ZINC000014612849 −3.00 Soluble High Yes No
ZINC000033831303 −3.89 Soluble High Yes No
ZINC000095486250 −3.41 Soluble High Yes No

Amodiaquine −5.9 Moderately soluble High Yes No
Chloroquine −4.55 Moderately soluble High Yes No

EGCG −3.56 Soluble Low No No
Gossypetin −3.40 Soluble Low No No

Taxifolin −2.66 Soluble High No No

Another important parameter considered was the ability of a drug to be eliminated
from the central nervous system (CNS) to reduce toxicity in the cells. P-glycoproteins are
ATP-dependent efflux transporters extensively distributed and expressed in cells found in
the kidney, liver, colon and pancreas [95]. They transport toxins and a wide range of foreign
substances including drugs, out of the cell. Consequently, the overexpression of these
proteins in diseased cells reduces the chances of successful drug delivery and limits the
cellular uptake of drugs from the blood stream into cells [95,96]. As a result, compounds
shortlisted in the study were predicted to be P-gp non-substrates (Table 3).

Furthermore, the ability of the compounds to inhibit cytochrome (CY) P450 and its
essential isoforms, namely 1A2, 2C19, 2C9, 2D6 and 3A4 were assessed. These constitute
a superfamily of enzymes that regulate the metabolism and excretion of drugs from the
liver [97]. When drugs are co-administered, the inhibition of the activity of these isoforms
by one drug may lead to drug interactions and an accumulation of the second drug,
resulting in high toxicity levels in targeted cells [80]. Such instances necessitate dosage
adjustment or the selection of drugs that do not inhibit the cytochrome P450 system.
Approximately 50% and 42% of the compounds were predicted to be inhibitors of 2C9
or 3A4, respectively (Figure 3). Interestingly, none of these compounds were predicted
to inhibit 1A2, with only 17% acting as inhibitors of both 2C19 and 2D6. In comparison,
the known inhibitors were predicted to be inhibitors of more than half the number of the
CYP450 enzymes (Supplementary Table S1). Therefore, compounds that were non-substrate
to at least 3 of the cytochrome isoforms (1A2, 2C19, 2C9, 2D6 and 3A4) were shortlisted.

Eleven of the compounds were predicted to be non-mutagenic while ten were neither
tumorigenic nor reproductive, and nine compounds were shown to be irritants (Table 4).
Amodiaquine was predicted to be highly mutagenic, irritant and to produce a reproductive
effect, while Chloroquine was also highly mutagenic and irritant. Gossypetin was also
predicted to be highly mutagenic, while EGCG and taxifolin were predicted to be non-
toxic. Overall, the majority of the potential lead compounds showed a lower possibility of
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toxicity as compared to amodiaquine and chloroquine. Early toxicity profiling during in
silico studies allows for the prioritization of compounds with desirable properties and a
low toxicity risk [98]. Twelve compounds were selected after the ADMET screening for
further analysis.
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Figure 3. Percentage of inhibition activity by 12 selected compounds against the CYP450 isoforms (namely 1A2, 2C9, 2C19,
2D6 and 3A4). Majority of the compounds inhibited CYP2C9 while CYP1A2 was inhibited by none of the compounds.

Table 4. Toxicity profiles of selected compounds and known inhibitors. The profiles consist of mutagenicity, tumorigenicity,
reproductive effect and irritancy.

Compound ID Mutagenic Tumorigenic Reproductive Effect Irritant

NANPDB86 None None None None
NANPDB95 None None None None
NANPDB142 None None None None
NANPDB205 None None High None
NANPDB397 None None None None

NANPDB2412 None None None None
NANPDB2476 None None None High
NANPDB3355 None High None High
NANPDB4048 None None High None

ZINC000014612849 Low None None None
ZINC000033831303 High High None High
ZINC000095486250 None None None None

Amodiaquine High None High High
Chloroquine High None None High

EGCG None None None None
Gossypetin High None None None

Taxifolin None None None None
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3.4. Molecular Interactions of Protein-Ligand Complexes

Hydrogen and hydrophobic interactions were formed between the ligands and the
amino acid residues, within the active sites of EBOV VP35 (Figure 4 and Supplemen-
tary Figure S2). The amino acids involved in the interactions and the bond lengths were
also determined (Table 2). A previous study virtually screened compounds obtained via
pharmacophore modelling against VP35 [99], in which the top 7 compounds were observed
to interact with residues Gln241, Lys248, Ile295, Ile303, Pro304 and Phe328 [99]. NANPDB86
formed one hydrogen bond with Gln329 (bond length 2.0 Å) and hydrophobic interactions
with Val245, Leu249, Pro293, Val294 and Ile295 (Figure 4). NANPDB95 also formed hy-
drophobic interactions with Pro316, Ala291, Pro292, Leu249, Pro293, Val294, Val327, Ile286,
Ala290, Pro315, Pro318, and Val314 (Supplementary Figure S2). Similarly, NANPDB142
formed hydrophobic interactions with Pro318, Ala291, Pro315, Pro316, Ala290, Val294,
Val327, Val314, and Leu249 (Supplementary Figure S2). NANPDB205 interacted with
Leu249, Pro293, Val245, and Ile295 via hydrophobic bonds (Supplementary Figure S2).
NANPDB397 formed hydrophobic interactions with Pro318, Val314, Ala291, Pro292, Pro293,
Val327, and Val294 (Supplementary Figure S2). NANPDB2412 formed hydrophobic bonds
with Pro318, Pro316, Ala290, Pro315, Ala291, Val314, Pro292, Val294, Pro293, and Val327
(Supplementary Figure S2). Additionally, NANPDB2476 formed hydrophobic bonds with
Pro316, Ala291, Pro315, Pro318, Pro292, Val314, Val327 and Val294 (Supplementary Fig-
ure S2). NANPDB3355 formed hydrophobic bonds with Pro316, Ala290, Ala291, Pro292,
Val314, Pro318, Val294 and Val327 (Supplementary Figure S2). NANPDB4048 also inter-
acted with Pro318, Ala291, Val314, Pro292, Pro293, Leu249, Val294 and Val327 through
hydrophobic interactions (Supplementary Figure S2). ZINC000014612849 formed hy-
drophobic interactions with Val314, Pro292, Ala291, Pro318, Pro315, Val327 and Val294
(Supplementary Figure S2). ZINC000033831303 formed hydrophobic interactions with
Pro293, Leu249, Ile295, Val245 and Val294 (Supplementary Figure S2). ZINC000095486250
interacted with Ala291, Pro318, Pro292, Val314, Pro293, Val327 and Val294 via hydrophobic
interactions (Supplementary Figure S2). Interestingly, the 12 hits interacted with amino acid
residues Val245, Leu249, Pro293, Val294, Ile295, Pro316, Ala291, Gln329, Pro292, Leu249,
Val327, Ile286, Ala290, Pro315, Pro318 and Val314, which were in pocket 1 of EBOV VP35
(Table 1). Similarly, amodiaquine, chloroquine, EGCG, gossypetin and taxifolin formed
intermolecular bonds with the active site residues Gln244, Val245, Leu249, Ala290, Ala291,
Pro292, Pro293, Val294, Ile295, Ile297, Val314, Pro315, Pro318, Val327 and Leu330, which
are present in pocket 1 (Table 1) except Cys247. Amodiaquine has previously been shown
in an in silico study to interact with residues Ile295, Lys248 and Gln244 which favour
amodiaquine binding to the VP35 [27]. Similarly, tetrahydrocurcumin, curcumin and
demethoxycurcumin were reported to interact with Gln244, Leu249, Pro293, Val294, Pro316,
Val327 and Gln329 [100], found in pocket 1 of EBOV VP35 (Table 1). Molludistin was
shown to interact with Gln329 and Leu330 while Xanthomicrol interacts with Gln244 and
Val294 [81]. These residues interacting with the known inhibitors also formed intermolec-
ular bonds with the 12 hits. However, from the results, Val245, Leu249, Ala290, Ala291,
Pro292, Val294, Ile295, Val314, Pro315, Pro318 and Val 327 interacted with all ligands that
bind in pocket 1, and could therefore be investigated as potential critical residues essential
for inhibition [78,80].
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Figure 4. (a) A cartoon diagram of EBOV VP35 in complex with ZINC000095486250 depicting the mesh representation of the
binding pocket, (b) 2D representation of EGCG showing molecular interaction with VP35. The hydrogen bond formed with
Gln244 is colored purple, (c) 2D representation of NANPDB86 showing molecular interaction with VP35. The hydrogen
bond formed with Gln329 is colored purple and (d) the legend for the protein-ligand interaction profiles.
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3.5. Biological Activity Predictions for Ligands

The biological activities of the selected molecules were predicted using Prediction
of Activity Spectra for Substances (PASS), which is built using a naïve Bayesian classifier.
The training dataset comprises of data from several sources such as chemical databases,
publications and patents resulting in over 26,000 biological compound-including leads,
drug-like compounds, toxic substances and FDA-approved drugs [101]. PASS uses the
2D structural formula of the compound as the input data to predict the biological activity
of the compound using position-specific descriptors at an average accuracy of 95% [102].
The ability of a potential drug lead to inhibit the synthesis of EBOV RNA and the proteins
essential for viral replication is imperative in the identification of therapeutic agents for the
treatment of EVD [103,104]. The compounds in this study were predicted to be inhibitors
of DNA polymerase I, synthesis EBOV proteins, RNA and transcription factors with the
exception of NANPDB397 and ZINC000014612849 (Table 5).

Table 5. The anti-viral activity prediction of the selected compounds.

Compound ID Biological Activity Pa Pi

NANPDB86

Rhinovirus 0.444 0.052
Herpes 0.334 0.069

Protein synthesis inhibitor 0.467 0.008
Transcription factor inhibitor 0.39 0.026

RNA synthesis inhibitor 0.287 0..63

NANPDB95

Herpes 0.394 0.038
Picornavirus 0.337 0.173

Transcription factor inhibitor 0.557 0.008
Protein synthesis inhibitor 0.493 0.007
RNA synthesis inhibitor 0.331 0.038

NANPDB142

Rhinovirus 0.413 0.078
Herpes 0.332 0.071

Picornavirus 0.352 0.156
DNA polymerase 1 inhibitor 0.625 0.003

RNA synthesis inhibitor 0.285 0.065

NANPDB205

Adenovirus 0.222 0.176
Protein synthesis inhibitor 0.238 0.041
RNA synthesis inhibitor 0.251 0.100
DNA synthesis inhibitor 0.207 0.141

NANPDB397 - - -

NANPDB2412

Herpes 0.410 0.031
Rhinovirus 0.345 0.167

Transcription factor inhibitor 0.283 0.013
DNA synthesis inhibitor 0.232 0.101
RNA synthesis inhibitor 0.231 0.125

NANPDB2476

Influenza 0.476 0.027
Rhinovirus 0.381 0.114

Protein synthesis inhibitor 0.376 0.019
RNA synthesis inhibitor 0.277 0.072

NANPDB3355

Rhinovirus 0.552 0.012
Protein synthesis inhibitor 0.353 0.022

Transcription factor inhibitor 0.240 0.093
RNA synthesis inhibitor 0.241 0.111

NANPDB4048

Influenza 0.621 0.011
Rhinovirus 0.362 0.140

Membrane permeability inhibitor 0.753 0.020
RNA synthesis inhibitor 0.484 0.009
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Table 5. Cont.

Compound ID Biological Activity Pa Pi

ZINC000014612849 - - -

ZINC000033831303 RNA synthesis inhibitor 0.281 0.069

ZINC000095486250

Influenza 0.399 0.047
Herpes 0.273 0.111

RNA synthesis inhibitor 0.298 0.056
DNA polymerase I inhibitor 0.275 0.098

Amodiaquine - - -

Chloroquine - - -

EGCG

Influenza 0.771 0.003
Rhinovirus 0.514 0.020

Herpes 0.480 0.012
HIV 0.300 0.008

Hepatitis B 0.316 0.029
Transcription factor inhibitor 0.404 0.007

RNA synthesis inhibitor 0.318 0.044
DNA polymerase I inhibitor 0.294 0.070

Gossypetin

Hepatitis B 0.498 0.005
Influenza 0.415 0.042

Membrane permeability inhibitor 0.953 0.002
RNA synthesis inhibitor 0.358 0.029

DNA polymerase I inhibitor 0.331 0.040

Taxifolin

Influenza 0.620 0.011
Herpes 0.492 0.010

Rhinovirus 0.503 0.023
Hepatitis B 0.399 0.015

Membrane permeability inhibitor 0.850 0.005
Transcription factor inhibitor 0.413 0.022
DNA polymerase I inhibitor 0.329 0.041

RNA synthesis inhibitor 0.394 0.021

Additionally, NANPDB4048 was predicted to be a membrane permeability inhibitor
with a Pa of 0.753 and Pi of 0.020, and therefore warrants pharmacological investiga-
tion to evaluate its potential to prevent the invasion of EBOV into host cells [105,106].
NANPDB4048 demonstrated the highest Pa value of 0.753 as a membrane permeability
inhibitor while NANPDB142 recorded the lowest Pi value of 0.003 with a Pa of 0.625 as a
DNA polymerase I inhibitor (Table 5). Furthermore, the compounds selected in this study
were compounds that possessed probable activity (Pa) values greater than their probable
inactivity (Pi) [107], reinforcing the need for the in vitro testing of their anti-EBOV activ-
ity [108]. Additionally, the predicted anti-EBOV inhibition efficiency values (IC50), using a
random forest-based classifier [60] for NANPDB2412, NANPDB2476, NANPDB4048 and
ZINC000095486250 were obtained as 11.48, 8.83, 3.35 and 11.99 µM, respectively.

3.6. Assessment of Quality of Ligands

The quality of the ligands was evaluated using metrics such as the ligand efficiency
(LE), fit quality (FQ), inhibitory constant (Ki), LE-dependent lipophilicity (LELP) and
LE_scale (Table 6). Ligand efficiency metrics have long been used as a criteria to identify
plausible compounds during hit-to-lead optimization [63,109]. These indices have been
widely applied in many studies to distinguish between promising and non-promising
compounds [110]. The average LE value for lead-like compounds should be at least
0.30 kcal/mol/HA [111]. The LE values obtained ranged from 0.32 to 0.42 (Table 6), which
were above the values of other compounds with similar number of heavy atoms [86] and
also the proposed LE value.
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Table 6. The Ligand metrics used to evaluate the quality of the selected compounds, namely ligand efficiency (LE), fit quality
(FQ), LE_scale, LE-dependent lipophilicity (LELP) and inhibitory constant (Ki).

Compound ID Number of Heavy Atoms Log P Ki LE LE_Scale FQ LELP

NANPDB86 24 2.79 5.87 × 10−7 0.354 0.404 0.876 7.88
NANPDB95 24 2.94 1.15 × 10−6 0.338 0.404 0.837 8.70
NANPDB95 24 2.94 1.15 × 10−6 0.338 0.404 0.837 8.70

NANPDB142 25 2.93 1.37 × 10−6 0.320 0.391 0.818 9.16
NANPDB205 20 1.81 8.23 × 10−7 0.415 0.467 0.889 4.36
NANPDB397 24 2.66 1.15 × 10−6 0.338 0.404 0.837 7.87
NANPDB2412 23 3.25 9.74 × 10−7 0.357 0.418 0.854 9.10
NANPDB2476 22 3.55 1.37 × 10−6 0.364 0.433 0.841 9.75
NANPDB3355 24 2.43 9.74 × 10−7 0.342 0.404 0.847 7.11
NANPDB4048 23 3.61 9.74 × 10−7 0.357 0.418 0.854 10.11

ZINC000014612849 25 2.22 1.15 × 10−6 0.324 0.391 0.829 6.85
ZINC000033831303 23 3.37 1.37 × 10−6 0.348 0.418 0.833 9.68
ZINC000095486250 21 3.68 1.15 × 10−6 0.386 0.449 0.860 9.53

The other useful parameters for evaluating the physicochemical properties of com-
pounds were the LE-dependent lipophilicity (LELP) and LE_scale metrics. An increase
in the lipophilicity of a compound is likely to result in multiple targets binding, which
is undesirable [112,113]. A study has demonstrated that increasing the molecular weight
(MW) generally leads to the deterioration of the ADMET parameters [56]. Given that LE is
size dependent, a scaling function known as LE_scale is introduced to address the limita-
tions of LE [114]. The LE_scale and LELP values ranged from 0.39 to 0.40 and 4.36 to 10.11,
respectively (Table 6). The suggested values of LELP range from−10 to 10, and compounds
that follow the RO5 possess LELP values less than 16.5; therefore, the drug leads fell within
an acceptable range [115].

An FQ index is also applied to normalize LE across a wide range of molecular sizes and
allows for a size-independent comparison of compounds [116]. An FQ value is a plausible
measure of efficiency in the lead optimization process [117]. An FQ of close to 1 indicates
the optimal binding of a compound [108]. The twelve compounds had FQ scores close to 1,
with the highest value of 0.89 and lowest value of 0.82 suggesting optimal ligand–protein
binding. Similar FQ values were reported in a recent study, with the lowest recorded value
of 0.8 and highest recorded value of 0.9 [86]. Lastly, the potency of a drug is dependent
on its inhibitory constant (Ki), whereby the lower the Ki, the more likely the drug is to
inhibit the target protein [62]. In this study, the calculated Ki values ranged from 0.97 µM to
1.37 µM (Table 6), which shows a good inhibitory potential of the molecules. Additionally,
the Ki values of the ligands were close to those reported in previous studies [86,114]

3.7. Molecular Dynamics Simulation of VP35-Ligand Complexes

Complexes of four compounds and of two known inhibitors of EBOV VP35 protein
were subjected to MD simulations over a 50 ns period to understand their interaction
pattern and dynamic behavior [65]. The radius of gyration (Rg) of the protein structure
determines its compactness and, therefore, a protein that is stably folded is likely to
remain steady over a period of time [118]. The Rg values obtained from the MD analysis
revealed that the VP35-NANPDB4048 complex was very stable and compact over the
period of 50 ns with an average Rg of 2.08 nm (Figure 5). The VP35-NANPDB2412 complex
showed a gradual increase in Rg from 0 to about 25 ns, with peaks recorded at around
25 ns which remained steady throughout the 50 ns, reaching an average Rg value of
2.31 nm. The VP35-NANPDB2476 complex experienced a small fluctuation between 0
and 35 ns, with an average Rg of 2.31 nm, and gradually fell from a value of 2.23 to
2.08 nm. The VP35-ZINC000095486250 complex increased in Rg, from 0 to around 20 ns
and maintained a steady stability to 50 ns with an average 2.28 nm. The VP35-Amodiaquine
complex experienced few fluctuations, with an average Rg of 2.21 nm, and was stable
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from 16 to around 32 ns. Lastly, the VP35-EGCG complex experienced little fluctuations
with peaks recorded at around 26 and 36 ns, and the average Rg observed was 2.25 nm.
Any discrepancies that exists for the stability of the complexes may be attributed to the
sensitivity of the complex to thermodynamic properties such as high temperatures and
pressures, causing the protein to unfold [119]. When the radius of gyration is higher,
it affects the compactness of the protein–ligand complex, resulting in weak interactions
between the protein and the ligand [120].
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Additionally, the stability of the docked complexes was analyzed using the RMSD
generated from the MD simulations. The backbone of the VP35-NANPDB4048 complex
was more stable than the rest of the complexes (Figure 6), with a small deviation as it
increased from 0.05 nm to 0.65 nm over 50 ns with an RMSD value of around 0.45 nm.
The RMSD of VP35-NANPDB2412 complex gradually rose from 0 to around 0.95 nm for a
period of 8 ns from the onset and remained steady until approximately 20 ns, thereafter
it experienced some fluctuations in stability over the rest of the period with a deviation
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of about 0.8 nm. The EBOV VP35-NANPDB2476 complex experienced a sharp rise in
RMSD from 0 to around 5 ns and remained steady for over 15 ns. It displayed a significant
increase in RMSD during the remaining 30 ns, with a deviation of approximately 1.3 nm.
The backbone of the VP35-ZINC000095486250 complex was relatively stable with little
deviations. Its RMSD steadily increased with a deviation of 0.7 nm from 0.1 to 0.85 nm
for around 40 ns and declined gradually until the end of the 50 ns period. Initially,
the VP35-Amodiaquine complex had a steep slope from about 0.5 to 0.58 nm at around
5 ns after which it decreased gradually until the end of the 50 ns period, with a deviation of
approximately 0.69 nm. The VP35-EGCG complex experienced unstable RMSD values with
peaks recorded at around 1.62 nm and 1.73 nm around 27 ns and 36 ns, respectively showing
a deviation of about 1.35 nm. Overall, VP35-NANPDB4048 and VP35-ZINC000095486250
complexes showed more stability than the known inhibitors in this study. This implies that
the deviations of both complexes were relatively low, demonstrating their stability [121].
Moreover, since all the complexes depicted an average deviation below the similarity
threshold of 2 Å, it is not likely that any significant conformational changes in the structure
of the ligands could have occurred, although the structural integrity of the protein may
have been affected [108,122].
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3.8. MM-PBSA Computations on Potential Lead Compounds

The MM-PBSA method was used to determine the binding free energies of the docked
ligands. The selected compounds possessed low binding free energies (Table 7). Simi-
larly, the standard compounds, amodiaquine and EGCG all had low binding energies of
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−92.4 kJ/ mol and −44.564 kJ/ mol, respectively (Table 7) signifying very strong binding
to the VP35 protein. The amodiaquine inhibited EBOV replication, without significant
toxicity, with an IC50 of 1.45 µM [123]. Among all the compounds, ZINC000095486250
possessed the minimum binding free energy of −94.213 kJ/mol. The total binding ener-
gies were highly negative due to the contributions from van der Waals energy, SASA
energy, electrostatic energy and polar solvation energy [124] (Table 7). However, the van
der Waals energy contributed significantly to the low total binding energy. Although,
the binding energy was considerably reduced by the SASA and electrostatic interactions,
it was regulated by a rather stronger unfavorable polar solvation energy [125] (Table 7).
The SASA energy term estimates the interactions between the complexes and solvents.
The EBOV VP35-ligand complexes possessed SASA energy values ranging from −10.531
to −18.495 kJ/mol (Table 7). EBOV VP35-Amodiaquine possessed the lowest SASA energy,
at −18.495 kJ/mol while EBOV VP35-NANPDB2476 demonstrated the highest SASA en-
ergy of −10.531 kJ/mol. All the EBOV VP35-ligand complexes demonstrated very low
van der Waals interactions ranging from −72.353 kJ/mol to −150.934 kJ/mol (Table 7).
Interestingly, EBOV VP35-Amodiaquine demonstrated the lowest van der Waals energy,
of −150.934 kJ/mol, while EBOV VP35-NANPDB2476 showed the highest van der Waals
energy of −72.353 kJ/mol (Table 7).

Table 7. The free energy terms for the binding of compounds to the EBOV VP35 protein. The energy values are presented as
average ± standard deviations in kJ/mol. The binding affinity scores from the docking studies are represented as “kcal/mol
(kJ/mol)”, where the calculated binding affinity in kJ/mol are presented in brackets.

Compound ID
Binding Affinity

from Docking
[kcal/mol
(kJ/mol)]

van der Waal
Energy (kJ/mol)

Electrostatic
Energy (kJ/mol)

Polar Solvation
Energy (kJ/mol)

SASA Energy
(kJ/mol)

Binding Energy
(kJ/mol)

NANPDB2412 −8.2 (−34.3088) −112.794 ± 31.343 −4.338 ± 7.888 63.305 ± 25.933 −13.955 ± 3.243 −67.782 ± 17.041
NANPDB2476 −8.0 (−33.472) −72.353 ± 15.702 −8.393 ± 9.299 46.887 ± 21.330 −10.531 ± 2.288 −44.390 ± 19.503
NANPDB4048 −8.2 (−34.3088) −122.063 ± 24.789 −3.170 ± 8.186 68.675 ± 23.656 −15.854 ± 2.967 −72.413 ± 15.915

ZINC000095486250 −8.1 (−33.8904) −133.848 ± 15.162 −6.489 ± 7.863 62.413 ± 10.653 −16.289 ± 1.014 −94.213 ± 12.755
Amodiaquine −7.0 (−29.288) −150.934 ± 19.558 −6.282 ± 8.679 83.311 ± 13.703 −18.495 ± 1.647 −92.400 ± 15.855

EGCG −8.1 (−33.8904) −110.393 ± 27.459 −46.227 ± 20.847 126.216 ± 35.236 −14.160 ± 3.019 −44.564 ± 23.104

The molecular docking simulations showed ZINC000095486250 had a binding affinity
of −8.1 kcal/mol (−33.8904 kJ/mol), which is the same as that of EGCG. However, EGCG
had a binding free energy of −44.564 kJ/mol. Hence, the significance of MM-PBSA calcula-
tions, used to reinforce the scoring functions of the virtual screening, becomes evident [126].
The MM-PBSA analysis suggested that residues involved in hydrophobic interactions are,
most importantly, involved in protein-ligand binding. The residues with energy values
less than −5 kJ/ mol or greater than 5 kJ/mol are more likely to contribute to the over-
all binding free energies associated with the protein-ligand interactions (Figure 7 and
Supplementary Figure S3) [127]. Residues which contribute high positive energies are un-
favourable for ligand binding, whereas residues that contribute highly negative energies are
favourable for ligand binding [128]. The per-residue decomposition results suggested that
residues located in pocket 1 including Leu249, Val294, Val314, Pro316, Pro318 and Val327
(Table 1) could play critical roles in the binding mechanisms (Supplementary Figure S3).
Thus, it is strongly recommended that in the design and development of novel EBOV VP35
inhibitors, these critical residues should be accorded adequate consideration. Furthermore,
any undesirable residues could be ignored [127] in favor of the critical residues.

3.9. Structural Similarity Search of Hits

The four compounds that were identified as hits were subjected to structural simi-
larity searches via DrugBank (Table 8). Peridinin was shown to be structurally similar to
NANPDB2476, with a similarity score of 0.717. Interestingly, peridinin has been reported
to strongly exhibit anti-dengue virus activity for all the serotypes of dengue virus [129].
Peridinin was found to have IC50 values of 7.62, 4.50, 5.84 and 6.51 µg/mL against DENV-1,
DENV-2, DENV-3 and DENV-4, respectively [129]. Peridinin, extracted from Isis hippuris



Biomedicines 2021, 9, 1796 19 of 26

has also been reported to inhibit Human T-cell leukemia virus type 1 (HTLV-1)-infected
T-cell lines [130].
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Figure 7. A plot of the binding free energy contribution per residue of EBOV VP35-NANPDB2476
complex derived from molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis.
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NANPDB2412 was found to be structurally similar to carbenoxolone with a similarity
score of 0.842. Carbenoxolone has been shown to possess broad-spectrum virucidal activity
against various viruses including the Dengue, herpes and vaccinia viruses [131–133].
Carbenoxolone was reported to reduce DENV-2 mRNA expression by 5- and 10-fold at
concentrations of 50 and 100µM, respectively [131].

Table 8. List of two-dimensional structures of potential lead compounds obtained using Marvin Sketch (ChemAxon Ltd.,
MarvinSketch version 17.28.00, Budapest, Hungary) [134].

Compound ID IUPAC Names Two-Dimensional Structure

NANPDB2412
(1R,2R,5S,7S,8S,13R,14R,17R)-2,7,14-trimethyl-16-
oxapentacyclo[9.7.0.02,8.05,7.013,17]octadeca-3,10-

diene-12,15-dione
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Table 8. Cont.

Compound ID IUPAC Names Two-Dimensional Structure

NANPDB4048

(1Z,2S,3aR,3bS,9aR,9bS,11aS)-1-ethylidene-2-
hydroxy-9a,11a-dimethyl-

1H,2H,3H,3aH,3bH,4H,5H,7H,8H,9H,9aH,9bH,11aH-
cyclopenta[a]phenanthren-7-one
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Natural products have been found to act effectively against a wide range of diseases; how-
ever, they are underutilized in the search for anti-EBOV therapeutic agents. Thus, this study
complements recent efforts in identifying novel EBOV inhibitors [99,108,135–138]. Such previ-
ous studies have led to the discovery of three Indonesian natural compounds which have
been found to be active against EBOV VP335, namely myricetin 3-robinobioside, theas-
aponin and kaempferol 3-(6G-malonylneohesperidoside) [138]. Phytochemicals belonging
to the genus Ocinum, were also screened against EBOV VP35 using an in silico approach.
Isovitexin, cosmosiin and molludistin were suggested to be the best compounds among
the phytochemicals, possessing desirable properties against EBOV VP35 [81]. The drug-
like compounds identified for use against EBOV VP35 were formulated using thorough
computational approaches and could be used as model structures for further optimization
and synthesis in experimental characterization.

5. Conclusions

This study effectively applied in silico drug discovery techniques to identify potential
anti-EBOV molecules from the African flora. These compounds include NANPDB2412,
NANPDB2476, NANPDB4048 and ZINC000095486250. They were physicochemically
screened and determined to be drug-like with a low predicted toxicity risk. They were
predicted to display antiviral biological activity, and to possess reasonably good inhibition
efficiency and Ki values. The study predicted novel binding mechanisms, including critical
residues essential for biomolecular interactions. A structural similarity search also revealed
that NANPDB2476 and NANPDB2412 are structurally similar to peridinin and carbenox-
olone with similarity scores of 0.717 and 0.842, respectively. Peridinin and carbenoxolone
have previously been shown to possess virucidal activity, which reinforces the necessity of
an antiviral potential for the compounds. These drug-like compounds are promising po-
tential leads, which warrant further in vitro experimentation to corroborate their predicted
antiviral bioactivity. Fragments of the identified molecules could be optimized as novel
inhibitors to aid the synthesis of anti-EBOV agents.
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value for the curve was 0.72, indicating the validity of the classification, Figure S2: 2D diagrams
of VP35-ligand complexes showing the hydrogen and hydrophobic interactions with the amino
acid residues involved. The hydrogen bond with Gln329 is colored purple. The 2D protein-ligand
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PDB142, (D) NANPDB205, (E) NANPDB397, (F) NANPDB2412, (G) NANPDB2476, (H) NAN-
PDB3355, (I) NANPDB4048, (J) ZINC000014612849, (K) ZINC000033831303, (L) ZINC000095486250,
(M) Amodiaquine, (N) Chloroquine, (O) EGCG, (P) Gossypetin, and (Q) Taxifolin, Figure S3: Molecu-
lar mechanics Poisson-Boltzmann surface area (MM-PBSA) plot of binding free energy contribution
per residue of the VP35-ligand complexes: (A) NANPDB2412, (B) NANPDB2476, (C) NANPDB4048,
(D) ZINC000095486250, (E) Amodiaquine, and (F) EGCG Fluctuations by predicted critical residues
are shown in red., Table S1: ADME prediction results of 12 compounds and 5 known inhibitors for
Cytochrome P450 (CYP) inhibition.
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