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INTRODUCTION 
 

Over the last decade, autogenous fat transplantation, 

reconstruction of soft tissue injury and cosmetic breast 

augmentation have received greater attention and found 

wider use [1–4]. However, the safety and effectiveness of 

autogenous fat transplantation remain the focus of debate. 

Failure of autogenous fat transplantation may lead to fat 

necrosis, microcalcification and inflammation of cyst 

formation [5–8]. Recent advances in regenerative medicine 

have put adipose stem cells (ASCs) in the spotlight for 

their paracrine activity [9], differentiation ability and 

potential application in tissue engineering. Many studies 

have shown that ASCs show excellent regenerative 

potential for fat transplantation in the clinic [10–12].  

 

ASCs, easily obtained from adipose tissue, are a subset of 

mesenchymal stem cells (MSCs) showing similar 
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ABSTRACT 
 

In this study, human adipose stem cells were isolated from subcutaneous fat in the thigh (htASCs), abdomen 
(haASCs) and breast (hbASCs). Flow cytometry was used to detect cell surface markers, and an enzyme-linked 
immunosorbent assay was used to detect paracrine activity. Paracrine gene expression in the three cell types 
was examined using real-time qPCR, and adipogenic ability was assessed using Oil Red O staining. RNA from 
third-passage haASCs and hbASCs was sequenced. The results showed that the differentiation potential marker 
markers CD49d and CD54 were similar across hbASCs from 10 subjects. The hbASCs showed higher colony 
forming ability and expression of fibroblast growth factor-2, tissue inhibitor of metalloproteinase-1 and stromal 
cell derived factor-1 than htASCs and haASCs. Stimulating hbASCs with FGF2 promoted adipogenic 
differentiation, while treating the cells with the PI3K inhibitor LY294002 inhibited differentiation. These results 
suggest that the PI3K/Akt signaling pathway can promote proliferation and adipogenic differentiation of 
adipose stem cells, and that activation of this pathway by FGF2 may explain why hbASCs show greater 
proliferation and adipogenic differentiation than haASCs and htASCs. 
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regeneration characteristics as other MSCs [13–15]. ASCs 

easily adhere to plastic culture bottles and expand in vitro 

and show the potential to repair, maintain or enhance 

various tissues [16]. Many studies have demonstrated that 

ASCs are capable of differentiating into mesenchymal and 

non-mesenchymal cell types in vitro and in vivo, 

including adipocytes, chondrocytes, osteoblasts, neurons, 

myocytes, and endothelial cells [17–21]. Moreover, ASCs 

can promote tissue regeneration by secreting cytokines 

and growth factors, thus promoting the recovery of 

normal tissue function or reducing tissue damage [22]. 

These favorable characteristics of human adipose tissue 

offer a practical, alternative source of MSCs for use in 

regenerative medicine. However, ASCs harvested from 

different anatomical areas exhibit different characteristics 

[23, 24]. This suggests that there may be an optimal 

source of ASCs for autologous transplantation.  

 

In this study, we isolated ASCs from human thigh 

(htASCs), abdomen (haASCs) and breast (hbASCs) and 

compared their molecular characteristics and ability to 

differentiate into adipocytes and develop paracrine 

function in vitro and in vivo. Our intention was to 

identify the best source of ASCs for potential clinical 

use. Moreover, we combined cell biology and 

bioinformatics to explore what mechanisms may help 

explain differences in proliferation and differentiation 

among ASCs from different sources. 

 

RESULTS 
 

Characteristics of ASCs from three tissue sources 
 

The htASCs, haASCs, and hbASCs began to adhere to the 

plates within 6 h after seeding. Initially, the cells were 

small, round, and irregular in size, with some 

mononuclear blood cells. By 48 h post-seeding, the cells 

gradually stretched into short or long spindle shapes with 

fibroblast-like morphology. Cells achieved 80-90% 

confluence after 7-8 days. After passage, all three cell 

types displayed typical fibroblast-like morphology; during 

subculture, cells reached the same confluence within 3-4 

days after passage, with a 1:3 split ratio at P3 (Figure 1A). 

P3 ASCs were cultured with osteogenic, chondrogenic, or 

adipogenic induction medium, and the corresponding 

lineage-specific cell morphologies were observed after 2, 

3, or 2 weeks of culture, respectively, based on staining 

with Alizarin Red, Alcian Blue, or Oil Red O. All three 

ASCs were able to undergo osteogenesis, chondrogenesis 

and adipogenic differentiation (Figure 1B–1D).  

 

 
 

Figure 1. Proliferation and differentiation of haASCs, htASCs and hbASCs. (A) Passage 3 (P3) of htASCs, haASCs, and hbASCs. (B) 
Positive Alizarin Red staining of P3-htASCs, P3-haASCs, and P3-hbASCs following 3 weeks of osteogenic induction. (C) Positive Alcian Blue 
staining of P3-htASCs, P3-haASCs, and P3-hbASCs following 2 weeks of chondrogenic induction. (D) Positive Oil Red O staining of P3-htASCs, 
P3-haASCs, and P3-hbASCs following 2 weeks of adipogenic induction.  
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Table 1. Expression of various markers in undifferentiated ASCs at P1 by flow cytometric  
analysis (%). 

Marker htASCs(n=3) haASCs(n=3) hbASCs(n=4) 

HLA-ABC 93.6±3.2 90.5±2.8 92.9±3.3 

HLA-DR 1.9±0.3 2.1±0.6 1.7±0.4 

CD13 99.1±0.4 97.7±0.8 98.8±0.5 

CD14 2.3±0.4 2.7±0.5 2.6±0.5 

CD29 98.5±1.2 95.8±1.1 97.6±1.4 

CD31 1.2±0.5 1.7±0.6 1.5±0.7 

CD34 4.7±0.7 4.5±0.6 4.2±0.5 

CD44 91.3±2.5 93.4±2.9 92.2±2.6 

CD45 3.9±0.8 4.2±0.9 3.8±0.7 

CD49d 36.7±1.8 34.8±2.2 58.6±3.1* 

CD54 29.4±1.6 31.6±1.9 43.5±2.7* 

CD90 88.6±2.3 90.2±3.3 87.5±2.8 

CD105 90.5±2.6 93.1±3.4 91.4±2.9 

CD106 2.7±0.9 3.3±0.9 3.1±0.8 

* P<0.05 vs htASCs or haASCs.  
 

We further explored the immunophenotypic 

characteristics of ASCs, and the results confirmed the 

multipotency of htASCs, haASCs, and hbASCs. Flow 

cytometry showed that at P1, htASCs, haASCs, and 

hbASCs were positive for expression of mesenchymal 

surface markers HLA-ABC, CD13, CD29, CD44, 

CD49d, CD54, CD90, and CD105, and negative for 

expression of surface markers HLA-DR, CD14, CD31, 

CD34, CD45, and CD106. Expression of CD49d and 

CD54 was significantly higher in hbASCs than in 

htASCs or haASCs, whereas the three groups did not 

differ significantly in the expression of HLA-ABC, 

CD13, CD29, CD44, CD90, or CD105 (Table 1). 

 

Proliferation and differentiation differences among 

haASCs, htASCs and hbASCs in vitro 
 

During the normal culture process, CCK-8 tests were 

performed on the htASCs, haASCs, and hbASCs. 

Proliferation rate and growth capacity were similar 

among these three types of ASCs (Figure 2A), with no 

significant difference in growth ability or cell doubling 

time, which was 39.13±4.30 min for htASCs, 

40.63±2.97 min for haASCs, and 40.16±1.69 min for 

hbASCs.  

 

Colony formation was also calculated for htASCs, 

haASCs, and hbASCs. After 10 days of culture, single 

cell-derived colonies were observed, consisting of 100-

150 cells. Cells within the colonies were classified as 

long spindle, short spindle, short round, or long narrow 

shaped (Figure 2B). The hbASC colonies grew 

gradually, while colonies of htASCs and haASCs grew 

slowly. Results revealed significantly greater colony 

formation by hbASCs (5.38%±0.27%) than htASCs 

(2.24%±0.17%, P < 0.05) and haASCs (2.33%±0.19%, 

P < 0.05) (Figure 2B).  

 

Moreover, we found that htASCs, haASCs, and hbASCs 

exhibited different adipogenic potential in vitro. After 

14 days of induction of adipogenic differentiation, 

hbASCs contained a large number of Oil Red O-

positive lipid droplets in their cytoplasm. In contrast, 

htASCs and haASCs contained relatively few such 

droplets (Figure 2C). The hbASCs also showed higher 

adipocyte density and lipid concentration than htASCs 

and haASCs.  

 

Different proliferation and adipogenic 

differentiation abilities of haASCs, htASCs and 

hbASCs in vivo 
 

All animals were assessed at 12 weeks after 

transplantation. Macroscopic findings demonstrated that 

regenerated tissue had formed at the implantation site, 

and this tissue was excised for subsequent testing. The 

wet weight of the neogenic tissue was significantly 

greater in hbASCs than in htASCs or haASCs (Figure 

3A). H&E staining indicated that the regenerated tissue 

in all three groups was composed of adipose tissue that 

had matured to differing degrees (Figure 3B): the tissue 

in the case of hbASCs was more mature and showed no 

signs of fibrosis. The collagen sponges degraded during 

the 12-week interval since implantation.  

 

Neogenic tissue was also visualized by GFP (Figure 

3C), indicating that the mature adipose cells had 

differentiated from GFP-labeled ASCs. Oil Red O 

staining showed that neogenic tissue derived from 

hbASCs contained more Oil Red O-positive lipid 
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droplets within the cytoplasm, more adipocytes and 

higher intracellular lipid content than tissue derived 

from htASCs or haASCs (Figure 3D). These data 

indicate differing adipogenic potential in the various 

ASCs. 

 

DEGs between haASCs and hbASCs 
 

Of 12,466 DEGs between haASCs and hbASCs, 5,699 

were up-regulated and 6,769 down-regulated in hbASCs 

(Figure 4A). These genes included several involved in 

paracrine function: FGF9, FGF16, FGF18, FGF12, 

IGFBP2, CXCL2, FGF13, CCL5 and FGF10 were up-

regulated in hbASCs, while IGF2, IL1B, FGF20, FGF5, 

EGF, IL15, FGF23 and FGF2 were down-regulated 

(Figure 4B).  

 

At days 3 and 7 of cell culture, concentrations of FGF2, 

TIMP-1, and SDF-1 in culture medium were higher in 

hbASCs than in htASCs or haASCs (Figure 4C). 

Moreover, qPCR analysis demonstrated that levels of 

mRNAs encoding TIMP-1, CXCR4, FGF2, or FGF9 

were significantly higher, while levels of mRNAs 

encoding FGF3 and FGF6 were significantly lower, in 

 

 
 

Figure 2. Different proliferation and differentiation abilities of haASCs, htASCs and hbASCs in vitro. (A) Cell proliferation as 
assessed by a CCK-8 assay. The proliferation rate and growth capacity of htASCs were similar to those of haASCs or hbASCs, but there was no 
significant difference in cell doubling time among htASCs, haASCs, and hbASCs. (B) Colony formation assays. Cells within the colonies 
exhibited long-spindle, short-spindle, short-round, or long-narrow morphology. After 14 days, colony forming units (CFUs) were significantly 
higher for hbASCs than for htASCs or haASCs (P < 0.05). (C) Adipogenic differentiation assay of htASCs, haASCs, and hbASCs in vitro. Adipocyte 
density and lipid concentration were significantly different between hbASCs and the other two ASC types. *P<0.05, **P<0.05 
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Figure 3. Different proliferation and differentiation abilities of haASCs, htASCs and hbASCs in vivo. (A) Regenerative adipose 
tissue macroscopic findings. Wet weights of regenerative adipose tissue in htASCs, haASCs, and hbASCs. *P<0.05. (B) H&E staining of the 
regenerative tissue after 12 weeks. The transplants derived from the three ASC types consisted predominantly of mature adipose tissue. 
Magnification, 100×. (C) GFP staining of the regenerative tissue after 12 weeks. In contrast to htASC or haASC tissue, GFP+ hbASC tissue 
contained larger Oil Red O-positive lipid droplets in the cytoplasm. GFP+ cells were detected in regenerative mature adipose tissue, indicating 
that these mature adipocytes had differentiated from GFP-labeled ASCs. Magnification, 100×. (D) Quantitative measurement of adipogenesis 
ability. Adipocyte density and intracellular lipid content were higher in hbASC tissue than in htASC or haASC tissue. *P < 0.05,**P < 0.05. 
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neogenic tissue derived from hbASCs than in tissue 

derived from htASC or haASC (Figure 4D). Expression 

of FGF1, FGF4, FGF5, FGF7, FGF8, and FGF10 was 

similarly low across all three groups.  

 

Analysis of adipogenesis-related genes revealed that 

PPARγ2, FAD24, and ADD1 were expressed at higher 

levels in hbASCs than in htASCs and haASCs (Figure 

4D). However, C/EBPα expression was similar across 

neogenic tissue samples from the three groups. 

 

BPs and pathways involving DEGs 

 

Enrichment analysis showed that DEGs were 

significantly involved in BPs such as nuclear division, 

organelle fission, DNA conformational change, sister 

chromatid segregation, nuclear chromosome 

segregation, chromosome segregation, negative 

regulation of the mitotic cell cycle, renal system 

development and urogenital system development 

(Figure 5A). Moreover, DEGs were significantly 

involved in KEGG pathways such as as the cell cycle, 

MAPK signaling pathway, mTOR signaling pathway, 

cellular senescence and PI3K-Akt signaling pathway 

(Figure 5B).  

 

GSEA showed that hbASCs were enriched in genes 

involved in ATP metabolism, HEparan sulfate 

proteoglycan metabolism, negative regulation of actin 

filament polymerization, nucleoside triphosphate 

metabolism and proteoglycan biosynthesis (Figure 5C, 

5D). These genes were also involved in biosynthesis of 

unsaturated fatty acids, glycosylphosphatidylinositol 

anchor biosynthesis, JAK-STAT signaling, oxidative 

phosphorylation and peroxisome assembly and function.  

 

ClueGO analysis showed that hbASCs were enriched 

for DEGs involved in such BPs as muscle structure 

development, digestive tract development, tube 

development, regulation of processes in multicellular 

organisms, regulation of cell differentiation, regulation 

of mesenchymal cell proliferation and fat cell 

differentiation (Figure 5E).  

 

These analyses are consistent with our in vitro 

observations that hbASCs proliferate and differentiate 

more than haASCs. 

 

FGF2 acts via PI3K/Akt signaling to regulate 

hbASC proliferation and adipogenic differentiation  
 

Based on the bioinformatics analysis and experiments, 

we further explored the relationship between FGF2 and 

PI3K-Akt signaling. FGF2 expression positively 

correlated with that of genes in the PI3K-Akt signaling 

pathway (Figure 6A), suggesting that hbASCs may 

promote their own proliferation and differentiation by 

secreting FGF2 (Figure 6B). To test this idea, we used 

Oil Red O staining to compare the numbers of 

cytoplasmic lipid droplets in the three types of ASCs 

(Figure 6C–6E): the numbers of droplets varied directly 

with the level of FGF2. Furthermore, we found that 

treating the three types of ASCs with the PI3K inhibitor 

LY294002 reduced the number of cytoplasmic lipid 

droplets and down-regulated Akt and PPARγ2, while 

treating cells with exogenous FGF2 exerted the opposite 

effects. These results suggest that FGF2 promotes 

adipogenic differentiation via the PI3K/Akt signaling 

pathway. 

 

DISCUSSION 
 

Stem cell transplantation and regenerative medicine 

have shown increasing promise for the replacement of 

damaged or aging tissue [25–29]. However, stem cells 

isolated from embryos, umbilical cord blood, or bone 

marrow can lose quality as they age, they are often 

difficult to harvest and manipulate, and they are 

expensive to prepare [30–33]. ASCs, in contrast, can be 

collected, processed and propagated in a simple, 

minimally invasive way from excised fat tissue or 

lipoaspirate. Their pluripotency and proliferative 

efficiency are similar to those of bone marrow-derived 

stem cells, and donor morbidity is lower than for MSCs 

harvested from other sites. Perhaps most importantly, 

adipose tissue can produce 100-1000 times more MSCs 

per cubic centimeter than bone marrow [34]. In 

addition, ASCs survive longer and do not undergo 

senescence in culture as rapidly as bone marrow-

derived stem cells, which allows for greater procedural 

flexibility. These characteristics suggest that ASCs are 

well suited to regenerative medicine [35–38], but the 

best source of ASCs has not yet been elucidated. Our 

results here suggest that breast may be better than thigh 

or abdomen as a source of ASCs for regenerative 

therapy. 

 

Our research described successful isolation of ASCs 

from the adipose tissue of the abdomen, thigh, and 

breast, suggesting their potential application in 

regenerative medicine. Moreover, we found that 

hbASCs showed greater proliferation and differentiation 

ability than htASCs or haASCs, perhaps reflecting the 

differences between breast adipose tissue and other 

subcutaneous fat deposits in the body. Flow cytometry 

showed that the proportions of cells positive for CD49d 

or CD54 were significantly higher in hbASCs than in 

htASCs or haASCs. CD49d corresponds to the α chain 

of integrin, while CD54 is a cell adhesion molecule, and 

both play an important role in cell surface adhesion and 

signal transmission [39, 40]. Cell adhesion molecules 

act through various mechanisms to regulate stem cell 
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Figure 4. Genes differentially expressed between haASCs and hbASCs. (A) Volcano map. Red means up-regulated genes; blue means 
down-regulated genes. (B) Circplot associated with paracrine genes of ASCs. (C) ELISA of paracrine factors produced by htASCs, haASCs, and 
hbASCs in vitro. Higher levels of FGF2, TIMP-1, and SDF-1 were secreted by hbASCs than by htASCs or haASCs at 3 and 7 d. *P<0.05. (D) 
Differences in expression of genes related to paracrine function and adipogenesis across the three types of transplants. The hbASC tissue 
showed up-regulation of TIMP-1, CXCR4, FGF2, FGF9, PPAγ2, FAD24 and ADD1, but down-regulation of FGF3 and FGF6 relative to htASC and 
haASC tissue. C/EBPα expression was similar between htASC and haASC tissue. *P < 0.05, **P < 0.05, #P < 0.05 
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proliferation, self-renewal, adhesion and multi-lineage 

differentiation [41]. Therefore, high expression of 

CD49d and CD54 may help explain the greater 

differentiation potential of hbASCs.  

To further understand why hbASCs show greater 

proliferation and differentiation potential, we performed 

comparative RNA-seq. This identified several genes 

related to paracrine function that were up-regulated in 

 

 
 

Figure 5. Analysis of enrichment in biological processes and KEGG pathways. (A) Biological process enrichment. (B) KEGG pathway 
enrichment. (C) GSEA of biological processes. (D) GSEA of KEGG pathways. (E) ClueGO analysis of biological processes. 
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Figure 6. Promotion of adipogenic differentiation by FGF2 via the PI3K/Akt signaling pathway in vitro. (A) Correlation analysis 
plot of the FGF2-PI3K/Akt signaling pathway. (B) Potential mechanism by which this pathway enhances proliferation and differentiation of 
hbASCs. (C) Oil Red O staining of hbASCs showing that FGF2 promoted adipogenic differentiation. (D) Oil Red O staining of htASCs showing 
that FGF2 promoted adipogenic differentiation. (E) Oil Red O staining of haASCs showing that FGF2 promoted adipogenic differentiation. Akt 
and PPARγ2 levels were significantly higher in group B than in groups A, C, or D, based on western blot. LY294002 suppressed adipogenic 
differentiation of htASCs, haASCs, and hbASCs based on Oil Red O staining, while down-regulating Akt and PPARγ2 based on western blotting. 
*P<0.01, **P<0.01. Group descriptions: (A) basic adipogenic induction medium (BM); (B) BM+FGF2 (0.1 µg/mL); (C) BM+LY294002; (D) 
BM+FGF2 (0.1 µg/mL)+LY294002. Magnification of panels A1-D1, 200×. Magnification of panels A2-D2, 400×. 
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hbASCs relative to haASCs. Consistently, hbASC 

cultures secreted higher levels of the paracrine factors 

FGF2, TIMP-1, and SDF-1 than htASCs or haASCs. 

Consistently, another study showed that breast ASCs 

express significantly higher levels of FGF2 than ASCs 

from other sources [42]. In the present study, the genes 

TIMP-1, CXCR4, FGF2 and FGF9 were up-regulated in 

hbASCs, while FGF3 and FGF6 were down-regulated. 

FGF2, one of the best studied fibroblast growth factors, 

participates in cell division, differentiation, proliferation 

life, survival, carcinogenesis, and self-renewal of stem 

cells [43–45]. Our results identify several molecular 

differences that help explain why hbASCs show greater 

potential in regenerative medicine than htASCs or 

haASCs.  

 

Functional enrichment analysis showed that DEGs in 

hbASCs are involved in MAPK and PI3K/Akt signaling 

pathways, which are involved in proliferation and 

differentiation. In particular, the PI3K/Akt signaling 

pathway has been shown to play an important role in the 

proliferation and differentiation of ASCs [46, 47]. 

Given our finding of FGF2 up-regulation in hbASCs, 

we asked whether this paracrine factor may act via the 

PI3K/Akt pathway. We found that, indeed, FGF2 levels 

correlated directly with expression of DEGs involved in 

the PI3K/Akt signaling pathway, and treatment of ASCs 

with exogenous FGF2 enhanced their adipogenic 

differentiation and up-regulated Akt and PPARγ2, while 

treatment with the PI3K inhibitor LY24402 led to the 

opposite effects. These results suggest that FGF2 

promotes adipocyte differentiation through the 

PI3K/Akt signaling pathway, which may help explain 

why hbASCs have stronger differentiation ability than 

the other two types of ASCs.  

 

Interestingly, hbASCs expressed higher levels of FGF2 

protein than haASCs but lower levels of FGF2 mRNA. 

This may relate to the fact that FGF2 is translated from 

an internal ribosome entry site on the mRNA [48], and 

that FGF2 is regulated at the post-transcriptional stage. 

According to RNA interactome database (http://www. 

rna-society.org/raid/) [49], we also found that the post-

transcriptional inhibitor PUM2 [50], which shows a 

strong binding score (0.6668) to FGF2 and is down-

regulated in hbASCs relative to haASCs 

(Supplementary Figure 1). We cannot exclude that 

intrinsic variations in FGF2 expression across 

individuals may also contribute to the differences that 

we observed across the three ASC types [51].  

 

Our results should be interpreted with caution in light of 

several limitations. First, the samples used in this 

experiment came from plastic surgery, so it was 

difficult to obtain adipose stem cells from three 

locations in the same patient. In addition, we did not 

record donor age or sex, which would be important for 

comparing the robustness of the three ASC types to 

aging or hormone exposure. We also did not examine 

whether adding exogenous FGF2 to ASCs can even out 

the differences that we observed here, in which case the 

promising characteristics of hbASCs could also be 

achieved in ASCs from other sources.  

 

CONCLUSION 
 

Human ASCs from breast show stronger proliferation 

and adipogenic differentiation ability than ASCs from 

thigh or abdomen. This may be due to FGF2 up-

regulation, which stimulates the PI3K/Akt signaling 

pathway. 

 

MATERIALS AND METHODS 
 

Patients and samples 

 

Breast fat from five healthy adult donors and abdominal 

subcutaneous fat from two healthy adult donors were 

used for RNA sequencing (RNA-seq). In addition, 

subcutaneous adipose tissue was harvested from 

abdomen, thigh and breast of 10 women undergoing 

reduction mammoplasty (Table 2). These procedures 

were performed with the approval of the Research 

Ethics Committee of the Fifth Affiliated Hospital of 

Guangxi Medical University, and all subjects signed 

consent forms. The volunteers were patients of the Fifth 

Affiliated Hospital of Guangxi Medical University and 

the Nanning Dream Plastic and Aesthetic Hospital 

between March 2015 and June 2017.  

 

Isolation and identification of ASCs  
 

ASCs were isolated and cultured as previously 

described [52, 53]. First-passage htASCs, haASCs, and 

hbASCs were analyzed using a Becton Dickinson 

FACS Calibur flow cytometer. Cells (1×106) were 

incubated for 30 min with either fluorescein 

isothiocyanate (FITC)- or phycoerythrin (PE)-

conjugated antibodies (BD Biosciences, NJ, USA) 

against the following ASC surface markers, selected 

based on previous studies [54–56]: CD13/PE, 

CD14/FITC, CD29/PE, CD31/FITC, CD34/FITC, 

CD44/PE, CD45/FITC, CD49d/PE, CD54/PE, 

CD90/PE, CD105/PE, CD106/FITC, HLA-ABC/FITC, 

and HLA-DR/FITC. The negative control IgG-PE 

antibodies were added in the dark at room temperature 

and incubated for 30 min. Data analysis was performed 

using Cell Quest Pro acquisition software (BD 

Biosciences). In order to detect cell differentiation, 

third-passage (P3) htASCs, haASCs, and hbASCs were 

cultured in adipogenic, osteogenic, or chondrogenic 

culture media. Cell preparations were stained with Oil 

http://www.rna-society.org/raid/
http://www.rna-society.org/raid/
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Table 2. Subject characteristics. 

Subject Age (yr) Sex Ethnicity Locations sampled Height (cm) Weight (kg) 
Body mass 

index, kg/m2 

S1 28 F Han Abdomen, Thigh 161 68 26.23 

S2 32 F Chuang Breast 166 71 25.77 

S3 41 F Chuang Abdomen, thigh 159 65 25.71 

S4 38 F Yao Breast 167 75 26.89 

S5 30 F Chuang Thigh 158 66 26.44 

S6 36 F Yao Thigh 157 64 25.96 

S7 45 F Han Thigh 160 70 27.34 

S8 26 F Han Abdomen 163 65 24.46 

S9 35 F Miao Abdomen 162 63 24.01 

S10 43 F Han Breast 165 72 26.45 

 

red O to detect adipogenic differentiation, alizarin red to 

detect osteogenic differentiation, or toluidine blue to 

detect chondrogenic differentiation. 

 

RNA extraction and sequencing 
 

P3 ASCs were used for RNA-seq experiments. The 

purity, concentration and integrity of RNA samples 

for sequencing were assessed using Nanodrop, qubit 

2.0 and agent 2100 methods. Library construction and 

RNA-seq were performed according to instructions. 

RNA-seq was performed on an Illumina hiseqtm 2500 

in the case of haASCs or on a NovaSeq system in the 

case of hbASCs. Raw RNA-seq data were filtered to 

remove low-quality and interrupted reads to  

obtain high-quality clean data, which were then stored 

in FASTQ file format. The reads obtained by 

sequencing each sample of haASCs and hbASCs were 

compared to the reference genome using BWA 

software [57].  

 

Labeling of ASCs with adenovirus-delivered GFP 

(Ad-GFP)  
 

P3 ASCs were labeled with green fluorescent protein 

(GFP). A replication-defective recombinant adenovirus 

encoding GFP (Ad-GFP) in 200 μL of serum-free 

medium was added to cells in suspension, corresponding 

to different multiplicities of infection (MOIs) ranging 

from 0 to 200, and the flask was gently shaken every 15 

min for 2 h. Then medium containing 2.5% fetal bovine 

serum (FBS) was added to the flask. Transduction 

efficiency was determined by flow cytometry after 48 h. 

The resulting optimal MOI for transduction of ASCs was 

used in subsequent steps. The cells were directly analyzed 

and green autofluorescence was detected by inverted 

fluorescence microscopy (Leica, Germany). Three days 

later, P3 htASCs, haASCs, and hbASCs were collected 

for transplantation in vivo. 

Measurement of cell growth and proliferation 
 

Growth and proliferation of P3 htASCs, haASCs, and 

hbASCs were examined using the cell counting kit-8 

(CCK-8) method. The cells were transferred to a 96-

well plate at a density of 2×104 cells/well and cultured 

for 24 h at 37 ºC with 50 mL/L CO2. Cells were then 

randomly divided into 3 groups, with six wells per 

group (n=6). After 10 additional days of culture, during 

which the medium was changed at the same time in all 

groups, 50 μL CCK-8 working fluid was added, and the 

culture plates were incubated another 4 h. After 10-min 

oscillations, optical density at 450 nm was determined 

using a microplate reader in order to obtain growth 

curves. 

 

ASC colony formation assays 
 

The three groups htASCs, haASCs, and hbASCs were 

seeded in 24-well plates at a density of 5000 cells/well 

and cultured at 37 ºC with 50 mL/L CO2 for 14 days. 

The cells were then fixed with 100% methanol and 

stained with 0.1% (w/v) crystal violet. Macroscopic cell 

colonies were counted in terms of colony forming units 

(CFU) using Image-Pro Plus 6.0 software (Media 

Cybernetics, Silver Spring, MD, USA). Each 

measurement was performed four times. At the same 

time, cell colonies were counted under a contrast phase 

microscope prior to staining. 

 

Paracrine activity of ASCs in vitro 
 

The three groups htASCs, haASCs, and hbASCs were 

seeded in 12-well plates at a density of 2×104 cells/well 

and cultured at 37 ºC with 50 mL/L CO2 for 7 days. 

After 3 and 7 days, the supernatant was collected for 

enzyme-linked immunosorbent assay (ELISA) of the 

following factors: vascular endothelial growth factor 

(VEGF), fibroblast growth factor-2 (FGF2), epidermal 
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growth factor (EGF), granulocyte-macrophage colony-

stimulating factor (GM-CSF), tissue inhibitor of 

metalloproteinases-1 (TIMP-1), insulin-like growth 

factor-1 (IGF-1), stromal cell-derived factor-1 (SDF-1), 

transforming growth factor-beta1 (TGF-β1), and 

interleukin-10 (IL-10). All assays were performed using 

commercially available Quantikine Colorimetric 

Sandwich ELISA kits (R&D Systems, Minneapolis, 

MN, USA) according to the manufacturer’s instructions. 

 

Adipogenic differentiation capacity of ASCs in vitro 
 

The three groups htASCs, haASCs, and hbASCs were 

cultured for up to 14 days in 6-well plates at a seeding 

density of 500 cells/mm2 with adipogenic induction 

medium containing 200 μM indomethacin, 10 μM 

insulin, 0.5 mM 3-isobutyl-1-methylxanthine, and 1 μM 

dexamethasone. Adipogenic differentiation capacity 

was determined by Oil Red O staining according to our 

previous description [24]. In this method, lipids appear 

red and nuclei appear pale blue. The adipocyte density 

for each sample was measured in six different visual 

fields under the same magnification in a blinded 

fashion. The cell numbers were normalized to square 

millimeters. The lipids were extracted from the cells 

with 100% isopropanol and gentle shaking for 5 min. 

The concentration of the lipids was measured in 

triplicate based on absorbance at 510 nm.  

 

Assessment of the ability of FGF2 to promote 

differentiation of haASCs, hbASCs and htASCs in 

vitro 
 

The htASCs, haASCs, and hbASCs were each seeded 

onto one 12-well plate (one 12-well plate for each type 

of ASC) at a density of 1×105 cells/well and were 

induced in basic adipogenic induction medium (BM) 

containing 200 μM indomethacin, 10 μM insulin, 0.5 

mM 3-isobutyl-1-methylxanthine, and 1 μM 

dexamethasone (group A), BM supplemented with 0.1 

μg/mL FGF2 (group B), BM supplemented with 1 

μg/mL LY294002 (group C), and BM supplemented 

both with 0.1 μg/mL FGF2 and 1 μg/mL LY294002 

(group D). Medium was replaced every 3 days, and the 

cells were maintained in culture for up to 2 weeks. 

Adipogenic differentiation was determined by Oil Red 

O staining. At the same time, cell samples from each 

group were harvested for western blot analysis. Briefly, 

the cell pellets were sonicated in extraction buffer, 

extracts were quantified using the Bio-Rad DC protein 

assay kit (BioRad, Hercules, CA, USA), then equal 

amounts of protein were lysed with sodium dodecyl 

sulfate (SDS) sample buffer and transferred to 

polyvinylidene difluoride (PVDF) membranes 

(Millipore, Bedford, MA, USA). Membranes were then 

blocked with blocking solution (Pierce, Rockford, IL, 

USA), incubated with primary antibodies against human 

Akt and human peroxisome proliferator-activated 

receptor gamma 2 (PPARγ2) (all from Abcam, London, 

UK), followed by incubation with horseradish-

peroxidase (HRP)-conjugated secondary antibody. 

Enhanced chemiluminescence substrate (Supersignal 

West Dura Detection System, Pierce) was then used for 

primary antibody detection. GAPDH was used as a 

control. 

 

ASC transplantation in vivo 
 

Eighteen nude mice (average weight, 18.0 g ± 3.0 g) 

served as transplantation models. P3 htASCs, haASCs, 

and hbASCs were labeled with GFP and cultured in 

adipogenic differentiation induction medium for 7 days. 

One collagen type I sponge scaffold (10 mm long, 10 

mm wide, 5 mm thick) was put into each culture plate, 

which were divided into three groups and seeded with 

third-passage haASCs, htASCs or hbASCs (1×107 cells 

per well) in growth culture medium. At 24 h later, the 

collagen scaffold-loaded cell suspensions were injected 

into each mouse subcutaneously at three locations. Each 

location randomly received 1.0 mL 1×107 cells/mL 

htASCs, haASCs, or hbASCs. The mice were fed 

routinely after transplantation. 

 

Megascopic measurement and adipogenesis 

quantitation 
 

At 12 weeks post-transplantation, all transplants were 

excised from the subcutaneous implantation area and 

weighed using a standard electronic balance. Each 

group of grafts was divided into two equal parts. One 

part was fixed with formalin, embedded in paraffin, 

stained with hematoxylin and eosin (H&E), and 

observed with an optical microscope. The other part 

was used immediately to prepare frozen sections, which 

were stained with Oil Red O. The two types of 

preparations were analyzed at the same magnification, 

and fat cell density was quantitated in 5 fields in a 

blinded fashion. Cell numbers were normalized to 

square millimeters. Lipids were extracted from cells 

with 100% isopropanol and gentle shaking for 5 min. 

Lipid concentrations were measured in triplicate based 

on absorbance at 510 nm. 

 

Real-time qPCR 

 

Total RNA was extracted using Trizol reagent 

(Invitrogen) and treated with DNase I. The cDNA 

conversion was accomplished using the RevertAid™ 

First Strand Synthesis Kit (Fermentas), and qPCR was 

performed using the SYBR® Green PCR Master Mixes 

on a StepOnePlus Real-Time PCR System (Applied 

Biosystems) utilizing the primer pairs shown in Table 3. 
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Table 3. qPCR primer sequences for target genes. 

Gene Forward Reverse Accession ID 

TIMP-1 CTTCTGCAATTCCGACCTCGT AAGTATCCGCAGACACTCTCC NM_001044384 

CXCR4 CTTCATCAGTCTGGACCGCTA CATCTGCCTCACTGACGTTG XM_006529113 

FGF-1 TTCACAGCCCTGACCGAGA TATAAAAGCCCGTCGGTGTC XM_006525647 

FGF-2 GCGACCCTCACATCAAGCTAC AAGAAACACTCATCCGTAACACA XM_903202 

FGF-3 ACCTCCACTGCCGTTATCTCC GCAAGCTCTACTGCGCCACGAA NM_008007 

FGF-4 ACGAAGCCAATATGTTAAGTGT TTATTCAGGGCCACATACCAC NM_010202 

FGF-5 CAAAGTCAATGGATCCCACGAA GTCATCTGTGAACTTGGCACT NM_001277268 

FGF-6 GTGCCCTCTTCGTTGCCAT GCTTTACCCGTCCGTATTTGCT NM_010204 

FGF-7 TGACTCCAGAGCAAATGGCTA TTTGATTGCCACAATTCCAAC NM_008008 

FGF-8 ACCAACTCTACAGCCGCACCA ACAATCTCCGTGAAGACGCAGT NM_001166361 

FGF-9 CTTCCCCAATGGTACTATCCAG ATTCATCCCGAGGTAGAGTCCA NM_013518 

FGF-10 TGCGGAGCTACAATCACCT TGACGGCAACAACTCCGAT NM_008002 

PPARγ2 TGTCTCATAATGCCATCAGGT TCTTTCCTGTCAAGATCGC XM_006505743 

C/EBPα GCCGCGCACCCCGACCTCC CCCCGCAGCGTGTCCAGTTCG NM_001287514 

ADD1 AGTACAAAGCCAAGTCCCGTTC CCCGAATCACCGTCACTAGCAA NM_001024458 

FAD24 GGGAACTTGAGGAAGAGATCATTG GGATCTGATAATATGGCAGATGCC NM_021315 

GAPDH CAAATTCCATGGCACCGTCA GACTCCACGACGTACTCAGC NM_001289726 

 

The genes analyzed encode factors related to paracrine 

function and adipogenesis. The 2–ΔΔCT method [58–60] 

was used to quantify gene expression relative to that of 

GAPDH expression. Data were presented as fold 

change relative to the control. 

 

Analysis of differential expression and functional 

enrichment 
 

Genes differentially expressed (DEGs) between hbASCs 

and haASCs were screened using the limma package [61] 

in R. Genes with P < 0.05 and |log2 fold change (FC)| > 1 

were considered to be DEGs. The subset of DEGs 

associated with a P (adjusted by the false discovery rate) < 

0.01 and |log2 FC|> 2 were selected to perform Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway enrichment analyses using 

the clusterProfiler package [62] in R, for which P < 0.05 

was considered significant. 

 

Gene set enrichment analysis (GSEA) and ClueGO 

analysis 

 

GSEA was performed using the normalized gene 

expression profiles to explore biological processes (BP) 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways related to ASCs. The Java software of GSEA 

(version 2-2.2.4) was used in the analysis. The 

c5.bp.v6.2.symbols.gmt and c2.cp.kegg.v6.2.symbols.gmt 

datasets in the MsigDB V6.2 database [63] were used as 

reference gene sets, and GSEA was performed with 

default parameters. In addition, ClueGO [64] in 

Cytoscape [65] was used to analyze BP enrichment for 

selected DEGs.  

 

Statistical analysis 

 

Data were reported as mean ± standard deviation (SD). We 

performed an analysis of variance to determine whether 

the means of all groups were similar. This approach took 

into account intra- and inter-group variation. Furthermore, 

if the analysis of the variance of the three means revealed 

statistically significant differences, all pairs of means were 

compared using paired t-tests. Differences between means 

were regarded as significant if the resulting two-tailed P 

was < 0.05. All data were analyzed using SPSS for 

Windows 17.0 (Chicago, IL, USA). 
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Supplementary Figure 1. Gene expression of FGF2 and PUM2 in haASCs and hbASCs. 
 

 

 


