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Abstract

Background: The fast acquisition process of frozen sections allows surgeons to wait for histological findings during the interventions 
to base intrasurgical decisions on the outcome of the histology. Compared with paraffin sections, however, the quality of frozen 
sections is often strongly reduced, leading to a lower diagnostic accuracy. Deep neural networks are capable of modifying specific 
characteristics of digital histological images. Particularly, generative adversarial networks proved to be effective tools to learn about 
translation between two modalities, based on two unconnected data sets only. The positive effects of such deep learning-based image 
optimization on computer-aided diagnosis have already been shown. However, since fully automated diagnosis is controversial, the 
application of enhanced images for visual clinical assessment is currently probably of even higher relevance. Methods: Three different 
deep learning-based generative adversarial networks were investigated. The methods were used to translate frozen sections into virtual 
paraffin sections. Overall, 40 frozen sections were processed. For training, 40 further paraffin sections were available. We investigated 
how pathologists assess the quality of the different image translation approaches and whether experts are able to distinguish between 
virtual and real digital pathology. Results: Pathologists’ detection accuracy of virtual paraffin sections (from pairs consisting of 
a frozen and a paraffin section) was between 0.62 and 0.97. Overall, in 59% of images, the virtual section was assessed as more 
appropriate for a diagnosis. In 53% of images, the deep learning approach was preferred to conventional stain normalization (SN). 
Conclusion: Overall, expert assessment indicated slightly improved visual properties of converted images and a high similarity to real 
paraffin sections. The observed high variability showed clear differences in personal preferences.

Keywords: Frozen sections, generative adversarial networks, histology, paraffin sections, thyroid cancer, whole slide imaging

Background
Digital whole slide scanners are capable of effectively 
digitizing specimen slides, showing both microscopic detail 
and the large context, without significant manual effort. 
In best case, the whole processing pipeline is automated, 
including archiving and linking to the clinical software.[1] 
Apart from more efficient storage, this digitization enables 
the application of digital image processing approaches 
with the goal of facilitating clinical workflows. Without 
additional functionality, costs and effort for digitization 

are hard to argue, as pathologists are used to conventional 
microscopy and diagnostic accuracy and convenience 
are not automatically improved.[2-4] Recently, numerous 
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image analysis approaches were developed to support 
pathologists during clinical routine, consisting of 
automated segmentation,[5,6] stain normalization (SN),[7] 
and classification approaches.[8] For this purpose, state-of-
the-art deep-learning approaches showed a particularly high 
performance[9] and often outperformed classical techniques.

So-called generative adversarial networks have been 
developed to translate one specific imaging modality into 
another. Based on a solely data-driven approach, a model 
can be trained to translate, for example, MR images into 
corresponding virtual CT images.[10] This methodology 
can also easily be applied to digital pathology to translate 
between different stains[6] or even between two preparation 
techniques.[11] Image translation between different stains 
is clearly a controversial challenge, as special features are 
often only visible when specific staining methods are used. 
As the acquired information strongly depends on the 
staining used, a translation could easily result in so-called 
hallucinations. A consequence of hallucination artifacts is 
that the images look realistic, but they do not correspond 
to the real underlying tissue as parts are randomly 
generated. Cohen et al.[12] showed that hallucination can 
remove tumor tissue in magnetic resonance images, which 
is highly unwanted in diagnostic settings. The choice 
of training data has a strong impact on the behavior 
of generative adversarial networks with regard to 
hallucination. However, as long as the fake image data are 
used as an intermediate representation during automated 
processing, a thorough evaluation would immediately 
identify unintentionally introduced biases. In previous 
work, this was achieved by evaluating classification 
scores, such as F1-score, precision, and recall.[6,13] 
Introduced bias could be identified as an increase in one 
and a decrease in the other measure, in turn decreasing 
the overall F1-score. Although research on automated 
image analysis and decision support systems showed 
high potential of image translation techniques,[6,13] these 
techniques are not yet applied in clinical workflows. For 
an effective and safe application, it is essential to exclude 
that the side effects of deep-learning techniques (such as 
hallucination artifacts) can affect the diagnosis.[4] This 
requires an extended clinical study with a large number of 
experts performing the diagnosis of a diverse spectrum of 
digital image data to perform a similar evaluation as for 
automated approaches.[6,13] Intra-rater variability exhibits 
an additional difficulty of expert examinations.

In this work, we focus on the translation of frozen sections 
to virtual formalin-fixed and paraffin-embedded (FFPE) 
sections. The FFPE material is most commonly used in 
diagnostic histopathology. It is compatible with a large 
variety of staining methods and allows thin sectioning 
(down to a few micrometers) with a high visual quality. 
Frozen sections [Figure 1A] are typically generated during 
interventions (e.g., cancer resections) to achieve information 
on malignancies as fast as possible. The preparation time 

for paraffin sections is normally too long to be used for this 
specific purpose. Frozen sections allow surgeons to wait for 
the histological results during the intervention in order to 
base the further procedures on the outcome of this histology. 
A  drawback of frozen sections is their quality. Compared 
with paraffin sections, the image quality of frozen sections 
is typically lower, leading to a higher rate of misdiagnoses 
during clinical routine.[14-16] The cellular structure is, by far, 
more pronounced in paraffin sections, as these are fixed 
before embedding in paraffin. This is not the case in frozen 
sections, with the result of partly indiscernible or damaged 
tissue features.[17,18] Due to fast acquisition times, state-of-
the-art whole slide scanners are effectively applied under 
time constraints in case of frozen-section pipelines.[19] For 
the classification of thyroid cancer diagnosis, considered 
in this work, it has been shown that the classification 
performance (F1-score) of computer-aided diagnosis clearly 
increases, independently of the setting of the classification 
model.[11] However, as pathologists are specifically trained to 
compensate artifacts due to improper acquisition, it is not 
clear as to whether a similar improvement can be obtained 
in case of manual diagnosis. However, this work indicates 
that image translation does not lead to strong hallucination 
artifacts misleading the diagnostic pipeline (as a model 
trained on real paraffin sections can be effectively applied to 
virtual paraffin sections).

In this article, we study how expert pathologists assess 
fake pathology [Figure 1, particularly (b)]. We make use 
of so-called generative adversarial networks to perform a 
virtual translation from the domain of frozen sections to 
the superior domain of paraffin sections. Based on real 
frozen sections, virtually improved frozen sections, and 
real paraffin sections, we conducted two investigations: 
First, based on the opinion of expert pathologists from 
different institutions, we assessed whether generative 
adversarial networks improved the visual quality of 
scanned specimen slides. Second, we evaluated whether 
pathologists were able to identify whether sections were 
virtually generated or real. As image material, we used a 
data set showing two different thyroid cancer categories, 
namely papillary carcinoma and follicular nodules.

Methods

Sample collection, preparation, and imaging
The data set consisted of totally 80 whole slide images, that 
is, 40 slides were available for each section type. All images 
were acquired during clinical routine at the Kardinal 
Schwarzenberg Hospital. They were diagnosed by an 
expert pathologist with more than 20 years of experience. 
A  total of 42 (21 per modality) slides were labeled as 
papillary carcinoma whereas 38 (19 per modality) were 
labeled as follicular carcinoma. The mean and median 
age of patients at the date of dissection was 47 and 
50 years, respectively. The data set comprised 13 male and 
27 female patients. As we focus on visual assessment of 
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image characteristics and not on diagnosis, the exact type 
of pathology is secondary. For the frozen sections, fresh 
tissues were frozen at −15 ◦C; slides were cut (thickness 
5µm) and stained immediately with hematoxylin and 
eosin. For the paraffin sections, tissues were fixed in 4% 
phosphate-buffered formalin for 24 h. Subsequently, 
FFPE tissue was cut (thickness 2µm) and stained with 
hematoxylin and eosin. Images were digitized with an 
Olympus VS120-LD100 slide loader system. Overviews 
at a 2x magnification were generated to manually define 
scan areas. Focus points were automatically defined and 
adapted when needed (we used the Olympus extended 
focus imaging [EFI] setting). Scans were performed with a 
20x objective, leading to a resolution of 344.57 nm/pixel. 
The image files were stored in the Olympus vsi format 
based on lossless image compression to avoid compression 
artifacts.

Virtual frozen-to-paraffin translation
We denote the domain of frozen sections as F (f ∈ F) and 
the domain of paraffin sections as P (p ∈ P). For frozen-to-
paraffin translation, a fully convolutional neural network 
was trained to perform translation T from domain F to 
domain P. Although underlying tissue is intended to 
remain stable, image characteristics such as stain intensity, 
sharpness, and contrast are intended to be adapted to 
domain P, showing a higher perceptual quality.

As perfectly corresponding pairs consisting of a frozen 
and a paraffin cut are not achievable, conventional 
fully convolutional neural networks alone[20] are not 
applicable here. Instead, generative adversarial networks, 
allowing unpaired training, were employed. These 
networks are based on at least one generator and at 
least one discriminator. The generator (which is a fully 
convolutional network) performs the translation, whereas 
a discriminator ensures that the generated image is similar 
to real samples from domain P.

Although the similarity to real samples can be easily 
obtained in unpaired settings by means of a generative 

adversarial model, a challenge is to ensure that translation 
does not change the underlying tissue structure. In case 
of Cycle-GAN[21] (CG), this is enforced by learning full 
cycles, for example, from F to P and back to F0. The cycle-
loss compares the original images from domain F with 
the reconstructed image (F0). The CG makes use of two 
generators and two discriminators, whereas the contrastive 
unpaired translation (CUT) approach[22] learns only one 
direction and ensures similarity using a feature-based loss 
with advantages in case that the mapping is ambiguous.[22] 
We investigated both CG[21] and CUT[22] individually. The 
mathematical formulations of CG and CUT are explained 
in more detail in the following subsection:

CG formulation

In case of cycle-GAN, two generative models, T: F → P and 
T’: P → F and two discriminators, DF and DP are trained 
while optimizing the cycle consistency loss Lc as well as 
the adversarial loss Ld. T and T’ are forced by DF and DP 
to generate fake images that look similar to real images, 
whereas DF and DP aim at distinguishing between translated 
and real samples. The generators aim at minimizing this 
adversarial objective against the discriminators that try 
to maximize it. The cycle-consistency loss forces that the 
output after translation from F to P and back to F (and vice 
versa) is similar to the input. For comparison, a pixel-wise 
L1 loss is utilized. This pixel-wise loss exhibits a limitation 
in case of ambiguous mappings.[23]

CUT Formulation

The goal of CUT[22] is to optimize a loss criterion consisting 
of a weighted sum of a GAN loss LGAN, a patch similarity 
loss LPatchNCE(T,H,F) forcing corresponding patches to share 
content, and an additional regularization term LPatchNCE(T,H,P). 
In summary, the loss can be formulated as follows:

 

L L T H F P L T H F

L T H P
GAN F PatchNCE

G PatchNCE
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Figure 1: Original frozen section (A) and a corresponding optimized “fake-paraffin” patch showing characteristics of paraffin sections (translated with 
the CUT setting, see the section “Virtual frozen-to-paraffin translation”). An example of a paraffin section is shown on the right side (C)
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with T being the generator, D being the discriminator, 
H being a two-layer perceptron, and λF and λG being 
scalar weights. For further details, we refer to the original 
publication. We used the Pytorch default reference 
implementation[21,22] with a patch size of 256 × 256 pixels.

Stitching artifacts

A challenge in case of whole slide images is that patch-
wise processing (as the images are too large to fit into 
GPUs memory) can lead to clearly visible stitching (tiling) 
artifacts. For that purpose, we additionally investigated 
a method to reduce these artifacts. For that purpose, CG 
was combined with an additional perceptual embedding 
consistency (PEC) loss,[24] which introduces a penalty in the 
generators’ latent space. The PEC loss forces the generators 
to learn a semantic content and contrast free features in 
the latent space, allowing a homogenization of the output 
contrast when the new style is added to the semantic features 
in the decoder block. This enables improved contrast 
normalization within the patch automatically, relaxing the 
issue of discrepancies in border regions.

Conventional stain normalization
As reference, we also investigated a conventional SN 
technique. For that purpose, we employed the approach 
introduced by Reinhard et al.[25] Compared with the deep 
learning-based techniques CG and CUT, this method 
only performs translation based on single pixels and does 
not incorporate any neighboring information, in turn 
limiting the potential of change. Although these methods 
are not developed to translate between modalities (frozen-
to-paraffin), but rather for SN, they serve as a baseline.

Expert study
In order to find out whether experts are able to distinguish 
between real paraffin sections and translated frozen 
sections and to find out whether image translation is 

capable of improving the perceived visual quality of 
frozen sections, we asked six pathologists (four male, two 
female) to perform the following two experiments. The 
pathologists’ clinical experiences vary from 3  years to 
30 years (3, 6, 10, 12, 20, 30). Five of them self-assessed 
their practical experience with digital pathology in research 
or clinical diagnostics as significant (four) or high (one). 
Only one pathologist self-assessed his/her experience as 
low. We did not explicitly indicate that stitching artifacts 
occur due to image translation approaches as this would 
guide them to focus on these artifacts only and not on any 
other visual characteristics. An overview of the setting is 
shown in Figure 2.

Experiment 1

Quality assessment: First of all, we asked the pathologists 
to rank sets of five randomly selected image patches with 
a size of 2500 × 2500 pixels containing an original frozen 
section (F), a stain normalized version (SN), and translated 
images obtained with three different deep learning-based 
configurations (see the section “Virtual frozen-to-paraffin 
translation”). To exclude patches showing background in 
large image areas, only patches showing majorly tissue 
were included (90%). Overall, each pathologist assessed 
20 of these corresponding quintets. Each of the images 
within a quintet was assigned with a rank between one and 
five. Due to the level of measurement of a ranking, it was 
not allowed (from a statistic point of view) to compute 
and analyze differences between ranks. For that purpose, 
only positive (lower rank) or negative (higher rank) effect 
was extracted as information and not the difference of the 
rank (which would introduce bias). Each quintet  allows 
one to perform 10 different comparisons. Overall, 10 × 20 
(quintets) × 6 (pathologists) =1,200 comparisons could be 
performed based on the available data.

Experiment 2: Real vs. fake: Second, we asked the experts 
to select the real image out of randomly selected pairs 

Figure 2: Overview of the two conducted experiments, performed by each of the six experts. In experiment 1, five corresponding images, containing 
one real and four virtual counterparts, were ranked. In experiment 2, the expert has to decide which image out of a non-corresponding pair is real
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consisting of a real paraffin and a fake frozen-to-paraffin 
image (i.e., a frozen section translated to paraffin). These 
pairs were non-corresponding (as perfectly corresponding 
pairs cannot be generated). Overall, we assessed 32 of 
these pairs (eight for each image translation setting). 
Overall, with six pathologists, we obtained 32 × 6 = 192 
comparisons. As for experiment 1, randomly selected 2500 ×  
2500 pixel patches showing majorly tissue (90%) were 
included.

Configurations
In this study, we made use of three different image 
translation models, namely CG, CUT, and Cycle-GAN, 
including the perceptual embedding consistency loss[24] 
(CG-PEC) to prevent tiling artifacts. These settings were 
chosen, as CG is a commonly used powerful technique and 
CUT is an enhancement, showing improved performance 
in case of ambiguous mappings between the domains. 
As both methods are prone to tiling artifacts, CG-PEC 
is a natural extension of CG. The perceptual embedding 
consistency loss requires two generators and can therefore 
only be applied in case of cycle-GAN. For all approaches, 
we used a learning rate of 0.0002 and trained for 10 
epochs. For training, an unpaired data set consisting of 
512 patches per WSI was created. Overall, 20 frozen and 
20 paraffin WSIs were utilized, resulting in 23,552 patches 
overall. Further details are shown in Table 1.

results
Figure 4 shows the outcome of experiment 1, individually 
for each image translation method and for each expert. The 
score indicates the portion of samples that were assessed 
as visually more appropriate than a real reference sample 
(i.e., the portion of translated images showing a lower rank 
than the corresponding reference images). Subfigure (a) 
shows the assessment of image translation compared with 
original samples (original  =  reference sample), whereas 
(b) shows the assessment of deep learning-based image 
translation compared with basic SN = reference sample. 
For example, the left top column contains the information 
whereby expert 1 assessed that the quality in case of SN in 
40% of samples was higher than the quality of the original 
image. The mean (arithmetic mean) values can be similarly 
interpreted (e.g., in 57% of samples, over all experts, the 

quality of SN was assessed as higher compared with the 
original images).

In both subexperiments ((a) and (b)), CG, CUT, and 
CG-CUT showed similar mean scores of 0.59, 0.60, 
and 0.60 in case of (a) and 0.55, 0.50, and 0.55 in case 
of (b). The individual scores of the experts showed high 
variability ranging from 0.30 (CUT, E2) to 0.95 (CG-PEC, 
E3) in subexperiment (a) and from 0.40 (CUT, E5) to 
0.80 (CGPEC, E3) in subexperiment (b). Scores averaged 
per expert were between 0.51 (E1) and 0.87 (E3) for 
subexperiment (a) and between 0.45 (E5) and 0.68 (E3) for 
subexperiment (b). To test for significance, we collected 
the four image translation approaches and the experts (a) 
and obtained a p-value of 0.008 (Wilcoxon signed-rank 
test). For subexperiment (b), significance could not be 
shown (p > 0.05).

From data obtained from experiment 2, the detection 
accuracy (real vs. fake sample) was computed. A score of 
0.5 refers to random guessing, whereas 1.0 corresponds to 
perfect detection. Averaged over the experts, we obtained 
scores of 0.97, 0.78, and 0.62 for CUT, CG-PEC, and CG. 
Averaged over the methods, we obtained scores of 0.79.

Translating a patch with a size of 256 × 256 took 0.06 s 
on average on an NVIDIA RTX-2080. On an Intel Xeon 
Silver 4114 CPU 2.20GHz, we measured an average 
computing time of 0.14 s.

We did not notice stability issues during neural network 
training, such as mode collapse. Repeated training of CG 
and CUT with different initialization resulted in similar 
output images.

discussion
The goal of this study was to assess how expert pathologists 
rate “fake” paraffin sections generated from real frozen 
sections. We noticed clear differences between the three 
investigated deep learning-based methods [Figure 1]. 
Although CUT led to high contrast and sharp details, 
it also showed the strongest tiling artifacts. In case of 
CG-PEC, tiling artifacts almost disappeared. However, 
contrast was slightly lower and the efficiency of translation 
was assessed as lower, that is, the image characteristics were 
easily distinguishable from those of real paraffin samples. 

Table 1: Configurations of the three investigated deep learning-based image translation models
CG[21] CUT[22] CG-PEC[21,24]

Patch size 256 × 256 256 × 256 256 × 256

Batch size 1 1 1

Regularization Batch normalization Batch normalization Batch normalization

Generator(s) U-Net U-Net U-Net

Discriminator Patch-GAN Patch-GAN Patch-GAN

Weights λcycX =λcycY = 10 λX =λY = 1 λcycX =λcycY = 10

 λid = 0.5 λGAN = 1 λembdX =λembdY = 10  
λid = 0.5
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Visually analyzed, CG delivers a good trade-off  between 
CUT and CG-PEC, including slight tiling artifacts in 
combination with effective translation of underlying 
image characteristics. A comparison of three state-of-the-
art deep learning-based techniques and a conventional 
stain-normalization method showed that perceived image 
quality can be improved on average. Overall (on average), 
we obtained improvements for each setting. However, we 
also noticed a clear difference between the pathologists. 

High inter-rater variability was observed and, in addition, 
also personal preferences with respect to the specific 
approaches could be observed. Interestingly, on average, all 
methods showed similar scores. Obviously, the experts do 
not automatically (although some experts do) downgrade 
images showing artifacts (as in case of CUT). Others even 
upgrade CUT, which was showing the strongest artifacts, 
probably due to the clearly visible image characteristics 
within the tiles.

Figure 3: Corresponding tissue showing original frozen sections (A: OF) and virtually enhanced sections achieved with stain normalization (B: SN) 
and deep learning-based approaches (C: CG, D: CUT, E: CG-PEC). The top row shows a magnified version of the second row. Please zoom in to view 
the images in a higher resolution
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Strong tendencies were obtained in experiment 
2. Interestingly, the fake images processed with CG were 
wrongly assessed as real samples in 38% of pairs, which 
comes close to random guessing. Even though this setting 
contains artifacts, it was hard to distinguish CG-altered 
images from real paraffin pathology. The CUT is supposed 
to be easily identified as fake due to the strong artifacts. 
The CG-PEC is probably not effective enough in changing 
the characteristics from the frozen to the paraffin modality. 
The generated sections still show more high similarity to 
original frozen sections (and not paraffin sections). These 
characteristics automatically reveal a fake image. The CG 
is, thus, proposed to deliver the best trade-off  between 
improved image characteristics (providing that the image 
should look similar to paraffin sections) and a reasonable 
degree of tiling artifacts.

Finally, we need to refer to the aspect of inter-site 
variability. In our study, we focused on data from a 
single site only, to limit complexity by fixing this variable 
(ceteris paribus). As both CG and CUT automatically 
perform normalization, data from different institutions 
would probably be aligned. To optimize image quality 
in a multisite study, an important variable is given by 
the utilized training data. Making use of a data subset 
showing a particularly high visual quality as a target stain 
(here paraffin) has the potential to increase quality while 
decreasing variability.

A limitation of image translation approaches in general 
is that damaged or cracked tissue (which is more frequent 
in frozen sections) cannot be compensated by means of 
current approaches. Although local modifications such as 
contrast enhancement or color changes were performed 
well, geometric transformations (to compensate cracks) 
were not noticed. This is a result of the underlying 
neural network architectures in combination with the 
optimization criteria.

Shortcomings and follow-up clinical study
A follow-up clinical study is inevitable to measure the 
effect on diagnosis accuracy. This has not been performed 
here due to the following issues. First, the combination of 
a limited number of whole slide images and the relatively 
high accuracy of experts of about 95% complicate a 
statistically sound analysis of classification scores.[26] If  
on average 5% of images are misclassified by an expert, 
2 out of 40 images are wrongly labeled. Accordingly, in 
case of an improvement of 20% (error rate), this would 
on average lead to a decrease of 0.4 misclassified images. 
For that reason, literature also suggests a minimum 
number of images for such a study of 60.[4] In addition, 
bias could be introduced, if  both corresponding frozen 
and virtual-paraffin sections would be shown to the 
same experts (in any order). This reduces the number 
of frozen sections per expert from 40 to 20 and requires 
that (less powerful) unpaired tests are applied to test for 
significance. Alternatively, a 2-week washout could be 
applied to circumvent this procedure.[4] Anyway, based 
on these aspects, in combination with a performed 
sample size estimation, we concluded that such a study 
is not promising at that point of time with the available 
image material. In future, we strive toward achieving the 
additionally needed slides to conduct a diagnostic study.

Computational effort and practical considerations
Slide scanning time strongly depended on the size of 
the section. Scanning an individual section took on 
average roughly 30 min. For clinical application, however, 
there is a high potential to increase acquisition speed, 
which has high relevance in case of frozen sections. For 
example, decreased magnification would increase speed 
quadratically (due to two dimensional images). The lost 
resolution could be compensated with the investigated 
deep-learning techniques. In addition, the auto-focus 
approach can be adjusted to be clearly more efficient 

Figure 4: Experiment 1: Portion of samples, assessed as visually more appropriate than the original samples (A) and then the stain normalized 
samples (B), respectively. For example, from (A), we can extract that expert 3 (E3) assessed stain normalization (SN) as superior to the original image 
in 90% (0.9) of the cases
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(without the EFI setting). Based on feasible scanning 
times with 20× in the range of 1–2 min for an area of 
10mm × 10mm,[27] we did not observe a strong limitation 
for future clinical application on frozen sections. The effect 
of more efficient imaging was not studied here. Focus was 
on obtaining optimum image quality without focusing 
on this optimization step to show whether the method is 
suitable in principle. For clinical application, experiments 
are needed to obtain the best trade-off  between image 
quality and computational efficiency.

The training phase of image translation models 
requires powerful computation resources, whereas the 
clinically relevant inference phase is quite efficient. 
Fully convolutional networks, such as the used U-Net, 
ideally exploit the parallel computing potential of GPUs. 
However, modern CPUs also allow fast computation. 
A patch with a size of 256 × 256 pixels can be processed 
in 0.06 s on average on a modern powerful consumer GPU 
(Nvidia RTX-2080). The same task on a Workstation CPU 
(Intel Xeon Silver 4114 CPU 2.20GHz) takes 0.14 s on 
average. For an 8k × 8k pixel whole slide images, the overall 
processing time increases to 66 s (GPU) and 140 s (CPU) 
in case of patch-wise processing. For a 16k × 16k pixel 
whole slide images, the overall processing time increases to 
264 s (GPU) and 559 s (CPU). For the latter realistic case, 
time consumption is in the range of 5 to 10 min, which 
is not negligible, but also not an insurmountable hurdle. 
A GPU is helpful, but not necessarily needed. To increase 
efficiency even further, dedicated architectures could be 
considered, optimizing the trade-off  between complexity 
and performance.[28] Further potential for a speedup is 
given by decreasing the overall image resolution or by 
reducing the parameters of the architecture. Increasing 
the image resolution by a factor 2 in each direction results 
in an approximate speedup of factor 4. The source code 
for image translation is available and easily applicable 
to image patches (for trained models, please contact the 
corresponding author).[22]

conclusions
In this work, we obtained an overview of the principal 
assessment of fake histological images, optimized based 
on deep-learning techniques. Quantitative evaluation 
identified an extraordinarily high variability between 
pathologists. Particularly unnatural tiling artifacts, which 
vary between different techniques, have the potential to 
reduce acceptance and reveal virtual samples. Overall, 
improved image characteristics outweighted the effect of 
tiling artifacts, at least up to a certain extent. Average scores 
showed that deep learning-based image translation was 
rated higher, compared with both original frozen sections 
and stain-normalized images. The standard CG is assessed 
here as the best-suited method that provides a good trade-
off between effective translation and limited artifacts.

It is important to state that this study did not investigate 
the impact on diagnostic performance. To make sound 
statements on the improvement of these scores, a large 
clinical setting including a larger data set is needed. The 
obtained knowledge of principally high acceptance of 
pathologists provides motivation for such a clinical study 
and informs about promising approaches.
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