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Abstract: Membrane trafficking is all about time. Automation in such a biological process is crucial to
ensure management and delivery of cellular cargoes with spatiotemporal precision. Shared molecular
regulators and differential engagement of trafficking components improve robustness of molecular
sorting. Sequential recruitment of low affinity protein complexes ensures directionality of the process
and, concomitantly, serves as a kinetic proofreading mechanism to discriminate cargoes from the
whole endocytosed material. This strategy helps cells to minimize losses and operating errors in
membrane trafficking, thereby matching the appealed deadline. Here, we summarize the molecular
pathways of molecular sorting, focusing on their timing and efficacy. We also highlight experimental
procedures and genetic approaches to robustly probe these pathways, in order to guide mechanistic
studies at the interface between biochemistry and quantitative biology.
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1. Introduction

The intracellular transport of molecules between membrane-bound compartments
ensures the current distribution of both proteins and lipids in cells. The key advantage of
membrane-based transport compared to the free diffusion of molecules in cytosol relies
on: (i) protecting molecules from undesired biochemical reactions; (ii) improving accurate
delivery of cargoes to defined organelles; and (iii) providing a sustained and controlled
release of molecules from cellular compartments. While a number of critical barriers must
be overcome to achieve specific molecular targeting, ultimately, in most cases, the ability
of molecules to be delivered at the site of their action is governed by the timing that is
required by cells to sort them.

The molecular sorting process is based on the grouping of molecules based on shared
similar properties and arranging them in a sequence that is ordered by some criterion and
dependent on both cell type and condition. In mammalian cells, sorting pathways are
ubiquitous. Both protein and lipid machineries required for molecular sorting are present
in all cell types. Therefore, it is not by chance that even when expressed in nonpolarized
cells, both apical and basolateral proteins could be sorted into different cargo vesicles [1–4].
Nonetheless, cell-type-specific variations are present. Such dissimilarities conceal cellular
schemes responsible for differential sorting, further complicating their analysis.

Cell-type-specific sorting patterns arise as a consequence of differential expression of
key trafficking components, a transport process that strictly depends on cell physiological
status [5–9]. The redirection of membrane cargoes in response to environmental cues it
is a well-recognized feature of membrane sorting, as exemplified by the Na,K-ATPase,
an enzyme that controls ion gradients across cellular membranes. Although this ion
pump is considered a canonical basolateral protein, it localizes to the apical side of retinal
pigment epithelium cells while other standard trafficking markers retain their characteristic
distributions [10–17].
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In addition, it is well recognized that certain receptors are trafficked based on ligand
type and ligand concentration and, as demonstrated, for the epidermal growth factor
receptor (EGFR). EGFR shifts between degradation and recycling in response to decreased
affinity and concentration of ligands [18,19]. Despite this evidence, it is less understood
whether the distribution of other commonly studied cargoes is subjected to control by
either a certain ligand, cell type, or cell status.

Theoretically, when investigating membrane transport, it is crucial to understand
if molecules being sorted are arranged in a defined temporal sequence. Determining
the sequence of events and their kinetics at the sorting station can provide important
information about: (i) the overall efficiency of transport; (ii) the cost of the process; and
(iii) the number of cellular activities required to manage and deliver cargoes [20,21]. In
parallel, identification of the spatial position of molecules during the sorting process could
predict the final intracellular fate of cargoes [22]. However, reporting transport mechanisms
without knowing such details is a common practice in cell biology, probably due to the
technical difficulties inherent in investigating the sorting process. Therefore, the majority
of studies add little to our knowledge of mechanisms that deal with the complex and
repetitive processes required to sort molecules in cells.

2. Monitoring and Analysis of Molecular Sorting

There are many compartments in eukaryotic cells presenting the ability to sort
molecules (e.g., Golgi apparatus, endoplasmic reticulum, and plasma membrane). Among
them, the endolysosomal system is the most fascinating, based on its plasticity and in-
tense activity. The endocytic system comprises a large number of membranes and tubules
with different shapes and distinct molecular compositions. In particular, four types of
membrane-bound structures characterize the endolysosomal system: early endosomes
(EEs), late endosomes (LEs), recycling vesicles, and lysosomes. Each type is deputed to per-
form a specific task and is connected to the others by defined trafficking routes. The early
endosome is the principal sorting apparatus of the endolysosomal system and, therefore, it
is also referred to as the sorting endosome.

Early/sorting endosomes accept molecules from major endocytic routes (i.e., clathrin
meditated, clathrin-independent/dynamin dependent, clathrin independent/ dynamin/
independent, Macropinocytosis, phagocytosis, caveolin-based) through Rab5 and EEA1-
dependent pathways [23]. From the early endosome, cargoes can either be recycled back
to the cell’s surface or can remain with the vacuolar portion of the endosome and be
processed for degradation. In addition, molecules entering the sorting endosome could
also be directed toward lysosome, Golgi, and other autophagic compartments, thereby
complicating the evaluation and prediction of a cargo’s fate.

There are two main approaches that have historically been used to define distribution
of protein cargoes: image-based colocalization analysis and biochemical cell fractiona-
tion [24,25]. Colocalization analysis is used to obtain subcellular information about the
localization of molecules in both steady-state and stimulated conditions. On the contrary,
cell fractionation is limited to the analysis of cargo distribution at the equilibrium. However,
while image-based colocalization methods can capture a few molecules on a single sample,
it is not biochemical cell fractionation. Notably, during the last ten years, both approaches
have been upgraded, thereby expanding their capability to identify cargo distribution, even
at high-throughput and in genome-scale genetic screening. In particular, the multiplexing
ability of image-based colocalization assays was expanded for the detection of more than
60 distinct channels, using either cycling immunofluorescence or indirect immunofluores-
cence methods, thereby providing high-throughput imaging of biological samples in both
adherent cells and human tissues at the micrometer scale [26–29]. In addition, the potential
of the imaging-based approaches was extended beyond classical gene function studies.
Currently, such approaches are implemented in both genome-scale and genome-wide
genomic screening, as a result of machine learning and convolutional neural network
models [24,30–33]. In parallel, cell fractionation methods have been combined with mass
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spectrometry-based proteomics to produce an approach named spatial proteomics [34–40].
In addition, subcellular fractionation techniques, which do not involve centrifugation,
have also been developed, thereby simplifying the identification of protein distribution in
organelles [41–43]. Notably, such fractionation-based procedures are not compatible with
either genome-scale and genome-wide screening, thus limiting their employment for the
characterization of a few experimental conditions. Lastly, enzymatic protein biotinylation,
in a radius of 10–20 nanometers from the protein of interest, was used as a strategy for
interactome mapping of “ad-hoc” proteins, an approach named proximity labeling (e.g.,
BioID and APEX) [44] (Figure 1).
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Figure 1. Schematic summary of techniques available for molecular sorting investigations.

Before considering the employment of either the image- or biochemical-based method
described above for an endosomal sorting investigation, a brief summary of the main
features characterizing a protein sorting mechanism is required. The sorting process
is a dynamic process with a duration of seconds and is confined to a nanometer-sized
space [45–47]. Endosomal sorting studies are based on temporal correlation, in which
the time variable indicates the directionality of the process and allows us to establish
“cause-effect” relationships between distinct components localizing at the same place.
Therefore, the employment of widefield-microscopy and quantitative proteomics does not
allow a “good coverage” in terms of spatio-temporal resolution. Similarly, super resolution
microscopy methods are limited in either frequency at which consecutive images are
captured, the fluorophore that could be used, or the toxicity of light illumination [48–50].
As a consequence, current studies mainly employ confocal laser scanning microscopy
to acquire images with an elevated signal-to-noise ratio and a high frequency, thereby
meeting the spatio-temporal requirements for “causality assessment” in molecular sorting.
However, to deeply investigate the directionality of the sorting process, time-lapse imaging
is not sufficient, as it provides correlation instead of causality in order to connect several
cellular processes. In this context, gene function perturbation offers a useful approach to
strengthen the “cause-effect” relationship and the directionality of the sorting process under
analysis. Classically, gene function perturbations were performed by adding, deleting, and
downregulating “ad hoc” genes using a variety of systems, ranging from small interfering
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RNA to recent CRISPR-mediated genome editing [51,52]. Unfortunately, these approaches
are ineffective to address questions concerning both the pleiotropy and redundancy of the
sorting machinery. This is due to the onset of compensatory pathways that emerge from
the adaptation of the cellular system subsequently to the induction of the “slow acting”
genetic perturbation. Nonetheless, recent technologies, such as optogenetic and proteolysis
targeting chimera (PROTAC), are able to cope with such issues. While optogenetics
allows light-dependent control of protein function with elevated spatio-temporal resolution
(micrometer/millisecond), PROTAC involves drug-induced targeted protein degradation
by redirecting the ubiquitin–proteasome system [53–56].

Optogenetic systems are built upon proteins that undergo conformational changes
in response to light stimulation at specific wavelengths. Several optogenetic systems are
available for researchers, which can be classified based on the number of subunits that are
required for functionating, from monomer to multimer [56]. Optogenetic technology is cur-
rently employed in a variety of cell biology disciplines, ranging from cell signaling to gene
regulation and phase separation to membrane trafficking. In particular, the employment of
optogenetic technology in membrane trafficking is well validated in the clusterization of
both intracellular membrane cargoes and endocytic regulators [57,58].

PROTACs are small, heterobifunctional molecules composed of two active domains
and a linker. PROTAC mediates the formation of the ternary complex (protein target–
PROTAC–E3 ligase) by bringing a specific E3 ligase into close proximity of the defined
target protein, leading to ubiquitination and degradation of the targeted protein. The
protein of interest is expressed as a fusion with a tag protein and subsequent PROTAC
treatment allows rapid, reversible and dose-dependent degradation of the fusion pep-
tide [59]. Unfortunately, the PROTAC approach is ineffective for proteins that contain
cytosolic domains to which ligands can bind (e.g., extracellular and membrane-associated
proteins). In this context, the development of a method using lysosome-targeting chimeras
(LYTACs) was recently reported, which allows degradation of membrane proteins by fusing
a small molecule or antibody to chemically synthesized glycopeptide ligands that direct the
ternary complex to lysosomes via the cation-independent mannose 6-phosphate receptor
(CI-M6PR) [60].

3. Pathways for Molecular Sorting

Early endosomes are crucial sorting platforms for membrane cargoes. Not surpris-
ingly, endosomal sorting dysfunctions are the leading cause of human diseases, including
neurodegenerative diseases. Four distinct pathways are summarized below, providing a
brief comparative description of the main functional interactions (Figure 2).
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Figure 2. Schematic representation of Commander, ESCRT and Retromer complexes at the sorting
endosome. Transmembrane cargoes are directed to plasma membrane, Golgi and Lysosome are
accumulated in endosome. In this membrane-bound compartment, the Commander complex, to-
gether with the SNX and WASH complexes, mediates the sorting of cargoes to the plasma membrane.
In parallel, ESCRT complexes recognize and direct ubiquitylated protein towards the lysosome
for degradation. The Retromer complex, in association with the SNX and WASH complexes, de-
fines transport towards both Golgi and the plasma membrane through the association of different
SNX proteins.

3.1. Retromer

Retromer was discovered in 1998 during experiments on the characterization of
VPS10 receptor recycling in yeast, from the endosome to the trans-Golgi network [61].
Shortly thereafter, Retromer homologue was identified in mammals [62]. Retromer is
a heteropentameric complex involved in the recognition of transmembrane proteins at
the early endosome. Retromer is involved in the delivery of endocytosed cargoes to
both the trans-Golgi network and cell surface [61]. Retromer complex consists of two
distinct functional modules: a dimer formed by Vps5p and Vps17 proteins and a trimer
composed by Vps35p, Vps29p, and Vps26p (two paralogues, VPS26A and VPS26B, are
expressed in humans) [63,64]. Both of these are necessary for both Retromer formation
and sorting activity, as endosomal enlargement and protein mistargeting were observed
by knocking out Retromer subunits [65]. Retromer subunits recognize two distinct sig-
nals localizing at the endosome membrane surface: phosphatidylinositol-3-phosphate
(PtdIns(3)P), a phosphoinositide-derived lipid, and hydrophobic signal peptides encoded
on the cytoplasmic tails of transmembrane protein cargoes (e.g., sorting motifs or bipartite
sorting motifs) [66,67]. The dimeric subunit binds the endosomal-enriched lipid PtdIns(3)P,
whereas sorting motifs such as e NPXY or YXXØ are recognized by the Vps35p, Vps29p
Vps26p trimeric complex [68]. Once recruited and assembled, the Retromer complex
guides creation of filamentous actin (F-actin)-enriched domains, through association with
the Wiskott–Aldrich syndrome and SCAR homologue (WASH) complex [69,70]. At the
molecular level, the WASH complex is composed of WASH1, FAM21, SWIP (Strumpellin
and WASH-interacting protein), Strumpellin, and CCDC53 (coiled coil domain containing
protein 53) [71]. FAM21 binds to Vps35, the Retromer subunit, thereby connecting the
actin machinery to the molecular sorting apparatus. In particular, the WASH complex
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promotes the creation of a branched actin network on endosome-enriched cargo domains, a
process that strictly depends on the nucleation-promoting factor (NPF) roles of the WASH
complex [72]. The mechanical support provided by actin is a key step for the tubulation
of membrane and the subsequent release of the endocytic vesicle [73]. In line with this
view, inactivation of the WASH complex results in impaired endosomal and lysosomal
sorting [74].

The interaction between Retromer and WASH complexes is mediated by Vps35p,
the trimeric complex subunit. Notably, the Vps35p scaffolding function is critical for the
efficacy of protein sorting at the endosome. This is demonstrated by the key role of Vps35p
mutations found in several human diseases such as cancer, Alzheimer’s disease, and
Parkinson’s disease [64,75,76]. In addition, loss of Vps35p gene function results in early
embryonic lethality, while hemizygosity is exhibited in earlier-onset of Alzheimer’s disease-
like phenotypes [75,77]. Neurological defects induced by Vps35 loss are connected with
its ability to recruit the WASH complex. Accordingly, Vps35p D620N mutation impairs
WASH complex recruitment to the endosome, leading to a reduced actin polymerization
and resulting in protein missorting [78].

3.2. Commander

In mammalian cells, the recycling function is also executed by the Commander com-
plex. Specifically, Commander is involved in the recycling of cargo from endosome to
plasma membrane [79]. Commander is a multiprotein complex composed of two distinct
functional modules: Retriever and CCC. Retriever is structurally related to the trimeric
Retromer subunit. Retromer and Retriever share the Vps29 protein for coordination
and complex assembly. In addition, VPS26C (i.e., DSCR3) and C16orf62 (i.e., Vps35L)
share structural homologies with Vps26 and Vps35—the “core” components of Retromer
complex [80]. An intriguing aspect of cargo sorting machinery evolution from yeast to
mammals is the replacement of a dimeric complex (i.e., Vps5p and Vps17) with a single
protein member of the Sorting nexin protein family [81]. SNXs are isoforms of a large
protein family encompassing 33 distinct members [82]. Members of the SNX protein fam-
ily are characterized by the presence of a Phox homology (PX) domain, which mediates
phosphoinositide binding [83,84]. In addition, SNXs participate in both membrane de-
formation and cargo recognition, a role that is frequently associated with the presence
of the Bin/Amphiphysin/Rvs (BAR) domain. [85]. As an example, SNX17 was found to
be essential in the mediation of binding and subsequent Retriever-mediated sorting of a
variety of transmembrane receptors (over 220), including Notch2, integrin α5β1, LRP1,
APP, JAG1 and VLDLR as well as SCL family members [71,86,87]. The role of SNXs as
adapter proteins, connecting both receptors and lipid membranes to the sorting apparatus,
is confirmed by SNX27, a rare SNX family member that lacks the BAR domain [87]. SNX27
controls the membrane localization of over 100 receptors including GLUT1, ATP7A and
STEAP3 [88]. Notably, SNX27 depletion in mice results in protein mis-sorting into the
lysosomal degradation pathway, while its upregulation enhances synaptic plasticity and is
associated with neuroinflammation after spinal cord injury in mice [89].

Commander interaction with the cargo selection module, Retriever, and the actin
polymerization unit, WASH, requires the CCC multiprotein complex. The CCC complex
comprises two main subunits: the first subunit includes a coiled-coil domain containing
proteins such as CCDC22 and CCDC93, whereas the second comprises any of the 10 distinct
members that compose the COMMD protein family (i.e., COMMD1-10) [90]. In parallel,
CCC and Retriever are closely linked as they share a common subunit (VPS35L) [79].
The evolutionary conserved interactions between both FAM21, the WASH complex sub-
unit, and CCDC22/93 molecules trigger CCC complex recruitment to the endosome [79].
Significantly, CCC deficiency causes impaired recycling of LDL, ATP7A, and Notch recep-
tors [71,91]). In addition, mutations in CCDC22 molecular scaffolds are associated with
X-linked recessive intellectual disability (Table 1) [92].
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3.3. ESCPE-1

Retrieving and recycling trans-membrane cargo proteins on the cytosolic-facing sur-
face of endosomes is controlled by the ‘Endosomal SNX-BAR sorting complex for promot-
ing exit 1’ (ESCPE-1). This evolutionary conserved coat complex couples the recognition of
sorting motifs to the BAR domain-mediated biogenesis of cargo-enriched tubulo-vesicular
transport carriers. ESCPE-1 consists of heterodimeric combinations of either SNX5 or SNX6
dimerized to either SNX1 or SNX2, and does not require the Retromer trimeric complex
(i.e., VPS26:VPS35:VPS29) for its proper functioning [93]. Notably, SNX1, SNX2, SNX5,
and SNX6 are also part of the molecular machinery employed by the Retromer for both
endosome-to-plasma membrane recycling and endosome-to-TGN retrieval [94,95]. How
such differential regulation is achieved is still unclear. However, recent reports suggest
that the recognition of specific sorting motifs by SNXs plays a major role in this process.
In Retromer-mediated sorting, recycling cargoes are recognized by the trimeric complex,
whereas in ESCPE-1, SNXs control the endosomal recycling and retrograde transport of
the CI-MPR, as well as the recycling of the IGF1R, by interacting with receptor sorting mo-
tifs [96,97]). An intriguing aspect of the ESCPE-1 complex is related to its association with
Retromer. In particular, the SNX27-Retromer complex was found to associate with the SNX1
and SNX2 subunits of ESCPE-1. Such functional interaction relies on SNX27-mediated
binding of the disordered amino-termini of the SNX1/2 subunits. This event ensures
cargo protein retrieval from lysosomal degradation by SNX27-Retromer into ESCPE-1
tubules [88,98,99].

3.4. ESCRTs

Early endosomes are characterized by the concomitant presence of multiple sorting
pathways. While Commander and Retromer mediate transport to plasma membrane
and/or Golgi membranes, the endosomal sorting complex required for transport (ESCRTs)
is critical for membrane remodeling, a function that is associated with the formation of
multivesicular bodies and protein degradation. ESCRTs are multiprotein complexes that
recognize ubiquitinylated cargo as a sorting signal, and by directing them to the lysosome,
allow the formation of intraluminal vesicles [100]. Four macromolecular complexes belong
to ESCRT family: ESCRT0, ESCRTI, ESCRTII, and ESCRTIII, based on their appearance
on the endosomal membrane [101]. ESCRT0 is composed of Vps27/HRS (HGF-regulated
tyrosine kinase substrate) and Hse1/STAM (signal transducing adaptor molecule), which
mediate interaction with both the endosomal PtdIns(3)P and ubiquitinated moieties of
endocytosed receptors [102]. Ubiquitinated transmembrane proteins are clustered by ES-
CRT0, which binds ubiquitin with low affinity. Notably, ESCRT0 displays a cooperative
multivalent binding, as its avidity increases as a function of recognized ubiquitin moi-
eties [103]. Recruitment of ESCRTI and ESCRTII to ESCRT0 increases ubiquitinated cargo
recognition, and both cooperate for invagination of endosomal membrane [104,105]. Lastly,
recruitment of ESCRTIII induces membrane budding and ubiquitin release [106]. Notably,
ESCRTIII creates the concentric spirals required for constriction of newborn vesicles neck,
a process that ends after Vps4-mediated ESCRTIII disassembly and the subsequent scis-
sion/release of the vesicle [107]. Accordingly, ESCRTIII mutant cells fail to downregulate
and degrade cell surface-signaling receptors (Notch, EGFR and many others), resulting in
dysfunctional signaling [108]. In the brain, mutations in the endosomal ESCRTIII-complex
subunit CHMP2B result in frontotemporal dementia disease [109,110]. ESCRT machinery
has been implicated in the biogenesis of exosome, a group of extracellular vesicles that
are originated by invaginations of lipid membranes inside endosomes [111]. In particular,
the ubiquitin-binding protein ALIX mediates the budding of intraluminal vesicles by in-
teracting with ESCRTIII. Accordingly, depletion of CHMP4, an ESCRTIII subunit, reduces
exosome production [112]. Notably, ESCRT-dependent exosome production is promoted
by the Syntenin protein, which interacts with transmembrane receptors (i.e., Syndecan)
and ALIX to increase receptor clusters and the generation of exosomes [112–114]. Among
the sorting signals required for exosome production, the small integral membrane protein
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of the lysosome/late endosome (SIMPLE) is one of the most interesting [115]. Mutations in
SIMPLE are linked with decreased exosome biogenesis, while its overexpression causes an
hyperproduction of extracellular vesicles. Biochemical analysis revealed the key role of
TSG101 and Nedd4, two proteins involved in ubiquitin recognition. In particular, TSG101
specifically recognizes P(S/T)AP aminoacidic sorting signals, whereas proteins harboring
PPXY motifs are detected by Nedd4. Remarkably, by recognizing the ubiquitin moieties,
Nedd4 is able to sort cargoes into exosomes [116,117].

3.5. Lipid Rafts

Not all molecular sorting mechanisms are initiated by large molecular complexes such
as ESCRT and Retromer. Over 30 years ago (i.e., 1988), it was observed that some portions
of the plasma membrane, called lipid rafts (LR), act as membrane organizers by controlling
both composition and function of biological membranes [118]. LR are enriched in ceramide,
cholesterol, sphingolipids, and GPI-anchored proteins. Further investigations individuate
that ceramide molecules induce spontaneous membrane invagination and are able to
cluster receptors by reducing lateral diffusion of membrane proteins [119,120]. Similarly,
endocytic LRs are molecularly heterogenous, thereby conferring both morphological and
functional differences. As an example, early endosomes and recycling endosomes are
enriched in cholesterol, sphingomyelin, and phosphatidylserine and caveolin. Conversely,
these same components are largely depleted from late endosomes [121–125].

Although it is not entirely clear whether the sorting process is actively mediated
by lipid rafts, the partial depletion of lipid raft/ caveolae components results in recep-
tor mis-sorting [118,126–128]. The LR-mediated pathway is parallel to the degradation
and recycling pathway, due to the fact that lipid rafts sort different cargoes and do not
interact with Retromer/Retriever or ESCRT [129]. In particular, LRs are necessary for
tetraspanin-mediated sorting. Tetraspanins are characterized by four transmembrane
domains containing conserved polar residues, a small extracellular loop (SEL), a large
extracellular loop (LEL), and short cytoplasmic tails. The C-terminal cytoplasmic tails
of tetraspanin CD63 is crucial for proper targeting to intracellular compartments, as it
contains a tyrosine-based sorting signal. Notably, mutations in this motif caused CD63 to
lose its intracellular localization and traffic to the cell surface [130,131].

Table 1. List of sorting genes associated with neurological disorders.

Gene Inheritance Disease References

CCDC22 X-linked recessive Ritscher–Schinzel syndrome 2; intellectual disability [92]

Strumpellin Autosomal Recessive Ritscher–Schinzel syndrome 1 [132]

Autosomal Recessive Spastic paraplegia 8, autosomal dominant [133]

C16orf62 Autosomal Recessive Ritscher–Schinzel syndrome 3 [134]

VPS26C Down syndrome [135]

VPS35 Autosomal dominant Parkinson disease 17 [136]

RAB7 Autosomal dominant Charcot–Marie–Tooth disease, type 2B [137]

SWIP Autosomal dominant Mental retardation, autosomal recessive 43 [138]

RAB11B Autosomal dominant Neurodevelopmental disorder with ataxic gait,
absent speech, and decreased cortical white matter [139]

CHMP2B Autosomal dominant Frontotemporal dementia and/or amyotrophic
lateral sclerosis 7 [110,140,141]

CHMP4B Autosomal dominant Cataract 31, multiple types [142]



Int. J. Mol. Sci. 2021, 22, 11773 9 of 16

4. Timing in Molecular Sorting

Experimental attempts to reveal the mechanisms of molecular sorting are directed by
functional interactions controlling both protein and lipid dynamics on early endosomes
(Figure 3). In this context, seminal studies provide the evidence that Retromer machinery
biochemically interacts with Rab7, a protein involved in the progression of early endosome
to late endosome. Rab7 is a small GTPase that cycles between active and inactive forms
to control formation, transport, and delivery of membrane cargoes by interacting with
molecular motors such as dynein–dynactin complexes. The switching of Rab7 from an
inactive to an active form is proposed as a mechanism for recruitment of the Vps29 subunit
to early endosome, and consequently to promote localization of Retromer to endocytic
membranes. The pivotal function of Rab7 on sorting endosomes is highlighted by the
evidence that depletion of such a small GTPase causes Vps29 mislocalization and major
defects in Retromer function [143,144]. In addition, Rab7 colocalizes with Vps29 during the
outgrowth of the recycling vesicle in a segregated portion of the endosome corresponding
to the recycling tubule [143]. Once detached, vesicles are negative for Rab7 and positive for
Vps29. Stability of the Retromer complex to the newborn vesicle strictly depends on SNX
proteins, as consistent SNXs depletion results in a block of the sorting process [81]. Similarly,
reduction of PtdIns(3)P, the SNXs regulator, results in a similar phenotype [143,145].
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Figure 3. Schematic representation of the RABs-mediated recruitment of sorting machineries on the
endosomal membrane. (Top) Recruitment of sorting machineries in function of RAB7. SNX and
RAB7 recruitment on the membrane enriched in PtdIns(3)P that, in a sequential manner, mediate
endosomal recycling. Activated RAB5 recruits Vps34 and induces PtdIns(3)P production, this event
allows ESCRT0 to recognize ubiquitinated proteins on endosome membrane enriched in PtdIns(3)P
and direct to lysosome for degradation.
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The molecular link between PtdIns(3)P and small GTPases is strengthened by the
evidence that Rab5 is a master regulator of the PI3K enzymes responsible for phospho-
inositide generation on endosomal membranes. In particular, Rab5 activation promotes
recruitment of Vps34, the class III PI3K, that, in turn, controls the generation of PtdIns(3)P
on the sorting endosome. The presence of concomitant active Rab5 and PtdIns(3)P signals
promotes the recruitment of several effectors, including Hrs—the ESCRT0 subunit. Notably,
Rab5 localizes with Hrs, while it strictly depends on PtdIns(3)P. Accordingly, depletion of
this lipid induces cytoplasmic localization of Hrs [146,147]. In addition, for Rab5 and Rab7,
another Rab protein is involved receptor sorting. In particular, Rab11 was found to direct
Transferrin receptor sorting at the early endosome through regulation of the PtdIns(3)P
level [148,149].

Rab11 activation initiates on endosome membranes enriched in PtdIns(3)P, and reduc-
tion of such lipids resulted in a decreased number of released vesicles and an increased
residence of time of Rab11 in the PtdIns(3)P positive compartment. Notably, a PtdIns(3)P
burst was detected few seconds before the detachment of the sorting vesicle and is con-
comitant with the increased activation of Rab11. These results demonstrate the important
role of PtdIns(3)P in endocytic sorting of cargoes, and highlight how Rab11 activity may be
used as a metronome to measure the timing of sorting.

5. Conclusions

The continuous and rapid assembly of molecular machineries involved in the molec-
ular sorting processes require a precise timeline of events. Sorting processes are evo-
lutionarily conserved among species and their dysfunction is correlated with several
neurodegenerative diseases. Advances in proteomics, microscopy, and genetic engineering
approaches will provide a deeper understanding of the sequence of events controlling sort-
ing pathways. Although processes of molecular sorting are currently under investigation,
there are still many doubts about their sequential recruitment. Novel studies focused on
the identification of molecules that may function as a “metronome” in the control of sorting
complex recruitment will provide great value in the field of membrane trafficking.
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