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INTRODUCTION 
 

Alzheimer’s disease (AD) is an aging-related 

neurodegenerative disorder and the fourth leading cause 

of death in developed countries [1, 2]. Sporadic AD 

accounted for over 90% of all AD cases [3]. 

Pathologically, it is characterized by overproduction of 

amyloid-β (Aβ), hyperphosphorylation of tau and 

chronic inflammatory responses in the brain [4]. To 

date, the pathogenesis of sporadic AD remained largely 

unclear. 

 

ACE2/Ang-(1-7)/MAS1 is a newly identified axis of 

renin-angiotensin system [5]. Our previous studies 

revealed that the levels of Ang-(1-7), the main effector 

of ACE2/Ang-(1-7)/MAS1 axis, were reduced in the 

plasma of sporadic AD patients as well as the brain 

tissues of AD animal models [6, 7]. Meanwhile, this 
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ABSTRACT 
 

Previously, we revealed that brain Ang-(1-7) deficiency was involved in the pathogenesis of 
sporadic Alzheimer’s disease (AD). We speculated that restoration of brain Ang-(1-7) levels might have a 
therapeutic effect against AD. However, the relatively short duration of biological effect limited the application 
of Ang-(1-7) in animal experiments. Since Ang-(1-7) is generated by its metabolic enzyme ACE2, we then tested 
the efficacy of an ACE2 activator diminazene aceturate (DIZE) on AD-like neuropathology and cognitive 
impairment in senescence-accelerated mouse prone substrain 8 (SAMP8) mice, an animal model of 
sporadic AD. Eight-month-old SAMP8 mice were injected intraperitoneally with vehicle or DIZE once a day for 
30 consecutive days. DIZE markedly elevated brain Ang-(1-7) and MAS1 levels. Meanwhile, DIZE significantly 
reduced the levels of Aβ1-42, hyperphosphorylated tau and pro-inflammatory cytokines in the brain. The 
synaptic and neuronal losses in the brain were ameliorated by DIZE. Importantly, DIZE improved spatial 
cognitive functions in the Morris water maze test. In conclusion, this study demonstrates that DIZE ameliorates 
AD-like neuropathology and rescues cognitive impairment in SAMP8 mice. These beneficial effects of DIZE may 
be achieved by activating brain ACE2/Ang-(1-7)/MAS1 axis. These findings highlight brain ACE2/Ang-(1-
7)/MAS1 axis as a potential target for the treatment of sporadic AD. 
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reduction was closely correlated with progression of 

neuropathology and deterioration of cognitive functions 

[6, 7]. These findings implied that Ang-(1-7) deficiency 

contributed to the pathogenesis of sporadic AD. Based 

on these findings, we then speculated that restoration of 

brain Ang-(1-7) levels might have a therapeutic effect 

against AD progression.  

 

However, as a heptapeptide, Ang-(1-7) possesses a 

relatively short duration of biological effect in vivo 

because it can be rapidly inactivated and degraded by 

several proteases [8, 9]. This property limited its direct 

application in animal experiments. Ang-(1-7) is mainly 

generated by its metabolic enzyme ACE2 [10, 11]. 

Emerging evidence suggested that diminazene aceturate 

(DIZE), a classic ACE2 activator, was able to steadily 

increase brain Ang-(1-7) levels and thus exerted 

beneficial effects in animal models of ischemic stroke, 

anxiety disorder and dementia [12–15]. In light of this 

evidence, we tried to test the efficacy of DIZE on AD-

like neuropathology and cognitive impairment in 

senescence-accelerated mouse prone substrain 8 

(SAMP8) mice, an animal model of sporadic AD [16, 

17], in this study. 

 

RESULTS 
 

DIZE activated ACE2/Ang-(1-7)/MAS1 axis in the 

brain of SAMP8 mice 

 

As revealed by Figure 1A, the Ang-(1-7) levels in the 

brain of SAMP8 mice were significantly lower than 

those of senescence-accelerated mouse resistant 

substrain 1 (SAMR1) mice (44.49 pg/mg vs. 83.30 

pg/mg, P<0.05). Injection of DIZE (15 mg/kg) 

significantly increased brain ACE2 activity in SAMP8 

mice (P<0.05, Figure 1B). Meanwhile, DIZE injection 

(5 mg/kg and 15 mg/kg) markedly elevated Ang-(1-7) 

levels in the brain of SAMP8 mice (5 mg/kg DIZE: 

77.41 pg/mg vs. 44.49 pg/mg; 15 mg/kg DIZE: 120.60 

pg/mg vs. 44.49 pg/mg; all P<0.05, Figure 1A). The 

Mas1 mRNA expression in the brain of SAMP8 mice 

was increased following DIZE injection (5 mg/kg and 

15 mg/kg, P<0.05, Figure 1C), and this alteration was 

confirmed by western blot analysis at the protein level 

(5 mg/kg and 15 mg/kg, P<0.05, Figure 1D and 1E). 

 

DIZE reduced Aβ1-42 levels in the brain of SAMP8 

mice 
 

As indicated by Figure 2, SAMP8 mice showed higher 

brain Aβ1-42 levels when compared with their age-

matched SAMR1 control mice (P<0.05). DIZE injection 

significantly reduced Aβ1-42 levels in the brain of 

SAMP8 mice (5 mg/kg and 15 mg/kg, P<0.05, Figure 

2). DIZE injection (15 mg/kg) had no effect on Aβ1-42 

levels in the brain of SAMR1 control mice (data not 

shown). 

 

DIZE ameliorated tau hyperphosphorylation in the 

brain of SAMP8 mice 

 

In the brain of SAMP8 mice, tau hyperphosphorylation 

at Thr205 (Figure 3A and 3B) and Ser396 (Figure 3A 

and 3C) sites was noted (P<0.05). As indicated by 

Figure 3A and 3B, injection of DIZE (5 mg/kg and 15 

mg/kg) significantly attenuated tau hyperphos-

phorylation at Thr205 site (P<0.05). Meanwhile, levels 

of hyperphosphorylated tau at Ser396 site in the brain of 

SAMP8 mice were also decreased by DIZE injection (5 

mg/kg and 15 mg/kg, P<0.05, Figure 3A and 3C). DIZE 

injection (15 mg/kg) had no effect on 

hyperphosphorylated tau levels in the brain of SAMR1 

control mice (data not shown). 

 

DIZE attenuated neuroinflammation in the brain of 

SAMP8 mice 
 

As indicated by Figure 4A–4D, the levels of pro-

inflammatory cytokines including IL-1α, IL-1β, IL-6 

and TNF-α in the brain of SAMP8 mice were 

significantly higher than those of SAMR1 control mice 

(P<0.05). As revealed by Figure 4A, 4C and 4D, DIZE 

injection (5 mg/kg and 15 mg/kg) markedly reduced the 

levels of IL-1α, IL-6 and TNF-α in the brains of 

SAMP8 mice (P<0.05). Meanwhile, brain IL-1β levels 

were significantly decreased by 15 mg/kg DIZE in 

SAMP8 mice (P<0.05, Figure 4B). Injection of DIZE 

(15 mg/kg) had no influence on the levels of IL-1α, IL-

1β, IL-6 and TNF-α in the brain of SAMR1 control 

mice (data not shown). 

 

DIZE alleviated synaptic and neuronal losses in the 

brain of SAMP8 mice 

 

As indicated by Figure 5A and 5B, SAMP8 mice 

exhibited apparent synaptic loss (indicated by protein 

levels of synaptophysin) when compared with their age-

matched SAMR1 control mice (P<0.05). Meanwhile, an 

obvious neuronal loss (indicated by Nissl-positive 

neurons) in the parietal cortex was also noted in the 

brain of SAMP8 mice (Figure 5C and 5D, P<0.05). As 

revealed by Figure 5A and 5B, DIZE injection (5 mg/kg 

and 15 mg/kg) led to a significant increase in 

synaptophysin protein levels (P<0.05). Meanwhile, the 

percentage of Nissl-positive neurons in the parietal 

cortex was significantly increased after DIZE injection 

(Figure 5C and 5D, 5 mg/kg and 15 mg/kg, P<0.05). 

DIZE injection (15 mg/kg) had no influence on the 

synaptophysin protein levels or the percentage of Nissl-

positive neurons in the brain of SAMR1 control mice 

(data not shown). 
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DIZE rescued spatial cognitive impairment in 

SAMP8 mice  

 

Morris water maze (MWM) test was performed during the 

last 5 days before mice were killed. First, we compared 

the swimming speed between SAMP8 mice and their age-

matched SAMR1 control mice, but no difference was 

noted (Figure 6A). DIZE injection did not significantly 

affect swimming speed in SAMP8 mice (5 mg/kg and 15 

mg/kg, Figure 6B) or their age-matched SAMR1 control 

mice (15 mg/kg, data not shown). Afterwards, we 

employed a hidden platform test to assess the spatial 

cognitive functions in SAMP8 mice and their age-

matched SAMR1 control mice. SAMP8 mice swam more 

distance than their age-matched SAMR1 control mice to 

find the hidden platform from day 4 to day 5 (day 4: 

8.325±1.891 vs. 5.497±1.739 m; day 5: 7.869±2.226 vs. 

5.188±1.25 m; n=12 per group, P<0.05). Two-way 

repeated measures ANOVA indicated that SAMP8 mice 

performed worse than their age-matched SAMR1 control 

mice during the whole task (Fgenotype (1, 110)=27.82, 

P<0.05), confirming that SAMP8 mice displayed evident 

spatial cognitive impairment at 9 months of age. As 

indicated by Figure 6B, DIZE injection (15 mg/kg) 

rescued this spatial cognitive impairment in SAMP8 mice 

(Ftreatment (1, 110)=11.41, P<0.05). DIZE injection (15 

mg/kg) had no impact on spatial cognitive impairment in 

SAMR1 control mice (data not shown).  

 

DISCUSSION 
 

In this study, we showed that the levels of Ang-(1-7), 

the main effector of ACE2/Ang-(1-7)/MAS1 axis, were 

reduced in the brain of SAMP8 mice. This was in 

 

 
 

Figure 1. DIZE activated ACE2/Ang-(1-7)/MAS1 axis in the brain of SAMP8 mice. (A) The Ang- (1-7) levels in mice brain were detected by 
ELISA. (B) The activity of ACE2 in mice brain was assessed using a specific detection kit (#AS-72086, AnaSpec, Inc., Fremont, CA, USA) with Mc-
Ala/Dnp fluorescence resonance energy transfer peptides as described. The fluorescence of Mc-Ala was monitored at excitation/emission 330 
nm/390 nm. The specificity was confirmed using a specific ACE2 inhibitor DX600. (C) The Mas1 mRNA levels in mice brain were evaluated by qRT-
PCR, and Gapdh was used as an internal control. (D) The protein levels of MAS1 in mice brain were detected by western blot. β-actin was used as a 
loading control. (E) Quantitative analysis of MAS1 protein levels. Data from panel B, C and E were expressed as a fold change relative to the vehicle-
treated age-matched SAMR1 control mice. All data were analyzed by one-way ANOVA followed by Tukey’s post hoc test. Columns represent mean 
± SD (n=8 per group). *P<0.05 versus age-matched vehicle-treated SAMR1 control mice. #P<0.05 versus vehicle-treated SAMP8 mice. 
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accordance with our previous observations in AD 

animal models [7, 18]. These findings indicated that 

Ang-(1-7) deficiency might be involved in the 

progression of AD. Interestingly, in the brain of SAMP8 

mice, we did not observe significant alteration in the 

activity of ACE2, the metabolic enzyme for Ang-(1-7) 

generation. Since Ang-(1-7) can be degraded by several 

proteases such as ACE and neutral endopeptidase in 
vivo [10, 11], we speculated that the reduction of 

 

 
 

Figure 2. DIZE reduced Aβ1-42 levels in the brain of SAMP8 
mice. The levels of TBS-soluble Aβ1-42 in the brain were detected 
by ELISA. Data were analyzed by one‐way ANOVA followed by 
Tukey’s post hoc test. Columns represent mean ± SD (n=8 per 
group). *P<0.05 versus age‐matched vehicle-treated SAMR1 
control mice. #P<0.05 versus vehicle-treated SAMP8 mice. 

Ang-(1-7) might be attributed to the accelerated 

proteolysis in the brain of SAMP8 mice. 

 

Next, we tried to restore the levels of brain Ang-(1-7) 

using DIZE, a classic ACE2 activator. Previous findings 

indicated that DIZE might cross the blood–brain barrier 

and activated central ACE2 [14, 15]. In this study, we 

showed that DIZE significantly increased brain ACE2 

activity and thus led to elevated Ang-(1-7) levels. 

Interestingly, an increased level of brain MAS1, the 

receptor for Ang-(1-7), was noted following DIZE 

treatment. This can be explained by the positive 

regulation of elevated Ang-(1-7) on its receptor MAS1, 

as previously reported by Xie and colleagues [19]. All 

these findings indicated that DIZE could activate brain 

ACE2/Ang-(1-7)/MAS1 axis. 

 

Accumulation of Aβ within the brain represents a trigger 

of pathological cascades in AD [20]. In this study, we 

showed that DIZE diminished the levels of Aβ1-42, the 

most toxic form of Aβ, in the brain of SAMP8 mice. 

ACE2 shares similar biofunctions to its homologue ACE 

[21], and recent evidence indicated that activation of ACE 

could reduce Aβ1-42 via converting it to a shorter Aβ form 

with less toxic [22]. Based on this evidence, we 

speculated that activation of ACE2 by DIZE decreased 

brain Aβ1-42 levels through a similar manner. This 

speculation needed to be verified by future studies.  

 

In this study, we revealed that DIZE ameliorated tau 

hyperphosphorylation in the brain of SAMP8 mice. 

Since hyperphosphorylation of tau represents a 

downstream pathological hallmark triggered by Aβ1-42 

 

 
 

Figure 3. DIZE ameliorated tau hyperphosphorylation in the brain of SAMP8 mice. (A) The levels of tau hyperphosphorylation at 
Thr205 and Ser396 sites as well as total tau in the brain were detected by western blot. β-actin was used as a loading control. (B) Quantitative 
analysis of tau hyperphosphorylation at Thr205/total tau ratio. (C) Quantitative analysis of tau hyperphosphorylation at Ser396/total tau 
ratio. Data from panel B and C were expressed as a fold change relative to the age-matched vehicle-treated SAMR1 control mice. Data were 
analyzed by one‐way ANOVA followed by Tukey’s post hoc test. Columns represent mean ± SD (n=8 per group). *P<0.05 versus age‐matched 
vehicle-treated SAMR1 control mice. #P<0.05 versus vehicle-treated SAMP8 mice. 
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[23], the reduction of hyperphosphorylated tau in this 

scenario might be a consequence of decreased Aβ1-42 

levels caused by DIZE. In addition, DIZE also elevated 

Ang-(1-7) levels by activation of ACE2, while 

increased Ang-(1-7) could directly inhibit the activity of 

MAPK [24], an important kinase involved in 

hyperphosphorylating tau protein [25, 26]. This might 

represent another possible mechanism by which DIZE 

ameliorated tau hyperphosphorylation.  

 

Chronic neuroinflammation was recently considered as 

another pathological hallmark of AD [27]. In this study, 

we showed that DIZE attenuated neuroinflammation in 

the brain of SAMP8 mice, since the protein levels of 

pro-inflammatory cytokines including IL-1α, IL-1β, IL-

6 and TNF-α were reduced following DIZE treatment. 

Previously, we and others revealed that MAS1 was 

expressed by microglia and astrocytes, the main 

immune cells in the brain [18, 28, 29]. More 

importantly, mounting evidence suggested that Ang-(1-

7) bound to MAS1 receptors and thus inhibited 

inflammatory responses in the brain under several 

pathological conditions including ischemic stroke and 

AD [29–31]. Since activation of ACE2 by DIZE led to 

elevated Ang-(1-7) levels and a higher expression of 

MAS1, Ang-(1-7)/MAS1-mediated signaling pathway 

might contribute to the anti-inflammatory effects of 

DIZE in this scenario. 

 

In the current study, we showed that DIZE treatment 

provided neuroprotection in SAMP8 mice, since 

neuronal and synaptic losses in the brain were rescued 

 

 
 

Figure 4. DIZE attenuated neuroinflammation in the brain of SAMP8 mice. (A) The protein levels of IL-1α in the brain were 
investigated by ELISA. (B) The protein levels of IL-1β in the brain were investigated by ELISA. (C) The protein levels of IL-6 in the brain were 
investigated by ELISA. (D) The protein levels of TNF-α in the brain were investigated by ELISA. All data were analyzed by one-way ANOVA 
followed by Tukey’s post hoc test. Columns represent mean ± SD (n=8 per group). *P<0.05 versus age-matched vehicle-treated SAMR1 
control mice. #P<0.05 versus vehicle-treated SAMP8 mice. 
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Figure 5. DIZE alleviated synaptic and neuronal losses in the brain of SAMP8 mice. (A) The protein levels of synaptophysin in the 
brain were detected by western blot. β-actin was used as a loading control. (B) Quantitative analysis of synaptophysin protein levels. Data 
were expressed as a fold change relative to the age-matched vehicle-treated SAMR1 control mice. (C) Neuronal loss in the parietal cortex of 
mice were detected by Nissl staining. Neurons with dark violet nucleus and intact morphology were identified as Nissl-positive neurons. Scale 
bar=100 μm. (D) Quantitative analysis of Nissl-positive neurons in the brain. Data were analyzed by one‐way ANOVA followed by Tukey’s post 
hoc test. Columns represent mean ± SD (n=8 per group). *P<0.05 versus age‐matched vehicle-treated SAMR1 control mice. #P<0.05 versus 
vehicle-treated SAMP8 mice. 

 

 
 

Figure 6. DIZE rescued spatial cognitive impairment in SAMP8 mice. (A) Swimming speed of each group in the MWM test. Data were 
analyzed by one-way ANOVA followed by Tukey’s post hoc test. (B) Path length of each group in the hidden platform task. Data were 
analyzed by two-way repeated measures ANOVA followed by Bonferroni’s multiple comparisons test. Columns represent mean ± SD (n=12 
per group). *P<0.05 versus age‐matched vehicle-treated SAMR1 control mice. #P<0.05 versus vehicle-treated SAMP8 mice. 
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by DIZE. Interestingly, the same protection was observed 

in a d-galactose-ovariectomized rat model of AD after 

DIZE treatment [14]. Meanwhile, the protective effects of 

DIZE on neuron and synapse were also noted in animal 

models of other neurological disorders, such as cerebral 

ischemia and multiple sclerosis [32, 33]. This beneficial 

effect seemed to be a consequence of the DIZE-induced 

amelioration of AD-like neuropathology. However, we 

cannot rule out a direct protection of neuron and synapse 

caused by DIZE, since DIZE was revealed to block acid-

sensing ion channels and thus supported neuronal survival 

and restored synapse density in mice with experimental 

autoimmune encephalomyelitis [33]. 

 

More importantly, we demonstrated that DIZE treatment 

improved the performance of SAMP8 mice in MWM 

tests, indicating a protective effect of DIZE against AD-

related spatial cognitive impairment. This finding was 

supported by a recent study showing that DIZE 

administration prevented the development of cognitive 

deficits in a transgenic AD animal model [15]. Since 

neuronal and synaptic integrity in these brain regions was 

required for the maintenance of normal cognitive 

functions [34], the improvement in spatial cognition 

following DIZE treatment could be a consequence of the 

attenuated synaptic and neuronal losses in the brain. It is 

worth noting that our results did not support a direct 

influence of DIZE on spatial cognitive functions, since the 

performance of SAMR1 control mice in MWM tests was 

not significantly improved by DIZE. 

 

It should be noted that this study has some limitations. 

First, although SAMP8 mouse was considered as a 

sporadic AD animal model, many researchers argued 

that its pathological alterations were not equal to those 

during AD progression. Therefore, our findings should 

be further confirmed using classic transgenic AD 

animal models, such as APP/PS1 mouse. Second, in the 

current study, we did not establish the causality between 

activation of brain ACE2/Ang-(1-7)/MAS1 axis and the 

DIZE-mediated neuroprotection. This potential causal 

relationship should be validated using ACE2 inhibitors 

or MAS1 receptor antagonists in the future. Third, in 

most of our experiments, tissue samples of the whole 

brain were used. This might mask potential region-

specific alterations induced by DIZE. In our future 

studies, effects of DIZE on neuropathological changes 

in AD-related brain regions should be evaluated. 

 

In conclusion, this study demonstrates that DIZE 

ameliorates AD-like neuropathology and rescues 

cognitive impairment in SAMP8 mice. Meanwhile, 

these beneficial effects of DIZE may be achieved by 

activating brain ACE2/Ang-(1-7)/MAS1 axis. These 

findings highlight brain ACE2/Ang-(1-7)/MAS1 axis as 

a potential target for the treatment of sporadic AD. 

MATERIALS AND METHODS 
 

Ethics statement 

 

This study was reported in accordance with the 

ARRIVE guideline [35], and the procedures involving 

animals were in accordance with the ethical standards of 

Nanjing First Hospital (protocol#: IACUC-191032).  

 

Animals and treatments 
 

To avoid the interference of estrogen on AD-like 

neuropathology and cognitive functions [36, 37], only 

male animals were used in this study. SAMP8 mice were 

established through phenotypic selection from a common 

genetic pool of AKR/J strain of mice in 1981 by Takeda 

and colleagues [38]. SAMP8 mice are commonly used as 

animal models of aging-related diseases such as sporadic 

AD while SAMR1 mice are often employed as their 

normal aging controls [16, 17]. Eight-month-old male 

SAMP8 mice and their age-matched SAMR1 control 

mice were purchased from Beijing HFK Bioscience 

Company. According to our previous findings, at this age, 

SAMP8 mice have developed AD-like neuropathology 

including overproduction of Aβ, tau 

hyperphosphorylation and neuroinflammation [39]. Mice 

were maintained in individually ventilated cages in a 

standard animal room with a 12 h light/dark cycle and 

given free access to food and water as described [18].  

 

Mice were randomly allocated to each group using a 

random number table generated by SPSS 16.0 software 

(IBM, Armonk, NY, USA), and were injected 

intraperitoneally with vehicle (0.9% sterile saline) or 

DIZE (#HY-12404, MedChemExpress LLC, Monmouth 

Junction, NJ, USA; Prepared daily in 0.9% sterile 

saline) once a day for 30 consecutive days. Afterward, 

mice were sacrificed for analysis. The dose and route of 

DIZE administration were chosen according to previous 

studies [14, 15]. During the whole experiment, we 

carefully monitored the general health of mice and did 

not observe obvious adverse effects or significant 

changes in their body weight or food intakes. Systolic 

blood pressure (SBP) was measured at the beginning and 

the end of the treatment period using the tail-cuff method 

as described [40]. No significant difference was found in 

SBP between SAMP8 mice and their age-matched SAMR1 

mice at the baseline (data not shown). Meanwhile, DIZE (5 
mg/kg and 15 mg/kg) did not significantly affect SBP at 

the end of the treatment period (data not shown). 

 

Western blot analysis 
 

Western blot was carried out as described [41]. The 

whole brain was lysed in an extraction buffer 

containing complete protease inhibitor cocktail. 
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Different samples with an equal amount of protein 

were separated on SDS polyacrylamide gels, 

transferred to PVDF membranes, and then blocked 

with non-fat milk for 1 h. Membranes were then 

incubated overnight at 4°C with the primary antibody 

against tau hyperphosphorylated at Thr205 (1:1000, 

#SAB4504561, Sigma-Aldrich, Inc., St. Louis, MO, 

USA), tau hyperphosphorylated at Ser396 (1:1000, 

#44-752G, Thermo Fisher Scientific, Waltham, MA, 

USA), total tau protein (1:800, #SAB4501831, Sigma-

Aldrich, Inc., St. Louis, MO, USA), MAS1 (1:1000, 

#ab235914, Abcam plc., Cambridge, MA, USA) or 

synaptophysin (1:1500, #SAB4502906, Sigma-

Aldrich, Inc., St. Louis, MO, USA), then washed 

again and incubated with appropriate horseradish 

peroxidase (HRP)-coupled secondary antibody for 

another 2 h. After washing, protein bands were 

detected with chemiluminescent HRP substrate 

(#32132, Thermo Fisher Scientific, Waltham, MA, 

USA) for 5 min. The signal intensity of primary 

antibody binding was analyzed using Quantity One 

software (Bio-Rad Laboratories, Inc., Hercules, CA, 

USA). β-actin was used as a loading control (1:1500, 

#4970, Cell Signaling Technology, Inc., Danvers, 

MA, USA). 

 

ELISA 
 

Tris-buffered saline (TBS)-soluble Aβ1-42 levels in the 

brain of mice were detected as described [42]. The 

whole brain of mouse was homogenized in 10 volumes of 

TBS containing 5 mM ethylene diamine tetraacetic acid 

(EDTA), phosphatase inhibitor, EDTA-free protease 

inhibitor cocktail and 2 mM 1,10-phenanthroline at 4 °C. 

The homogenate was centrifuged at 100,000g for 1 h at 4 

°C. Supernatants were collected, and TBS-soluble Aβ1-42 

was measured by a commercial ELISA kit (#KMB3441, 

Thermo Fisher Scientific, Waltham, MA, USA).  

 

The protein levels of Ang-(1-7) and inflammatory 

cytokines including IL-1α, IL-1β, IL-6 and TNF-α in the 

whole brain of mice were measured by commercial 

ELISA kits (For Ang-(1-7): #S-1330; Bachem Inc., 

Torrance, CA, USA; For IL-1α: #MLA00, R&D Systems, 

Inc., Minneapolis, MN, USA; For IL-1β: #MLB00C, 

R&D Systems, Inc., Minneapolis, MN, USA; For IL-6: 

#M6000B, R&D Systems, Inc., Minneapolis, MN, USA; 

For TNF-α: #MTA00B, R&D Systems, Inc., Minneapolis, 

MN, USA) as described [18, 39].  

 

ACE2 activity measurement 

 

ACE2 activity in the whole brain was detected using a 

commercial ACE2 activity assay kit (#AS-72086, 

AnaSpec, Inc., Fremont, CA, USA) with Mc-Ala/Dnp 

fluorescence resonance energy transfer peptides as 

described [7]. The fluorescence of Mc-Ala was 

monitored at excitation/emission 330 nm/390 nm. The 

specificity was confirmed using a specific ACE2 

inhibitor DX600 (#AS-62337, AnaSpec, Inc., Fremont, 

CA, USA). 

 

qRT-PCR 
 

Total RNA in the whole brain was extracted by Trizol 

reagent as described [18]. Equal amounts of total RNA 

were reverse transcribed using the PrimeScript™ RT 

Master Mix (Takara Bio, Inc., Kusatsu, Shiga, Japan) 

under standard conditions. Afterward, qRT-PCR reactions 

were performed with specific primers (Mas1 forward: 

CATCTAGGACTGGGCAGAGC, Mas1 reverse: AGTC 

AGGAGGTGGAGAGCAA. Gapdh forward: CAACAG 

CAACTCCCACTCTTC, Gapdh reverse: GGTCCA 

GGGTTTCTTACTCCTT) and SYBR Green Premix Ex 

Taq (Takara Bio, Inc., Kusatsu, Shiga, Japan). 

 

Nissl staining  
 

Nissl staining was performed as described [39]. Briefly, 

the paraffin-embedded sections were dewaxed and 

rehydrated according to the standard protocols. Next, 

sections were stained in 1% cresyl violet at 50°C for  

5 min. After being rinsed with water, sections were 

dehydrated in increasing concentrations of ethanol, 

mounted on the slides, and examined with a light 

microscope. Three coronal sections at different depths 

on the rostro-caudal axis were imaged for each animal, 

and six fields of cortex and hippocampus on each 

coronal section were randomly selected for quantitative 

analysis. Neurons with dark violet nucleus and intact 

morphology were identified as Nissl-positive neurons, 

and the numbers of Nissl-positive neurons were counted 

by observers who were unaware of the experimental 

groups. 

 

MWM test 

 

MWM test has been performed during the last 5 days 

before mice were killed as described [39]. Mice were 

given four training trials per day for 5 consecutive days. 

The path length to the submerged platform was 

recorded by a video camera, and the average value of 

four trials was calculated. 

 

Statistical analysis 
 

Data were analyzed using GraphPad Prism 8 (GraphPad 

Software, San Diego, CA, USA) as described [18]. One-

way ANOVA followed by Tukey’s post hoc test was 

employed to analyze differences among groups. Data 

were expressed as mean ± SD. P<0.05 was considered 

statistically significant. 
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