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Simple Summary: Tabanus spp. (Diptera: Tabanidae) are blood-sucking parasites of animals and
humans. The accurate identification of these flies is very important for determining the vector
species involved in disease transmission and for planning effective vector control and management
strategies. We explored the effectiveness of landmark-based geometrics at distinguishing and
identifying morphologically similar species of Tabanus (T. megalops, T. rubidus, and T. striatus) in
Thailand. Our study reveals that geometric morphometrics is effective at distinguishing between
the three species of Tabanus. Furthermore, our study material can be used as reference material for
species identification.

Abstract: Tabanus spp., also known as horse flies (Diptera: Tabanidae), are important vectors of
several animal pathogens. Adult females of Tabanus megalops and Tabanus striatus, which are members
of the T. striatus complex, are morphologically similar and hence difficult to distinguish using
morphological characteristics. In addition, molecular identification by DNA barcoding is also unable
to distinguish these species. These two species can occur sympatrically with Tabanus rubidus, which
is morphologically similar to T. megalops and T. striatus. Wing geometric morphometrics has been
widely used in various insects to distinguish morphologically similar species. This study explored the
effectiveness of landmark-based geometrics at distinguishing and identifying T. megalops, T. rubidus,
and T. striatus in Thailand. Specimens were collected from different geographical regions of Thailand,
and only unambiguously identified specimens were used for geometric morphometric analyses. Left
wings of females of T. megalops (n = 160), T. rubidus (n = 165), and T. striatus (n = 85) were photographed,
and 22 wing landmarks were used for the analysis. Wing shape was able to distinguish among
species with high accuracy scores, ranging from 94.38% to 99.39%. We showed that morphologically
very close species of Tabanus can be reliably distinguished by the geometry of their wing venation,
and we showed how our experimental material could be used as a reference to tentatively identify
new field collected specimens.

Keywords: geometric morphometrics; horse flies; Tabanus megalops; Tabanus rubidus; Tabanus
striatus; vector
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1. Introduction

Tabanus spp., also known as horse flies (Diptera: Tabanidae), are hematophagous flies
of medical and veterinary importance. They are classified into the suborder Brachycera,
the infraorder Tabanomorpha, and the family Tabanidae. Approximately 1300 species
have been described [1]. Female flies feed on pets, livestock, wildlife, and occasionally,
humans. They are biological vectors of Trypanosoma theileri, and mechanical vectors of
other trypanosomes, such as Trypanosoma brucei, Trypanosoma congolense, Trypanosoma evansi,
and Trypanosoma vivax. Moreover, they can mechanically transmit other pathogens, such
as the etiologic agents of infectious diseases like African horse sickness, anthrax, bovine
anaplasmosis, bovine besnoitiosis, bovine leucosis, equine infectious anemia, lumpy skin
disease, and tularemia [2–4]. In Thailand, approximately 80 species of Tabanus and their
distributions have been recorded [5–7]. The most common species are T. striatus, T. mega-
lops, and T. rubidus [5,7–9]. All three species were also reported in the epidemic area of
trypanosomosis in Central Thailand [8].

The identification of Tabanus spp. employs morphological and molecular
methods [5,10–14]. Morphological identification is largely based on head structures, par-
ticularly the characters of the callus, antennae, eyes, frons, and beard, together with the
color and patterns of the body, legs, and wings [5]. This method is relatively simple and
economical. It does not require any complicated equipment, but requires experienced
taxonomists. The specimens for this method must have clear external morphological
characteristics [12]. To solve morphological problems, DNA barcoding has been widely
used [10–14]. This method was useful for the identification of many Tabanus spp.; it was
however, unable to distinguish the members of the T. striatus complex from Thailand [12].
Tabanus striatus and T. megalops are members of the T. striatus complex, which are found in
the Oriental region [5]. Based on morphological identification, T. striatus and T. megalops
are distinguished by the midline of the second tergite, crossed by a stripe of pale tomentum
and hairs in T. megalops, which are not present in T. striatus. In addition, the dark pattern
on the abdominal dorsum of T. striatus is generally darker than that of T. megalops [5].
Although T. striatus and T. megalops are easily distinguished using these two character-
istics, when T. megalops is stained and/or rubbed on the second tergite, it may have a T.
striatus-like appearance [5] (Figure 1). Tabanus rubidus is distinguished from the other two
species by the basal callus, which is more triangular than rectangular [5] (Figure 2). The
accurate identification of these species is crucial not only to recognize the vectors involved
in pathogen transmission, but for the development of appropriate control strategies. Since
DNA barcoding is unable to distinguish between T. striatus and T. megalops, alternative
methods, such as geometric morphometrics, have become invaluable.
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Figure 1. Morphological characteristics of abdominal dorsum used to distinguish species of Tabanus 
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Figure 1. Morphological characteristics of abdominal dorsum used to distinguish species of Tabanus
megalops (A), T. rubidus (B), and T. striatus (C). Tabanus megalops and T. striatus are distinguished by
the midline of the 2nd tergite cross by a stripe of pale tomentum and hairs in T. megalops (arrow).
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Wing geometric morphometrics is increasingly used for insects of medical and vet-
erinary importance to distinguish morphologically similar species, explore intraspecific
variation among populations, and determine sexual dimorphism [15–22]. The method is
fast, low-cost, and easy to use [15]. Geometric morphometric analysis can be performed
using various methods, such as landmark, semi-landmark, and outline-based methods,
depending on the characteristics and specifics of the specimens [15,23,24]. The effectiveness
of geometric morphometrics for species identification has been demonstrated in various
models, including blow flies [20], flesh flies [25], mosquitoes [16,21,26–29], stomoxyine
flies [18], sand flies [30–32], and tsetse flies [33].

In the present study, landmark-based geometric morphometrics was used to differ-
entiate three Tabanus spp, namely, T. megalops, T. rubidus, and T. striatus, in Thailand. To
generalize our results and provide an alternative method for the identification of these
flies, our study material was used as reference data for the morphometric identification of
additional, field collected Tabanus spp.

2. Materials and Methods
2.1. Ethical Statement

Our protocol for specimen collection was approved by the Faculty of Veterinary
Science, Mahidol University Animal Care and Use Committee (Ref. MUVS-2020-01-01).

2.2. Fly Collection and Species Determination

Specimens of T. megalops, T. rubidus, and T. striatus were collected from different
geographical regions of Thailand using five Nzi Traps [34] between February 2020 and
January 2021 (Table 1, Figure 3). The traps were randomly placed at the collection sites
from 06:00 to 18:00 over a two-day period. All flies were euthanized in a freezer (−10 ◦C)
and placed in individual 1.5 mL microcentrifuge tubes. The specimens were transported to
the Vector-Borne Diseases Research Unit, Faculty of Veterinary Science, Mahidol University.
They were stored at −20 ◦C until morphological identification. Species recognition was
performed on unambiguous specimens, i.e., those presenting clearly the specific traits
or diagnostic characters, according to the descriptions and taxonomic keys of Burton
(1978) [5].

A separate set of specimens (also known as unknown specimens) was collected from
other geographic areas as a test of the robustness of morphometric analysis based on
410 reference wings to differentiate species. They included T. megalops (Unknown A, n = 10,
from Chainat Province, Central Thailand), T. rubidus (Unknown B, n = 10, from Uthai
Thani Province, Northern Thailand), and T. striatus (Unknown C, n = 10, from Nakhon
Ratchasima Province, Northeastern Thailand). Most of them had clear morphological
characteristics, but some specimens of T. megalops exhibited an unclear stripe on the second
tergite.
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Table 1. Collection sites and number (N) of wing images of Tabanus spp. used for the landmark-based geometric morpho-
metric analysis. Figures into brackets refer to sites in Figure 3.

Species Regions District/Provinces Hosts N

T. megalops Northern Mueang, Phitsanulok (1) Horse and buffalo 50
Central Mueang, Nakhon Pathom (2) Beef cattle and buffalo 20

Sankhaburi, Chainat (3) Beef cattle 10 *
Western Sam Roi Yot, Prachuap Khiri Khan (4) Beef cattle 40
Southern Mueang, Chumphon (5) Beef cattle 50

T. rubidus Northern Mueang, Chiang Mai (6) Beef cattle 20
Mueang, Uthai Thani (7) Buffalo 10 *

Central Mueang, Singburi (8) Beef cattle 45
Northeastern Soeng Sang, Nakhon Ratchasima (9) Buffalo 50

Southern Mueang, Chumphon (5) Beef cattle 50
T. striatus Northeastern Soeng Sang, Nakhon Ratchasima (9) Buffalo 55

Wang Nam Khiao, Nakhon Ratchasima (10) Buffalo 10 *
Eastern Watthana Nakhon, Sa Kaeo (11) Buffalo 30

Total 440

*, unknown specimens.
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Figure 3. Map of Tabanus collection sites in Thailand: Phitsanulok (1), Nakhon Pathom (2), Chainat
(3), Prachuap Khiri Khan (4), Chumphon (5), Chiang Mai (6), Uthai Thani (7), Singburi (8), Nakhon
Ratchasima (9, 10), and Sa Kaeo (11).

2.3. Geometric Morphometric Analysis
2.3.1. Wing Preparation

The left wings of females of T. megalops, T. rubidus, and T. striatus were dissected from
their bodies and carefully mounted with Hoyer’s medium on microscope slides. All wing
slides were photographed using a digital camera connected to a stereomicroscope (Nikon
AZ 100, Nikon Corp, Tokyo, Japan) and a scale bar attached to prevent errors in the sizing
of each wing. A total of 410 wing images, comprising 160 wings of T. megalops, 165 wings of
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T. rubidus, and 85 wings of T. striatus, were analyzed using the landmark-based geometric
morphometric method (Tables 1 and S1).

2.3.2. Inter-User Repeatability

To check the precision of landmark digitization, a repeatability test was used for size
and for shape, separately. It was computed as the ratio of the variance due to differences
among individuals to the total variance [35]. The computation of the variance components
of shape followed the Procrustes ANOVA method proposed by Klingenberg and Mclntyre
(1998) [36]. Ten wings per species were randomly selected and digitized between two
different users. If the repeatability value (of shape) was less than 0.9, all wing pictures were
re-digitized.

2.3.3. Landmark-Based Analysis

Coordinates of 22 wing landmarks (Figure 4) were digitized for geometric morphome-
tric analysis. To show size variation among the groups, the global wing size was estimated
using the centroid size (CS) derived from the coordinates of all landmarks. The CS is
defined as the square root of the sum of the squared distances between the centroid and
each landmark [37]. Statistical comparisons of the CS among the species were performed
by one-way ANOVA and illustrated by quantile boxes. The statistical significance of the
one-way ANOVA was estimated by a non-parametric procedure (1000 permutations) at
p-value < 0.05.
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The wing shape variables were computed after a Procrustes superimposition accord-
ing to the Generalized Procrustes Analysis (GPA, see Rohlf (1990) [38]). Their principal
components were used as final shape variables. The visual comparison of shape changes
across species was provided by the superposition of the average wing of each species.
The final wing shape variables (thus, excluding size) were used as input for discriminant
analysis (DA), which were illustrated by the factor map. Statistical significance of the
Mahalanobis distances among the species was estimated by a non-parametric permutation
test (122 permutations) at p-value < 0.05.

2.3.4. Classification Based on Size and Shape

To test the validity of global size (CS) for accurate species identification, we used a
maximum likelihood approach [39]. To measure the taxonomic signal embedded in the
shape variables, excluding size, we used a discriminant model. The latter is based on
the shortest Mahalanobis distance between each specimen and the consensus shape of
each species. Both classifications (size, shape) were validated classifications. Thus, each
individual was sequentially removed from the total sample and assigned to the most likely
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(size) or closest (shape) group, without being used to aid the computation of the model
(jack-knife classification; see Manly (2004) [40]).

2.3.5. Allometric Effect Analysis

The allometric effect (the effect of size on shape variation) was performed by linear
regression of the first (shape derived) discriminant factor on the CS, and then estimated by
the determination coefficient r2. Thus, in our study the estimation of allometry focused on
the between species shape-based discrimination.

2.3.6. Identification of Unknown Specimens in the Field

Our study material was used as reference data to determine 30 additional field col-
lected specimens. These specimens came from different areas, and were used as testing
specimens to be identified using the three reference groups of our study (T. megalops,
T. rubidus, and T. striatus).

The identification algorithm used the shortest Mahalanobis distance of each specimen
to the mean shape of each species in the same way as performed for a cross-validated
classification: each unknown specimen used the discriminant space of the reference data
but did not contribute to its computation [41]. Due to the necessity to recompute shape
variables before each individual assignment, the repeatedly built discriminant functions
are never exactly the same. This “one by one” identification process has been explained
in Dujardin et al. (2010) [41] and applied in Kitthawee and Dujardin (2016) [42]. For each
individual, the final species attribution was decided according to its shortest Mahalanobis
distance with one of the three reference groups.

A hierarchical clustering tree (UPGMA algorithm) based on the Mahalanobis distances
among the average wing shapes was used to illustrate the relationships between reference
data and unknown specimens. Branch support was estimated based on 1000 bootstrap
replicates of the data [43,44].

2.3.7. Morphometric Software

Geometric and multivariate analyses were performed using XYOM (XY Online Mor-
phometrics) version 2 software [24], freely accessible at https://xyom.io/, accessed on 16
October 2021.

3. Results
3.1. Inter-User Repeatability

The two sets of measurements performed by two different users on the same images
yielded high repeatability scores: 98% for size and 93% for shape.

3.2. Wing Size Variation

The variations in wing size (CS) among Tabanus spp. are illustrated by quantile
boxes (Figure 5). The largest wings were found in T. rubidus (13.01 ± 0.77 mm), followed
by T. megalops (10.01 ± 0.67 mm) and T. striatus (10.29 ± 0.47 mm). Only the size of T.
rubidus was significantly different from the two other species (p < 0.05). The accuracy of
the maximum likelihood validated size-based classification was very high for T. rubidus
(95.76%), but less satisfactory for T. megalops (66.25%) and T. striatus (56.65%).

https://xyom.io/
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3.3. Wing Shape Variation

The visual comparisons of superposed configurations (Figure 6) revealed most visible
landmark displacement in the anterior and middle part of the wing. The interspecific
Mahalanobis distances between wing shapes were statistically significant (Table 2). The
plot of the individuals on the two shape-derived discriminant factors showed T. rubidus
specimens as a clear-cut external group, whereas T. megalops and T. striatus showed some
overlap (Figure 7). The accuracy scores, after validated classification, were in the range of
94.38–99.39% (Table 3).
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Table 2. Mahalanobis distances among the wing shapes of Tabanus megalops, T. rubidus, and T. striatus.

Species T. megalops T. rubidus T. striatus

T. megalops -
T. rubidus 7.29 -
T. striatus 4.12 6.19 -
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Table 3. Validated classification based on the wing shapes of Tabanus megalops, T. rubidus, and
T. striatus.

Species Accuracy (Assigned/Observed)

T. megalops 94.38% (151/160)
T. rubidus 99.39% (164/165)
T. striatus 95.29% (81/85)

Total performance 96.59% (396/410)

3.4. Allometric Effect

The shape-based discrimination between species was significantly (p < 0.001) influ-
enced by size (r2 = 43%) (Figure 8).
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3.5. Identification of Unknown Specimens in the Field

The 30 field specimens were collected from other geographic areas. They were treated
as “unknown” specimens to be compared to our study material, composed of T. megalops
(n = 160), T. rubidus (n = 165), and T. striatus (n = 85).

The total sample classification, including reference and unknown groups, is illustrated
by an UPGMA tree based on the relative Mahalanobis distances (Figure 9). This hierarchical
clustering tree may be considered as an illustration of the global similarities between groups,
but does not represent a true identification method.

The identification method was indeed performed individually for each unknown
specimen (see the “one by one” method [41], a process which is difficult to illustrate
graphically (see [42]). According to this method, the three groups corresponded to three
different species, in agreement with the external morphological examination.
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Figure 9. Hierarchical clustering tree based on shape similarities of reference data and unknown
specimens. Unknown A: specimens from Chainat Province; Unknown B: specimens from Uthai
Thani Province; and Unknown C: specimens from Nakhon Ratchasima Province. In this total sample
classification analysis, all the specimens, including the unknown ones, helped with computing the
discriminant model. The distances used for the tree construction were the Mahalanobis distances.
Numbers at the nodes indicate the percentages of bootstrap values based on 1000 replicates.

4. Discussion

The three Tabanus spp. collected for our study have been reported as the most common
species in Thailand [5,7]. Some Tabanus spp. are morphologically similar, and hence difficult
to distinguish using morphological characteristics alone. Although molecular identification
methods, such as DNA barcoding, were effective in separating many Tabanus spp., they
were unable to distinguish members of the T. striatus complex from Thailand [12].

Our study explored an alternative method for the identification of Tabanus spp. based
on the geometry of their wing venation. As the evaluation of the taxonomic power of the
method was based on a non-morphometric species determination, our study material was
composed of specimens unambiguously identified by morphological traits. We examined
successively the size and the shape of wings as derived from the Generalized Procrustes
method (GPA).

The wing size of T. megalops and T. striatus was not significantly different, but con-
sistently smaller than that of T. rubidus: this suggested that the wing size could aid to
distinguish T. rubidus from T. megalops and T. striatus. In spite of the interesting reclassifica-
tions scores based on size only, we do not recommend its use as a reliable discrimination
feature. Even if reflecting genetic differences, wing size can be strongly modulated by
environmental factors such as temperature, relative humidity, larval density, and food
availability [45–47].
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This is why the subsequent analyses were performed excluding size, using shape
variables only. However, as shown by our allometric study (Figure 8), the discriminant
space based on shape was still affected by size variation. Such influence was due mainly to
the presence of a relatively large species (T. rubidus, see Figure 5), and it did not necessarily
mean that shape variation was under the influence of environmental factors [15,48]. Size
divergence between species is likely to be due also to evolutionary divergence [12].

The discriminant space of shape (Figure 7), the quantile boxes of size (Figure 5) and
the hierarchical clustering tree of total sample analysis (Figure 9) showed that T. rubidus
was clearly separated from T. megalops and T. striatus. This was in complete agreement with
the known phylogenetic relationship based on cytochrome c oxidase subunit I (COI) [12].
It was also in accordance with the morphological classification: T. rubidus can be clearly
distinguished from T. megalops and T. striatus, i.e., the basal callus being more triangular [5].

Tabanus megalops and T. striatus are morphologically very close species, having similar
size (Figure 5) and have occasionally been misidentified, especially due to the stained or
rubbed off stripe on the second tergite of T. megalops [5]. Moreover, the COI sequences did
reveal between them some overlap of intraspecific and interspecific divergence [12]. Not
unexpectedly, as can be visualized by their partial overlapping in the discriminant space
(Figure 7), the geometry of their wing venation could not recognize them perfectly (94%,
95%, versus 99% for T. rubidus).

However, the use of the 410 images to classify images of individuals coming from
other geographic locations provided satisfactory results. It gave us confidence in their
possible use as a reference dataset for additional identifications, even of a single individual.
The use of reference images to allow geometric morphometrics to be applied as a taxonomic
tool is an old idea [44,49,50]. Its application can be made difficult by measurement error.
When different observers digitize the same images, repeatability does not reach the level
obtained when repeated measurements are performed by the same observer. This might be
particularly problematic when the objective is to recognize morphologically very similar
or cryptic species [43]. As an additional problem, some groups of insects may be more
difficult to digitize than others. For instance, mosquitoes have wings covered by scales,
hiding the precise junctions of veins. We showed that the digitization of Tabanus wings
provided excellent precision, even with two different users, such that the material from our
study can serve as a reference set of data for species identification.

5. Conclusions

The accuracy of species identification is very important for determining the role of each
vector in disease transmission and for planning effective vector control and management
strategies. Our study revealed that landmark-based geometric morphometrics of the wing
can distinguish species within the Tabanus striatus complex (T. megalops and T. striatus) and
can distinguish this group from other similar species (T. rubidus). Furthermore, our tests
suggest that our study material represented a robust reference dataset able to help species
determination of specimens coming from other geographic areas. The geometric method
can be used as a complement to morphological identification when specimens are unclear
or when there is a loss of important distinguishing characters.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects12110974/s1, Table S1: Raw coordinates of wing landmarks of Tabanus megalops
(No. 1–160), T. rubidus (number 161–325) and T. striatus (number 326–410).
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