
ORIGINAL RESEARCH
published: 04 November 2021

doi: 10.3389/fneur.2021.759149

Frontiers in Neurology | www.frontiersin.org 1 November 2021 | Volume 12 | Article 759149

Edited by:

Camila Aquino,

University of Calgary, Canada

Reviewed by:

Francesco Di Lorenzo,

Santa Lucia Foundation (IRCCS), Italy

Giulia Giannini,

University of Bologna, Italy

*Correspondence:

Martin J. McKeown

martin.mckeown@ubc.ca

Specialty section:

This article was submitted to

Experimental Therapeutics,

a section of the journal

Frontiers in Neurology

Received: 16 August 2021

Accepted: 05 October 2021

Published: 04 November 2021

Citation:

Kazemi A, Mirian MS, Lee S and

McKeown MJ (2021) Galvanic

Vestibular Stimulation Effects on EEG

Biomarkers of Motor Vigor in

Parkinson’s Disease.

Front. Neurol. 12:759149.

doi: 10.3389/fneur.2021.759149

Galvanic Vestibular Stimulation
Effects on EEG Biomarkers of Motor
Vigor in Parkinson’s Disease

Alireza Kazemi 1, Maryam S. Mirian 2, Soojin Lee 2,3 and Martin J. McKeown 2,4*

1Center for Mind and Brain, Department of Psychology, University of California, Davis, Davis, CA, United States, 2 Pacific

Parkinson’s Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC,

Canada, 3Wellcome Centre for Integrative Neuroimaging (FMRIB), University of Oxford, Oxford, United Kingdom, 4 Faculty of

Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada

Background: Impaired motor vigor (MV) is a critical aspect of Parkinson’s disease

(PD) pathophysiology. While MV is predominantly encoded in the basal ganglia, deriving

(cortical) EEG measures of MV may provide valuable targets for modulation via galvanic

vestibular stimulation (GVS).

Objective: To find EEG features predictive of MV and examine the effects of

high-frequency GVS.

Methods: Data were collected from 20 healthy control (HC) and 18 PD adults performing

30 trials total of a squeeze bulb task with sham or multi-sine (50–100Hz “GVS1” or

100–150Hz “GVS2”) stimuli. For each trial, we determined the time to reach maximum

force after a “Go” signal, defined MV as the inverse of this time, and used the EEG

data 1-sec prior to this time for prediction. We utilized 53 standard EEG features,

including relative spectral power, harmonic parameters, and amplitude and phase of

bispectrum corresponding to standard EEG bands from each of 27 EEG channels.

We then used LASSO regression to select a sparse set of features to predict MV. The

regression weights were examined, and separate band-specific models were developed

by including only band-specific features (Delta, Theta, Alpha-low, Alpha-high, Beta,

Gamma). The correlation between MV prediction and measured MV was used to assess

model performance.

Results: Models utilizing broadband EEG features were capable of accurately predicting

MV (controls: 75%, PD: 81% of the variance). In controls, all EEG bands performed

roughly equally in predicting MV, while in the PD group, the model using only beta band

features did not predict MV well compared to other bands. Despite having minimal effects

on the EEG feature values themselves, both GVS stimuli had significant effects onMV and

profound effects on MV predictability via the EEG. With the GVS1 stimulus, beta-band

activity in PD subjects became more closely associated with MV compared to the

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.759149
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.759149&domain=pdf&date_stamp=2021-11-04
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:martin.mckeown@ubc.ca
https://doi.org/10.3389/fneur.2021.759149
https://www.frontiersin.org/articles/10.3389/fneur.2021.759149/full


Kazemi et al. PD Motor Vigor EEG Features

sham condition. With GVS2 stimulus, MV could no longer be accurately predicted from

the EEG.

Conclusions: EEG features can be a proxy for MV. However, GVS stimuli have profound

effects on the relationship between EEG and MV, possibly via direct vestibulo-basal

ganglia connections not measurable by the EEG.

Keywords: EEG, biomarker, LASSO, motor vigor, GVS, Parkinson’s disease

INTRODUCTION

The complex ways neural activity encodes motor actions and
how this can be modulated is an area of active research.
While traditionally, investigation of motor control has been
through hypothesis-driven approaches, with the widespread
availability and sheer volume of non-invasive brain data now
available, data-driven techniques can be used to complement
traditional methods. The expansion of non-invasive brain
stimulation (NIBS) methods has also promoted work to link
brain rhythms with behavioral measures (e.g., reaction time or
motor vigor [MV]), as NIBS may induce behavioral changes
primarily via modulation of oscillations, as opposed to, e.g.,
biochemical modulations induced via pharmacotherapy. NIBS
at specific phases/amplitudes/frequencies (1) or customizing
stimulus parameters based on the neuroimaging data to
account for individual differences (2) may ultimately lead
to different behavioral effects, which could be considered as
potential treatments for neurodegenerative diseases such as
Parkinson’s disease.

Oscillatory coupling of neural activity between the motor
cortex and the basal ganglia is normally required for the
execution of voluntary movements (3). The basal ganglia have
diverse functionalities, including action and suppression of
potentially competing actions, control of the scale of movement
and related cost functions, online correction of a motor error,
and motor learning (4). The dopamine deficiency seen in
Parkinson’s disease profoundly affects basal ganglia function,
resulting in beta-band hyper synchronization (5) and an increase
in the signal-dependent noise (6). Altered oscillatory/behavioral
relations in Parkinson’s may also lead to functional deficiencies
such as impairedMV, defined as the ability to execute component
movements over a range of speeds, amplitudes, and frequencies
(7). The decision to move vigorously “may be thought of as
an economic decision in which one spends effort to acquire
a reward” (8): if a movement is deemed rewarding, one will
move with increased MV, moving with shorter latency (i.e.,
reaction time), and faster (i.e., shorter movement time). Previous
findings suggest that the quality and components of voluntary
movement (e.g., velocity, accuracy, energy consumption, end-
point variability, etc.) are modulated by the action execution time
if the time carries a cost (8, 9). Accomplishment of a timed task
can impose an implicit reward and accordingly modulate MV.
In particular, bradykinesia (slowness of movement), hypokinesia
(decreases in the amplitude ofmovements), and akinesia (poverty
of movement), all key motor features of PD, are postulated to be
the result of impaired movement vigor (10–12). Dopaminergic

striatal activity is likely involved in value-based behavioral
activation and invigoration, and a recent model of dopaminergic
function suggests the dorsolateral motor striatum estimates how
worthwhile it is to expend effort for the energy costs of moving
(13). Increasing dopamine makes it more likely that an animal
will decide it is worth spending energy to move or to move faster.
As such, abnormal computation of vigor costs may be the basis of
PD bradykinesia (14–17).

While MV is predominantly encoded in the basal ganglia (4),
deriving (cortical) EEG measures of MV may provide valuable
targets for modulation via NIBS methods such as galvanic
vestibular stimulation (GVS). However, trying to map a low
dimensional feature such as the presence/absence of a NIBS
stimulus to another low dimensional feature such as MV is
likely unsuitable for machine learning (ML) models, as this
would require an impractically large number of trials to capture
all sources of variability. In contrast, having an intermediate,
relatively high dimensional representation of the brain state, such
as the EEG, will allow first deducing the oscillatory/behavior
relationships. Later on, the effects of psychosocial factors and/or
NIBS on brain oscillations can then be determined. The risk
of such an approach is that GVS may modulate basal ganglia
structures at least in part through vestibulo-basal ganglia
connections (18)—something the EEG may not be able to
capture. Previous studies have demonstrated complex effects
of GVS stimuli on ongoing EEG rhythms (19), with regions
affected being associated with multisensory processing, likely via
broadly distributed thalamocortical fibers. Thus determining the
full range of cortical and subcortical areas involved in vestibular
functioning and assessing the complex effects of GVS is still
an active area of research and will likely include advanced
models (20).

An apparent constraint in the investigation of MV markers
in EEG is the risk that movement affects the recordings
(21, 22). While there have been some improvements in EEG
recordings during movement (e.g., in ambulatory settings),
movement related artifact remains a severe issue often requiring
sophisticated post-hoc analyses to remove artifact [e.g., (23)].
Since we are looking at specific EEG features related to vigor, we
wanted to minimize the minimum amount of data manipulation
to reduce artifacts. The most straightforward motor movement
that would not interrupt the EEG would likely be a button
press. While this would allow for evaluation of reaction time,
it would not allow us to assess vigor per se. Squeezing a bulb
through a resistance, as performed in our experiment, was the
best candidate to address discussed challenges because (1) it
allowed for both reaction time andmovement time to be assessed,
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FIGURE 1 | Overall schematic of our proposed method. EEG and motor vigor data were collected while participants received non-invasive brain stimulation. A

comprehensive set of standard features were extracted from EEG. Utilizing LASSO, MV was predicted by a subset of features, which were finally projected back into

the EEG spectral and spatial space.

(2) it resulted in minimal head movement (and hence minimal
EEG artifact), and (3) was not so effortful that PD subjects would
remain fatigued after only a few trials.

In this study, we examine the relations between EEG features
and MV and determine the effects of specific GVS stimuli on
the EEG using LASSO regression models (24). By extracting a
comprehensive set of features using LASSO models (Figure 1),
we seek answers to the following questions: (a) What fraction of
the MV variability can be deterministically estimated from the
EEG before and during movement? (b) Which frequency sub-
band(s) contribute most to accurate MV prediction? (c) Which
EEG electrodes are important in terms of MV prediction? (d)
What effects does GVS have on EEG/MV prediction?

METHODS

Participants and Study Protocol
The study protocol was approved by the Clinical Research Ethics
Board at the University of British Columbia (UBC), and the
recruitment was conducted at the Pacific Parkinson’s Research

Center (PPRC). All participants gave written, informed consent
before participation.

We used the same EEG and behavioral used by Lee (25). In
brief, data were collected from 20 healthy controls (9 males, 67.6
± 8.9 years) and 18 PD participants (7 males, 67.3 ± 6.5 years).
Demographic and clinical characteristics of both PD and healthy
controls are provided in Table 1. The experimental paradigm
included a simple motor task in different blocks with 10 trials.
In each block, participants received either sham (i.e., no) GVS
stimulation or brain stimulation with different waveforms. Sham
stimulation was performed at the beginning, and the order of the
blocks with stimulation was counterbalanced between subjects.

During the experiment, subjects performed a simple,
overlearned task. Subjects were comfortably seated in front
of a computer screen and instructed to focus their gaze on a
continuously displayed, fixed target for 60 sec. Then, a written
instruction was given to press a key on the keyboard to start
the motor task. Subjects were then instructed to respond to a
visual cue (“Go”) as fast as possible by squeezing a rubber bulb.
There were 10 trials each started with a 1,500ms fixation screen
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TABLE 1 | Demographic and clinical characteristics of the patients with

Parkinson’s disease (PD) and healthy controls (HC).

PD HC

Age (years), mean (sd) 68.2 (7.1) 68.6 (7.6)

Gender, n (male/female) 9/9 11/9

Disease duration (years), mean (sd) 7.4 (4.3) -

UPDRS II, mean (sd) 14.8 (8.1) -

UPDRS III, mean (sd) 23.3 (9.1) -

Hoehn and yahr scale, mean (range) 1.3 (1-2) -

Levodopa equivalent daily dose (mg),

mean (sd)

635.9 (356.4) -

UPDRS II: Motor aspects of the experience of daily living.

UPDRS III: Motor symptoms.

jittered 500ms followed by a 500ms Go screen and a 1,000ms
blank screen (see Figure 2A). We formed the same size epochs
of EEG signals using the last 1,000ms of each trial time-locked
at the end to the peak time of each individual subject. We chose
to include EEG signals of the reaction period (up to the peak
time) because we were interested in the investigation of the
dynamics of neuro-modulations from both before and after task
execution, which is affecting the motor vigor. We used sham
(no stimulation) condition trials to characterize the dynamics
of neural activities correlated with motor vigor. In addition, we
pooled two other multi sine stimuli (GVS1: 50–100Hz; GVS2:
100–150Hz) to investigate the influence of stimulations on
neural level dynamics compared to the sham condition.

Data Collection
EEG data were recorded from 27 scalp electrodes with a
sampling rate of 1 kHz using the Neuroscan SynAmp2 EEG
acquisition system (Neuroscan, USA) and a standard electrode
cap (64-channels Quik-Cap, Neuroscan, USA). EEG electrodes
were positioned according to the international 10–20 placement
standard. The reference electrode was between CPZ and CZ. The
ground electrode was placed on the back of the head. The data
were re-referenced to the common average. The electrodes were
attached using Electro-Gel (Electrode-Cap International, USA),
and impedances were kept below 15 k�.

Data Analyses
Preprocessing

We estimated MV as the inverse of the time to reach maximum
force after a “Go” signal (26) (see Figure 2B). The EEG data
were first bandpass filtered between 0.5 and 45Hz using a
zero-phase finite impulse response (FIR) filter. Furthermore,
we removed the artifacts using a wavelet-based filter approach
(see Supplementary Material Section 1 for more information).
We also performed data augmentation (27) and doubled the
number of trials by downsampling by a factor of 2 to create
two EEG epochs per each recorded MV. We clipped time
points that were three standard deviations greater/smaller than
the mean as outliers. Furthermore, after extracting 53 EEG
features from each channel (see feature extraction section in
the Supplementary Material Section 2), features and MVs are

normalized within subjects using Z-Score scaling to bring their
mean to 0 and standard deviation to 1 to minimize inter-
subject variability.

Feature Extraction

We extracted 53 features per channel per trial, including relative
spectral power, harmonic parameters, and amplitude and phase
of bispectrum in frequency ranges corresponding to standard
EEG channels, delta (0.5–4 hz), theta (4–8 hz), alpha-low (8–
12 hz), alpha-high (12–16 hz), beta (16–32 hz), and gamma
(32–45 hz). We chose this set of features to investigate and
characterize the MV-related neural dynamics in the standard
EEG spectral bands because standard EEG bands are well
studied, and their cognitive functional correlates have been
reported in the related studies. Technical details of the feature
extraction section are provided in the Supplementary Material.
We performed feature extraction in MATLAB, and source code
is accessible online (see the code and data availability statement).

Data Modeling
Since the data was high dimensional (53 features per 27 channels,
1,431 independent variables), we used the LASSO (least absolute
shrinkage and selection operator) method (24) to find which
subset of independent variables (i.e., features) gave the best linear
regression model to predict MV. Since we were less interested
in capturing inter-subject variabilities but rather robust features
affecting MV, we performed a bootstrapping technique in 40
separate iterations on a subset of trials randomly selected from
all participants in each iteration. Specifically, at each iteration,
80% of randomly selected trials were fed into LASSO algorithm to
find the best regression model to predict MV, and the remaining
20% trials were used to estimate the performance of the model
in predicting MV. We defined performance as the correlation
between the original MV and estimated MVs by the model.
We chose the correlation over the mean square error (MSE)
or the mean absolute error (MAE) and/or other alternatives to
best explain the dynamics and variabilities of MV and prevent
a flooring effect that might affect MSE (28). We then repeated
the process using only features specific to a given band (e.g.,
delta) to fit new LASSO models, in addition to examining the
LASSO-selected coefficients using all the features to infer the
spatial location, weight, and direction of the frequency-specific
features that best predicted MV.

To investigate whether there were differences in MV
behavioral performance between HC and PD groups in different
stimulus conditions, we conducted a 2 (Disease status: HC and
PD) X 3 (Stimulus: Sham, GVS1, and GVS2) mixed ANOVA,
with the stimulus type varied within participants. To compare if
different band-limited features affected prediction performance,
we conducted a 2 (Disease status: HC and PD) by 3 (Stimulus:
Sham, GVS1, and GVS2) by 7 (Bands: Broadband, Delta,
Theta, Alpha-low, Alpha-high, Beta, Gamma) mixed ANOVA on
average Fisher z-transformed correlations between original and
estimated MVs.

All LASSO model fits and performance estimations were
performed in MATLAB, and statistical analyses on performance
and beta values were done in R using ANOVA and t-test
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FIGURE 2 | (A) Schematic of a block of the experimental paradigm in which 60 s rest followed by 10 task trials and 120 s break time. In each block, GVS stimulation

(Sham, GVS1: 50–100Hz, and GVS2: 100–150Hz) was delivered during the rest and task period. (B) Mock pressure signal of a squeezing bulb. GO screen appeared

at t1, the participant started to squeeze the bulb at t2 and reached maximum pressure at t3. Peak time is defined as t3 − t1.

comparisons. We used the Bonferroni correction to deal with
multiple comparisons.

RESULTS

Themixed ANOVA results applied to the behavioral data showed
a main effect of Stimulus type, F(2,72) = 49.22, p < 0.001, ηp

2

= 0.58, such that the average MV in the sham condition was
significantly lower (M = 14e-4, SD = 2e-4) than the average
MV in both GVS1 (M = 15.5e-4, SD = 2e-4), t(37) = 7.74, p
< 0.001, and GVS2 (M = 15.4e-4, SD = 2e-4), t(37) = 7.64, p
< 0.001. There were no main effect or interaction effects with
disease status (ps > 0.138).

MV Predictability Performance
Average correlations between original and estimated MVs over
40 runs of different LASSO models are depicted separately for
healthy and PD groups under each stimulus type in Figure 3 (see
Supplementary Table 1 for the numerical values of the mean and
standard deviation).

We found a significant main effect of Stimulus type, F(2, 234)
= 103.34, p < 0.001, ηp2 = 0.47, such that average performance
of predicting MV in the sham condition (M = 0.54, SD = 0.12)
was significantly higher than that in GVS1(M = 0.26, SD= 0.11),
t(39) = 9.56, p < 0.001, which in turn was significantly higher
than GVS2 (M = 0.13, SD = 0.15), t(39) =4.33, p < 0.001. We
also found a significant main effect of model band, F(6, 1404) =
175.63, p < 0.001, ηp2 = 0.43, such that broadband features gave
the best performance (M = 0.98, SD = 0.35) overall compared
to each of the other band models (ps < 0.042) and the alpha-low

(M = 0.14, SD = 0.07) band model gave the lowest performance
compared to each of the other band models (ps< 0.042). Average
performance of delta (M = 0.23, SD = 0.09), theta (M = 0.21,
SD = 0.09), alpha-high (M = 0.21, SD = 0.10), beta (M = 0.18,
SD = 0.09), and gamma (M = 0.22, SD = 0.10) band models
were not significantly different (ps > 0.061). This result is further
confirmed by a significant interaction between Stimulus type and
band models, F(12, 1404) = 7.71, p < 0.001, ηp2 = 0.62.

We also found a significant main effect of disease status, F1,234
= 5.64, p = 0.018, ηp

2
= 0.02, such that performance in PD

population (M = 0.28, SD = 0.08) was significantly lower than
healthy controls (M = 0.34, SD = 0.13), t(61.51) = 2.37, p =

0.021; which is confirmed by a significant interaction between
disease status and band models, F(6, 1404) = 14.98, p < 0.001,
ηp

2
= 0.06, which is further confirmed by a significant 3-way

interaction between disease, stimulus type, and band models,
F(12, 1404) = 8.29, p < 0.001, ηp

2
= 0.07. In each sham and

GVS2 condition, broadband models were performed at the same
level (ps> 0.191). However, broadband models significantly gave
a lower performance on PD population compared to healthy
in the GVS1 condition, t(66.84) = 5.01, p < 0.001. In the
sham condition, only delta, alpha-low, and beta models had
significantly different performance (lower) on PD population
compared to healthy ones (ps < 0.03). In the GVS1 condition,
delta and alpha-highmodels had significantly better performance
in predicting MV in the healthy population (ps < 0.002), while
theta, beta, and gamma models performed significantly better
in PD population (ps < 0.015). Critically, under the effect of
GVS1 beta and gammamodels performed similarly to broadband
models (ps > 0.31). In the GVS2 condition, beta models had

Frontiers in Neurology | www.frontiersin.org 5 November 2021 | Volume 12 | Article 759149

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kazemi et al. PD Motor Vigor EEG Features

FIGURE 3 | LASSO correlation performance (Model Comparison). Under GVS stimuli, the overall performance of the models is dropped except for broadband in

healthy controls (HC), and beta and gamma models in the PD population under models only under GVS1. In sham conditions, band models gave almost the same

level of performance except for the beta model in the PD population that gave the lowest performance. PD, Parkinson’s disease; HC, healthy controls. Sham: No

stimulation, GVS1: 50–100Hz; GVS2: 100–150Hz.

significantly better performance on the healthy controls (p =

0.004), and gamma models performed significantly better in the
PD population (p = 0.013). However, in the GVS2 condition, all
bands had a significant performance drop, except the broadband
and delta models.

To investigate the extent to which GVS1 and GVS2 affected
individual feature values of the EEG in different ways and also
compared to sham, we conducted a 2 (Health: HC, and PD)
by 3 (Stimulus: Sham, GVS1, and GVS2) by 53 (EEG Features)
mixed ANOVA. We found no main or interaction effect of
stimulus (ps > 0.079).

Spectral and Spatial Characterization of
MV Neuro-Markers
Figure 4 shows the regression coefficients (beta values) of
the features averaged across channels in broadband models.
The numerical values are listed in Supplementary Table 2. We
conducted a one-sample t-test to determine whether beta-
values were statistically different from zero. All beta values
were significantly different from zero (ps < 0.018) except beta
values for alpha-low of PD population in the GVS2 condition
(p = 0.100). We conducted a 2 (Disease status: HC and PD)
by 3 (Stimulus: Sham, GVS1, and GVS2) by 7 (Spectral bands:
Broadband, Delta, Theta, Alpha-low, Alpha-high, Beta, Gamma)
mixed ANOVA and found all main and interaction effects
significant (ps < 0.001) specifically the three-way interaction
between stimulus type, health, and spectral bands, F(10, 1170)

= 52.44, p < 0.001, η2p = 0.31, suggesting that EEG neuro-
markers contribute to MV in different extents based on health
status and stimulus type. Nevertheless, ignoring the absolute
value across different stimuli, in the HC population, delta always
negatively correlated with MV, and theta, alpha-low, and beta
correlated positively, while gamma contribution under sham
and GVS2 was negative and under GVS1 was positive. The PD
population was more variable across different stimulus types;
however, gamma and beta always negatively correlated with MV,
and theta correlated positively.

We further investigated the spatial distribution of spectral
bands in the sham condition by averaging non-zero beta values of
features across different runs within each channel. Each spectral
band had non-zero values only in a limited number of channels
(Figure 5). We observed that the main contribution of electrodes
at each EEG spectral band in the HC population was as follows:
delta (PO5, P8, Fz), theta (F7, Oz), alpha-low (T8, C3), alpha-high
(FC5), beta (T7, CP5, P7), gamma (FP2); and in PD group are:
delta (FC5, F7), theta (PO5, T8, O1), alpha-low (T7, F4), alpha-
high (FP1, FC6, F4, F8, C4, O1), beta (F3, O2, F6), gamma (P8,
PO6, P7, T7).

DISCUSSION

Using a comprehensive set of EEG features time-locked to
reaching the maximum force, we could predict MV with an
accuracy of around 75% in HC and around 81% in PD. These are
comparable to the prediction based on features from deep brain
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FIGURE 4 | Average Beta values of BB model (Characterizing EEG bands contribution). In the healthy control group, the delta band always negatively correlated with

MV, and theta, alpha-low, and beta correlated positively. In the PD population, gamma and beta always negatively correlated with MV, and theta correlated positively.

PD, Parkinson’s disease; HC, healthy controls. Sham: No stimulation, GVS1: 50–100Hz; GVS2: 100–150Hz.

FIGURE 5 | Spatial distribution of EEG bands contributed to MV under the sham condition. MV was localized over the dominant hemisphere in healthy controls as

opposed to bilateral localization in PD population. In healthy controls, theta, beta, and alpha-high are primarily concentrated in the left hemisphere; gamma is only

found in the mid-frontal. In PD population, delta, beta, alpha-high, alpha-low are mostly observed in the frontal areas; theta, and gamma are mostly observed in

temporal, parietal, and occipital areas. PD, Parkinson’s disease; HC, healthy controls. δ: Delta band; θ : Theta band; α: Alpha band; β: Beta band; γ : Gamma band.

stimulation recordings (29), but the EEGmay actually be superior
to subthalamic local field potentials for movement decoding in
PD (30). This suggests that, under normal conditions, cortically

based EEG signals may provide sufficient information to create
an MV biomarker. This is perhaps remarkable, as MV is typically
assumed to be encoded in the basal ganglia, and monitoring
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of basal ganglia activation would normally require technologies
such as fMRI. The spatial distribution of the informative channels
(Figure 5, left) suggests that in controls, the beta-band features
were found over the central-parietal regions, possibly related to
beta band event-related desynchronization normally seen during
movement (31). In controls, important channels were localized
over the dominant hemisphere but were more bilateral in PD
subjects, possibly related to compensatory mechanisms (32),
where bilateral activity is more likely to be seen.

It is perhaps unsurprising that models that included features
from all EEG sub-bands demonstrated better performance
predicting MV compared to models relying on sub-band features
(Figure 3). What is remarkable is that both GVS stimuli did not
change the feature values themselves yet still had profound effects
on both theMV in the behavioral data and on the predictability of
MV from the same EEG features (Figure 3). While it is possible
that the EEG features we utilized did not capture any complex
effects of GVS stimuli that still influencedMV, another possibility
is that the GVS stimuli are affecting non-cortical sites (not
measured by the EEG) that influence MV, such as connections
between the vestibular system and the basal ganglia (18). Thus,
we propose that vestibular-basal ganglia connections may be
central in some of GVS’s effects as opposed to GVS first activating
cortical regions that then influence MV.

Recent work has started to explore the role of vestibular
inputs on decision-making behavior. GVS affects risk-taking
behavior in healthy controls as assessed by the Balloon Analog
Risk Task (BART) (33). However, this was found with left-anodal
and right-cathodal GVS as opposed to the alternating currents
explored here. Caloric vestibular stimulation also modulates
purchase decision making (34) and vestibular stimulation has
been proposed more generally to probe cognitive processes that
include decision making (35). While the basis of these reward-
related cognitive vestibular effects has been suggested to be an
overlap between emotional circuits and vestibular regions in
the cortex such as the insular and orbitofrontal cortices (34),
presumably this will involve subcortical structures as well: striatal
neurons encode reward independent of sensory and motor
aspects (36) More work is required to delineate the cortical
and subcortical contributions of GVS-related modulation of
reward behavior.

The different GVS stimuli had complex effects on EEG-based
MV prediction (Figure 2). Both GVS stimuli frequencies were
outside the EEG band frequencies, and any changes observed
outside the stimulus frequency ranges are characteristic of a
non-linear system (37). The GVS stimuli used were far outside
the normal physiological ranges of vestibular stimulation as
would occur with, e.g., head movement, supporting the role
of data-driven models that we employed here. As expected,
in most cases, band-specific EEG features were less capable of
predicting MV than including the features seen in all bands, as
less information is available to make the prediction. However,
there were some notable exceptions: with GVS1 stimuli in
the PD group, the beta band predictability actually increased
compared to the sham condition (Figure 3). We speculate that
in PD subjects receiving GVS1 stimuli, activity along direct
vestibular-basal ganglia connections allowed for the basal ganglia

to again be sensitive to cortical EEG beta rhythms. The GVS2
stimuli resulted in severe degradation of MV prediction via
the EEG in both controls and PD subjects. This implies an
overall insensitivity of the basal ganglia to motor cortical
signals, although the same stimuli still resulted in behavioral
improvements in MV.

Looking at the regression coefficients in the models using
all of the features (Figure 4) provides insights into the relative
contributions of different EEG bands in predicting MV. In
contrast to the models that only trained on band-specific
features (Figure 3), the regression coefficients in Figure 4 are
relative weights in the regression, so the weights of each EEG
band can only be interpreted in the context of the other EEG
bands. There are some surprises, namely that in PD subjects,
both beta and gamma features were negatively correlated
with MV, in the context of positive theta and high-alpha
values. If beta is considered “anti-kinetic” and gamma-band
activity is considered “pro-kinetic” (38), we would expect
the gamma weights to be positive, not negative. This may,
in part, be because the features we used included both phase
and power. In controls, we found that theta, low-alpha, and
beta features were associated with increasing MV, but delta,
high-alpha, and gamma were associated with decreasing MV
(Figure 4). In contrast, in PD subjects, theta and high-alpha
were associated with increasing MV and beta and gamma
(Figure 4). Although many studies have emphasized the critical
role of altered beta band dynamics in PD during movement
(39), gamma activity in the basal ganglia is also closely related
to the coding of movement. Insufficient recruitment of fast
gamma bursts during movement may underlie bradykinesia,
and subthalamic gamma power correlates positively with
maximal velocity (40). The above results suggest that
examining specific bands for predicting MV in isolation may be
misleading—individual bands must be considered in the context
of other bands.

There are several limitations to our study. There are a
limited number of trials which makes it hard to conduct
a within-participants analysis. However, collecting a large
number of trials in a motor task that require not just a
simple button press, but squeezing against a resistance, can
be particularly challenging in elderly and patient populations.
Unlike conventional experiments that explore reward/motor
behavior, in this experimental design, we had no explicit
reward based on movement speed and/or accuracy. For
this preliminary work, this was an explicit decision not to
introduce extra confounds. We had too few trials to adequately
dissociate complex aspects of decision-making processes in
the EEG (i.e., monitoring reward, accuracy, and movement).
Our goals were more modest here: we simply instructed
people to “move as fast as they can” without additional (e.g.,
monetary) rewards. In addition, we only investigated standard
EEG band-related features. However, defining a comprehensive
set of features that can possibly capture the effects of GVS
stimuli on dynamics of neural activity from EEG is not
easy. Consequently, we suggest using data-driven methods
like deep neural network models that can directly work with
EEG signals and are not limited to hand-picked features.
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Nevertheless, such methods require a large amount of data
to be guaranteed to find the best GVS-related features in the
raw EEG signals.

In summary, despite measuring predominately cortical
activity, the EEG can predict MV in both Parkinson’s
and control subjects. However, care must be taken to
use the EEG to guide the development of GVS stimuli,
as GVS affects EEG/behavioral relationships likely
through vestibulo-basal ganglia pathways not measurable
by the EEG.
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