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Introduction
Several methods have recently been developed for identifying 
genetic variants (mutations) associated with phenotypic traits 
in bacteria, such as drug resistance, host specificity, and viru-
lence in bacteria.1,2 This has led to the discovery of new mecha-
nisms of resistance from the analysis of single-nucleotide 
polymorphisms (SNPs) in collections of genome sequences 
from drug-resistant clinical isolates of bacterial pathogens.3-5 
One approach to inferring the relationship between genotypes 
and phenotypes is Genome-Wide Association Studies 
(GWAS). A commonly used GWAS approach tests whether 
one allele at a polymorphic site is overrepresented in cases than 
controls using contingency table tests, such as chi-square test 
or Fisher exact test.6 Another approach to GWAS uses linear 
regression to fit a predictive model for phenotypes by regress-
ing against genotypes. The coefficients in the linear model 
(LM) reflect statistical correlations between the presence of an 
allele and the occurrence of a particular phenotype. Coefficients 
in the LM are fit for each SNP and drug combination in paral-
lel, which are then tested for significance, for example, using a 
Wald test.6,7 The GWAS methods have been adapted for bac-
teria by incorporating genetic relatedness relationships in the 
form of a kinship matrix as random effects in a linear mixed 

model (LMM), to account for the more clonal nature of 
prokaryotes over eukaryotes (ie, population structure).8 
Similarly, bugwas incorporates lineage-specific effects into an 
LMM by decomposing the kinship to principal components.9 
The lineage-specific effects could also be estimated by pyseer 
using multidimensional scaling of a distance matrix as a covari-
ate in a regression model.10

As an alternative approach to GWAS, phylogeny-based 
approaches have also been developed, including PhyC,11 
PhyOverlap,4 and TreeWAS.12 The advantage of phylogeny-
based methods over LMMs is that they look at individual 
mutation events based on a phylogenetic tree, accounting for 
the evolutionary relationships among strains, rather than just 
calculating statistics based on raw proportions (overlap) of 
strains with a particular allele. PhyC (Phylogenetic Convergence 
test) uses a permutation test to determine the significance of 
association of observed nucleotide changes at a site (on 
branches inferred in a phylogenetic tree) and acquisition of 
resistance (inferred at internal nodes using maximum parsi-
mony) by computing how likely this observation would occur 
by chance.11 Still, another approach that has been proposed is 
k-mer-based methods,13-15 which analyze the association of 
short nucleotide fragments (20-30 bp [base pairs] sequences, 
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possibly including SNPs) with phenotypes. Machine Learning 
algorithms such as random forests and gradient-boosting have 
been used to identify k-mers that are significantly associated 
with drug resistance phenotypes and predictive of minimum 
inhibitory concentrations (MICs), as was applied to identify 
antibacterial resistance mutations in Salmonella.15 In addition, 
rule-based learning models employing decision trees and logi-
cal rules are developed for k-mer-based bacterial GWAS.16

Most of the methods above focus on identifying the strong-
est effects independently and work best when there is a single 
(or dominant) well-defined genetic explanation for a given 
phenotype. However, drug resistance can be multifactorial. 
There can be multiple mechanisms of resistance (loss of activa-
tors, upregulation of efflux pumps or detoxification enzymes, 
adaptations in the metabolic network, changes in cell wall per-
meability, etc.),17-19 along with compensatory mutations20 and 
epistatic effects,21 leading to a mixture of resistance-associated 
sites with weak signals (because, individually, they each are only 
a partial explanation of the phenotype). Using a “burden test” 
can help by combining multiple allelic sites within a gene, 
which are pooled before the association test.22-24 This can 
strengthen the association by pooling together mutations at 
several distinct nucleotides (eg, corresponding to multiple 
amino acids in an active site) that can confer resistance, but a 
burden test also risks diluting the signal by combining with 
other nonresistance-related mutations in the gene.

An approach to increasing these signals and improving the 
detection of genotype-phenotype associations over these prior 
methods is to take into account homoplasy. Homoplasy occurs 
when the same mutation arises independently in different line-
ages (branches of the evolutionary tree). Homoplasy can be a 
strong indicator of positive selection.25 For example, it has been 
widely observed that mutations in catalase (KatG S315T) and 
RNA polymerase (RpoB S450L) have occurred multiple times 
independently in Mycobacterium tuberculosis, even within out-
break regions, and are not just inherited through transmission 
of a single clone.11,26,27 Grandjean et  al detected homoplasic 
polymorphisms across the entire M. tuberculosis genome using 
a convergence method based on the disruption of a phyloge-
netic tree. Many well-known drug-resistant loci are observed as 
being homoplasic among the data set of a high proportion of 
multidrug-resistant (MDR) M. tuberculosis strains,28 suggest-
ing they are under selection pressure. Although not all homo-
plasy is due to drug resistance, we show it can be exploited to 
enhance association testing.

The LMM-based GWAS methods are not generally 
designed to take homoplasy into account. The statistical asso-
ciation between alleles and phenotypes is generally assessed 
without regard to the number of (inferred) mutational events 
that produced the allele, and hence these methods are not 
directly sensitive to signals of selection pressure. To identify 
regions harboring mutations under selection pressure, we pro-
pose a method for identifying regions with clusters of 

mutations as a preprocessing step to association testing. 
Mutations are treated not just as allelic sites, but as distinct 
evolutionary changes inferred phylogenetically. The signifi-
cance assessment of such clusters is based on the assumption 
that genomes evolve generally under neutral theory, with muta-
tions occurring spontaneously in random locations distributed 
throughout the chromosome. The null hypothesis is that muta-
tions/nucleotide substitutions occurring within a given span of 
sites in the DNA sequence follow a Poisson distribution 
(allowing for variations in the local mutation rate29). If nucleo-
tide substitutions observed in a region (as distinct evolutionary 
events) are more abundant than expected, then the mutations 
are unlikely to have occurred by chance within the region, and 
the clustering of mutations within the region suggests the 
effects of positive selection. By evaluating the local rate of 
changes (as opposed to polymorphic sites), homoplasic sites 
have an advantage, and indeed, even a single site with multiple 
changes could appear significant compared with other clusters 
of SNPs spanning larger regions. The significant clusters can 
then be tested for association with the phenotype by LMM-
based GWAS via a burden test. The advantages of this approach 
over conventional GWAS methods are as follows: (1) the clus-
ter analysis allows association testing to focus on regions of 
evident variability, rather than testing either all individual sites 
(typically tens-of-thousands) or all genes (thousands); (2) 
regions can be of varying size (eg, focusing on just the most 
variable portions of a gene, rather than requiring a burden test 
on all SNPs in the whole open reading frame [ORF]); and (3) 
the identification of a small subset of variable regions through-
out the genome for testing increases the statistical power by 
reducing the total number of genes/regions that have to be 
analyzed, which affects the sensitivity during post hoc multi-
ple-tests correction (P value adjustment to control the overall 
false discovery rate [FDR]30).

In this article, we describe a new approach called ECAT 
(Evolutionary Cluster-based Association Test) that is an adap-
tation of LMMs to incorporate homoplasy information for 
enhancing the identification of genes associated with drug 
resistance. ECAT involves 3 phases. First, the nucleotide 
changes at each polymorphic site are inferred by mapping them 
(using maximum parsimony) onto a phylogenetic tree con-
structed from the genome sequences of a collection of clinical 
isolates. Second, the changes are clustered to identify a subset 
of loci exhibiting a local excess of mutations. Here, homoplasy 
is exploited to increase the detection of clustered (ie, hypervari-
able) regions. Third, the clustered regions are analyzed for 
association with a drug resistance phenotype using an LMM 
(with mutations combined in each clustered region by simple 
collapsing). We show that this approach is effective in identify-
ing known genes implicated in drug resistance for in a collec-
tion of drug-resistant clinical isolates of M. tuberculosis (Mtb). 
We show that ECAT outperforms traditional LMM-based 
GWAS approaches (represented by GEMMA) by detecting 
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associations of some drug resistance loci not identified by site-
based or gene-based analyses.

Materials and Methods
Genomic data preprocessing for empirical data sets

We start by assembling each genome in the collection using a 
comparative assembly approach by aligning all reads (.fastq 
files) to a reference genome using BWA (Burrows-Wheeler 
Aligner).31 We exclude mixed, contaminated or low-coverage 
(<×30) strains. Next, we call genetic variants of polymor-
phisms (nonsynonymous and synonymous) and short indels 
(<10 bp, extracted from .sam files) from the assembled genome 
for each strain using in-house scripts. Then, we obtain a multi-
ple sequence alignment of SNPs and indels, ignoring those that 
are ambiguous (<70% base-call homogeneity), in repetitive 
regions, or in regions with large-scale deletions in some strains. 
Small indels (<10 bp) with the same sequence and coordinates 
are identified together. Finally, we build a phylogenetic tree 
based on SNPs using a maximum parsimony method.32

Three-phase ECAT

The ECAT involves 3 phases, including homoplasy signals 
inference, clustered region identification, and association test-
ing. It first computes the homoplasy count for each polymor-
phic site, then identifies the clustered regions based on the 
homoplasy counts (using the Poisson distribution), and finally 
tests the associations between the clustered regions and resist-
ance to a drug of interest (using an LMM). Given a data set of 
t strains of a genome of size n bp and a total of m polymorphic 
sites, ECAT takes 2 input files that include a multiple sequence 
alignment of nonsynonymous SNPs or small indels, and a phy-
logenetic tree built from both synonymous and nonsynony-
mous SNPs. The details of the 3 phases of ECAT are described 
as follows.

Phase 1: homoplasy inference.  In the first phase of ECAT, we 
infer the degree of homoplasy for each polymorphic site by cal-
culating a homoplasy index (HI) as the number of evolutionary 
changes inferred at each site.33 Homoplasy index (HI) is 
defined as one plus the difference between the number of actual 
changes ( )ctree  and the minimum number of changes ( )minc . 
The actual number of changes is inferred from the phyloge-
netic tree using Sankoff ’s algorithm.34 For a polymorphic site 
(a character χ ), the minimum number of changes ( )minc  is the 
number of observed character states (nucleotides) minus one. 
The homoplasy index of 1 for a site at position i represents that 
the site is homoplasy-free, whereas the higher value of HIi  
represents multiple changes (independent evolutionary events) 
at the site. The excess changes at a site i ( )cexcessi

 is the difference 
between the number of actual changes ( )ctree  and the mini-
mum number of changes ( )minc . The homoplasy index HI at 
the site i is defined as the excess changes plus 1.

c c c i nexcessi treei i
= − ≤ ≤min , 1 	 (1)

HI c i ni excessi
= + ≤ ≤1 1, 	 (2)

Phase 2: clustered regions identif ication.  To identify the clus-
tered regions based on homoplasy locally, we use a Poisson dis-
tribution for detecting hypervariable clusters proposed by 
Wagner.29 Given m mutations occurring in a genome of n 
nucleotides, the mutation rate λ  is estimated by the number of 
mutations evolved over the entire genome, which equals m n/
. The probability of a region of size x bp containing k mutations 
can be modeled as a Pearson type III distribution.29
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Here, in the second phase of our model, the probability of k 
evolutionary changes (sum of homoplasy indices, HIi ) occur-
ring within a window of u consecutive sites, i to i + u, spanning 
dk nucleotides, under a local rate of changes ( )′λ , is estimated as
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where ′λ  is the local rate of changes within a smoothing win-
dow of size w bp.

For each polymorphic site across the genome, we group 
adjacent sites up to a given span of SNPs as a region and calcu-
late its probability using equation (5). The maximum size of 
the sliding window of SNPs, u is determined by the mutation 
rate and the average size of genes in the data set. We compute 
the expected number of SNPs in the largest genes in the 
genome. The size of the largest genes is estimated as the mean 
size plus 2 standard deviations (to exclude outliers). For exam-
ple, in M. tuberculosis, given the overall mutation rate and 
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gene-size distribution, we estimate that most genes will have at 
most 17.2 polymorphic sites on average. (In our experiments 
below, we test all windows of size 1-20 consecutive SNPs for 
each site to identify hypervariable regions.) For multiple test 
correction, the P values are adjusted for a 5% FDR using the 
Benjamini-Hochberg procedure.30 We sort all regions by the 
adjusted P values Padj .  and then apply a greedy algorithm to 
examine each ordered region to obtain nonoverlapping clus-
tered regions, as follows. For each candidate region in sorted 
order, if the candidate region does not overlap with previously 
selected regions, then the region is marked as selected. 
Otherwise, the overlapping region is discarded from the list. 
After iterating through the entire list (up to Padj . .05= ), we 
obtain a set of significant, optimized, nonoverlapping clustered 
regions. Note, a gene or an intergenic region might have 0, 1, or 
more than 1 nonoverlapping clustered subregions.

The analysis of SNP clusters is illustrated in Figure 1 for a 
200 kb region in the M. tuberculosis genome. The green bars 
represent the local mutation rate in overlapping windows of 10 
consecutive SNPs. The black bars stand for the homoplasy 
indexes (number of evolutionary changes) for all polymorphic 
sites. The yellow line represents the average mutation rate 
(smoothed over 100 kb). It increases slightly from the left to 
the right of the region, which shows the advantage over using a 
smoothed average over a single, global mutation rate. The 
dashed red line represents the significance threshold using a P 
value cutoff of .003125 (α = . /05 16000  regions) based on the 
Poisson model (applying a simple Bonferroni correction for 
illustration). The peaks above the cutoff represent regions 
where changes are clustered more densely than expected by 
chance. The chromosomal region shown contains genes emb-
CAB and ubiA, which are involved in ethambutol resistance. 
These genes show clear evidence of excess mutations (presum-
ably selected as a result of exposure to ethambutol as a chemo-
therapeutic), and it is such clustered regions where association 
testing is focused.

Phase 3: association tests.  In the third phase of ECAT, we test 
associations of clustered regions identified from the second phase 
against phenotypes of antibiotic resistance using an LMM.7 As 
both homoplasic and nonhomoplasic polymorphic sites are used 
to identify hypervariable regions, clusters derived from phase 2 
may include several polymorphic sites of HI = 1 within a small 
span of gene/intergenic region, or an individual site with a rela-
tively high HI (HI > 1), or a region consisting of both sites with 
HI = 1 and HI > 1. The genotypes of clusters are determined by 
grouping allelic sites within each cluster using a binary collapsing 
method (burden test), which is categorized to the allele counting 
methods. Hence, correcting for the population structure is needed 
in this phase for association tests to discount mutations shared by 
genetically similar members of the population.

To correct for population stratification, regression-based 
methods could employ covariates in the regression models to 
account for structure effects. Among commonly used regres-
sion-based methods, LMMs are able to account for confound-
ers using both fixed effects (covariates) and random effects 
(kinship/genetic relatedness). Thus, an LMM-based approach 
was chosen for performing association tests in this phase. The 
LMM implemented in GEMMA7 was shown to perform bet-
ter than the linkage agglomerative clustering approach in 
PLINK6 and the dimensionality reduction method in pyseer10 
for controlling cofounders in terms of precision, recall, and F1 
scores.35 Hence, GEMMA is chosen as a foundation for evalu-
ating statistical significance of clustered regions in ECAT.

For each clustered region, polymorphic sites are pooled 
within the region. If a strain that has at least one mutation 
among the sites within the boundaries of the region, the geno-
type of the strain within the region will be marked as having a 
mutation. The character state of strain j at site i ( )χ j i,  is set to 
0 if it is the same as the reference state or converted to 1 if it is 
mutated. For a region of size u SNPs starting from the site at 
position i, the genotype (or “burden”) of a strain j (xj) within 
the region from SNP i  to SNP i u+  is determined by

Figure 1.  Analysis of single-nucleotide polymorphism (SNP) clusters in a 200 kb region. The green bars represent the local mutation rate and the black 

bars stand for the homoplasy indexes. Only regions where the local density of nucleotide changes exceeds the significance threshold (dashed red line) 

based on the Poisson distribution with the average mutation rate (yellow line) would be considered for association testing with drug resistance 

phenotypes.
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The significance of the association between a clustered 
region and a particular phenotype of n individuals such as drug 
resistance is determined by the Wald test using GEMMA.7 
GEMMA solves the following linear equation:
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where MVN is a multivariate normal distribution, Y  is a vector 
of phenotypes for each strain, X  is a matrix encoding the geno-
types (alleles) for each site/region/gene, coefficients β  are the 
effect sizes of the genotypes, γγ  is a vector of random effects 
estimated from a genetic relatedness matrix ( )Kn n× , and εε  is a 
vector of errors (assumed to be normally distributed, 
ε σ N e(0, )2 ). Note that Y  can be binary (eg, 0 = Sensitive or 
1 = Resistant for each strain based on standard concentrations for 
drug susceptibility tests or cutoffs for MICs) or quantitative (eg, 
log of MICs). To account for population structure, a genetic 
relatedness (kinship) matrix K  is used as a random effect in an 
LMM that captures genetic covariances (genotype correlations) 
between each pair of individuals. We apply both synonymous 

and nonsynonymous SNPs to calculate the kinship matrix but 
exclude well-known drug-resistant SNPs (see table below). The 
P values are subsequently adjusted for an FDR of 5% using a 
Benjamini-Hochberg procedure for multiple test correction.30 
The regions of negative effect sizes are ignored as we focus on 
the positive associations between the presence of mutations and 
drug resistance.

Our 3-phase evolutionary cluster-based algorithm is sum-
marized in Figure 2.

Results
Mycobacterium tuberculosis

Genetic variants, lineages distribution, and antitubercular 
drugs.  To evaluate the ECAT method, we analyze a data set of 
660 clinical isolates of M. tuberculosis with drug susceptibility 
data for 7 antibiotics.5 Mycobacterium tuberculosis is the causa-
tive agent of tuberculosis (TB) that primarily infects the human 
lung. The M. tuberculosis genome is about 4.4 Mb in size and is 
believed to be highly clonal, with little evidence of recombina-
tion among isolates36 and low genetic diversity worldwide.37,38 
To treat TB infection, current antitubercular drugs include 5 
first-line drugs and several second-line drugs. The 5 first-line 
drugs are isoniazid (INH), rifampicin (RIF), streptomycin 
(STR), ethambutol (EMB), and pyrazinamide (PZA). Other 
second-line drugs include fluoroquinolones (ofloxacin, levo-
floxacin, moxifloxacin, and ciprofloxacin), ethionamide (ETH), 

Figure 2.  ECAT algorithm: 3-phase Evolutionary Cluster-based Association Test.
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d-cycloserine (CS), amikacin (AMK), kanamycin (KAN), 
capreomycin (CAP), and para-aminosalicylic acid (PAS). 
Mechanism of resistance to several antibiotics in M. tuberculosis 
has been identified.39 The well-known annotated loci associ-
ated with antitubercular drugs are listed in Table 1.

We ran ECAT on an empirical data set of M. tuberculosis 
clinical isolates from Lima, Peru (BioProject: PRJNA343736), 
which includes many MDR strains.5 An MDR-TB strain is 
defined as being resistant to both INH and RIF, the 2 first-line 
antitubercular drugs, and many isolates are resistant to addi-
tional drugs. We collected a subset of 660 strains with drug 
susceptibility data for 7 antibiotics. The proportions of drug 
susceptibility for INH RIF, EMB, STR, PZA, KAN, and CPX 
(ciprofloxacin) are shown in Figure 3A. A heatmap of the cor-
relations between pairs of antitubercular drugs is shown in 
Figure 3B. The correlation coefficients between many pairs of 
first-line drugs are larger than 0.5, suggesting that they have a 
high degree of overlap among resistant strains (ie, co-resist-
ance), which is likely due to transmission of several MDR 
clones in the region. The highest correlation, between INH 
and RIF resistance, is 87%.

We aligned the genome sequences of the 660 isolates against 
the reference genome, H37Rv (GenBank: NC_000962.2), 
using MUMmer.40 We obtained 22 441 polymorphic sites in 
the alignment where 15 485 are nonsynonymous, excluding 
gaps, ambiguous sites, and repetitive regions (including PPE 
and PE_PGRS genes). The overall mutation rate is 0.0051 per 
nucleotide (22 441 SNPs/4 411 532 bp). Only 1776 sites are 
homoplasic throughout the genome. All polymorphic sites, 
excepting well-known drug-resistant loci (Table 1), were used 
to estimate the phylogeny by maximum parsimony using 
PAUP.32 We determined the family/lineage of each strain by 
examining lineage-specific biomarkers.41 The phylogenetic 

tree labeled with lineages is shown in Figure 4, where most 
strains are categorized to lineage 2 (Beijing) or lineage 4 (LAM, 
Haarlem, X-clade, and T-clade).

Identification of optimized clusters of SNPs.  Mycobacterium tuber-
culosis exhibits a global mutation rate of approximately 5 SNPs 
per kilobase (0.005 per nucleotide) in this data set. By applying 
the Poisson model to the homoplasy indices of nonsynonymous 
polymorphic sites in sliding windows of 20 SNPs, we obtained 
596 clustered regions where the adjusted P values are less than 
.05 (Supplemental Table S1). The occurrence of clustered 
regions across the entire genome is shown in Figure 5. The 
median size of the clustered regions is 11 bp (range: 1-3397 bp, 
75th percentile: 81 bp). Several well-known drug-resistant loci 
are represented by clusters and found to be highly homoplasic, 
including the genes gyrA, embB, rpoB, rpoC, katG, rpsL, gidB. As 

Figure 3.  (A) Proportion of drug-resistant strains for 7 antitubercular 

drugs. The proportion ranges from 18.2% (CPX) to 40.8% (INH). KAN 

and CPX are available for only a subset of 286 strains. (B) Heatmap plot 

of pairwise correlations between drugs. Each cell represents the 

correlation between a pair of drug susceptibilities. Darker green presents 

stronger co-resistance between drugs for strains. The correlation 

between INH and RIF is 0.87, suggesting that many strains are resistant 

to both INH and RIF or sensitive to both of the drugs. CPX indicates 

ciprofloxacin; EMB, ethambutol; INH, isoniazid, KAN, kanamycin; PZA, 

pyrazinamide; RIF, rifampicin; STR, streptomycin.

Table 1.  Most frequent resistance mutations observed for several 
antitubercular drugs.

Antibiotics Resistance mutations

INH (isoniazid) katG: S315T/R; inhA prom.: t-8c, c-15t, 
g-17t; inhA: S94A, I194T, I21T

RIF (rifampicin) rpoB: RDRR (a.a. 435-450); rpoC

EMB (ethambutol) embB: M306V, M306I, G406S, G406A; 
embCA intergenic region

STR (streptomycin) rpsL: K43R, K88T; gidB: 
nonsynonymous mutations; rrs: A514C

PZA (pyrazinamide) pncA: nonsynonymous mutations and 
indels

KAN (kanamycin) rrs: A1401G; upstream of eis

CPX (ciprofloxacin) gryA: A90, D94

ETH (ethionamide) ethA; inhA promoter

PAS (p-aminosalic.) folC; thyA
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an example, rpoB has a region with 111 changes spanning 
1066 bp (encompassing the Region Determining Rifampicin 
Resistance, RDRR), implying a local mutation rate of 0.104 per 
nucleotide. We also identify some noncoding regions that are 
homoplasic and involved in antitubercular resistance such as 
inhA promoter region (Rv1482c-fabG1, coordinate: 1673423-
1673432), the upstream of eis (coordinate: 2715340-2715346), 
and the intergenic region of embC-embA (coordinate: 

4243217-4243228). Not all homoplasic sites are associated with 
drug resistance. For example, the gene lldD2 is also identified as 
a homoplasic cluster, though it does not have any known rela-
tion to drug resistance.42 These regions have a local excess of 
changes (phase 2 of ECAT), though they turn out not to be 
significant when assessed for association with drug-resistant 
phenotypes (phase 3).

Association test for clustered regions for individual drugs.  The 
third phase of ECAT is to perform association testing on 
regions against resistance to individual drugs, as not all clus-
tered polymorphic regions are associated with drug resistance 
(eg, lldD2). We test the association of antibiotic resistance with 
clustered regions by an LMM, controlling for confounders, 
using GEMMA.7 For calculating the genetic relatedness 
matrix, we exclude SNPs at the canonical drug-resistant loci 
such as katG, rpoB, embB (loci listed in Table 1). We evaluate 
the performance of our method by comparing the results with 
GEMMA using genotypes defined at the individual site or 
gene levels. To assess the effect of LMM-based stratification 
corrections, we also apply an LM without controlling for any 
confounders (an accessory function implemented in GEMMA) 
on the same data set for association tests, and then compare 
their performance on correcting population stratifications.

Clustering enhances the detection of compensatory mutations in 
rpoC associated with RIF resistance.  Rifampicin is a first-line 
antitubercular drug that inhibits DNA-dependent RNA syn-
thesis (transcription). It binds to the β -subunit  of the RNA 
polymerase, and the known mutations that confer RIF resist-
ance are mostly located within the RDRR region of rpoB 
(amino acids 435-450).43,44 In addition, Comas et al20 observed 
that mutations in genes rpoC and rpoA have compensatory 
effects for rpoB mutations (ie, compensating for fitness cost), 

Figure 4.  Phylogenetic tree and the distribution of lineages of 660 

clinical isolates from Peru. The number of isolates and labeling color for 

each lineage is as follows: Red: Beijing (78); green: LAM (255); purple: 

Haarlem (167); blue: T-clade (82); orange: X-clade (42); yellow: H-clade 

(2); none: unrecognized (34).

Figure 5.  Manhattan plot showing nonoverlapping clustered regions across the genome in Mycobacterium tuberculosis. Clustered regions that involve 

known loci associated with INH, RIF, EMB, STR, and other drug resistance are labeled in red, blue, green, orange, and black, respectively. If multiple 

clusters in a gene are identified, only the most significant cluster is shown in the plot. EMB indicates ethambutol; INH, isoniazid, KAN, kanamycin; RIF, 

rifampicin; STR, streptomycin.
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stemming from their physical interactions in the RNA poly-
merase complex. Compensatory mutations in rpoA tended to 
be clustered around amino acid 187, whereas they were distrib-
uted throughout the rpoC. While association of rpoB with RIF 
resistance is easy to detect with any method, only ECAT is able 
to detect the association of the secondary gene (rpoC) in our 
data set (see Table 2).

Figure 6A shows that there are 35 nonsynonymous poly-
morphic sites in the rpoB gene from codons P45S to K832E, 
and 9 SNPs are located in the RDRR region (codons 435-450). 
Our ECAT test identified 3 clustered regions in rpoB from 
phase 2, and 2 of them are found to be strongly associated with 
rifampicin resistance in phase 3, codon S450L by itself, and the 
group of 12 polymorphic sites from S428R to S450T that cov-
ers the RDRR region (see Table 3). S450L is highly homopla-
sic, with 66 changes. For the second region (S428R-S450T), 
there are 44 changes over 12 polymorphic sites, which is highly 
significant by the Poisson distribution. In the site-based analy-
sis, codons D435V and S450L are identified to be associated 
with RIF resistance ( . )Padj . 05< . Clinically, these are the most 
frequently observed RIF-resistant mutations.45 Taken together, 
they account for 79.3% of RIF-resistant strains (196/247) in 
our data set. There are also other sites in genes associated with 
resistance to other drugs (eg, katG:S315T), but this is probably 
due to co-resistance in the data set, where correlation is as high 
as 87% (for RIF and INH). Grouping all sites within rpoB 
together shows a significant association in the gene-based 
analysis with GEMMA ( Padj . .= × −9 2 10 95 , rank = 1), even 
though multiple non-DR mutations occur outside of the 
RDRR region.

For rpoC, it exhibits 45 nonsynonymous SNPs from codons 
A17T to V1252L, where 9 SNPs are homoplasic and distrib-
uted throughout the gene at codons V483G, I491V, L507V, 
V517L, L527V, N698S, A734V, P1040A, and V1252L (Figure 
6C). Codon V483G has the highest homoplasy, with 10 
changes. We identified 5 clustered regions, including regions 
Q479R-A492P, L507V-L527V, V1039G-P1040R, and 2 sites 
by itself, N698S and V1252L. The region Q479R-A492P is 
identified to be strongly associated with RIF resistance 
( Padj . .= 1 25 10 3× − , rank = 9). Conversely, both site-based and 
gene-based analyses in GEMMA fail to show any significant 
association between rpoC and RIF resistance. The individual 
site in rpoC with the highest significance is codon V483G, 
which ranks as 24th with Padj . .= 740 . Testing rpoC at the 
gene-wide level shows that its association with RIF resistance 
ranks it as 16th with Padj . .= 106 . Grouping all sites within the 
gene enhances the significance of association, but it is still not 
significant enough by the default 5% FDR. This is because it 
may be affected by other nonresistance-related or lineage-spe-
cific mutations such as G594E. Codon G594E in rpoC is the 
marker of Haarlem family.46 In this data set, 240 strains harbor 
mutations in this locus, but 170 are sensitive to rifampicin, 
which is close to the background frequency of 62.58%.

Table 2.  Summary of analyses of loci associated with rifampicin 
resistance by 3 statistical methods.

Locus ECAT Site-based 
GEMMA

Gene-based 
GEMMA

rpoB 8.33 × 10−37 2.16 × 10−35 9.84 × 10−94

(2) (2) (1)

rpoC 0.00125 0.74 0.106

(9) (24) (16)

rpoA 0.435 0.983 0.997

(36) (977) (396)

Adjusted P values for the highest-ranked region or site with each locus are given, 
along with rank (in parentheses). Significant associations are boldfaced in red.
Abbreviation: ECAT, Evolutionary Cluster-based Association Test.

Figure 6.  The distributions of homoplasy index for each polymorphic site 

in the genes (A) rpoB, (B) rpoA, and (C) rpoC. The y-axis presents 

number homoplasy index and the x-axis represents the amino acid 

position. A codon exhibiting more than 1 change (homoplasic site) is 

labeled in text. Clusters are boxed with solid blue borders for significant 

associations with rifampicin (RIF) resistance and dashed red borders for 

nonsignificant ones.
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None of the 3 methods detects the association of mutations 
in rpoA  with RIF resistance. However, ECAT comes closest, 
identifying a cluster in rpoA  that ranks much higher than by 
either method with GEMMA. Nine nonsynonymous SNPs in 
total occur in rpoA from codons L80V to E319K (Figure 6B). 
None of them are homoplasic, as the SNPs are mostly repre-
sented by a single strain at each site. Our cluster-based approach 
focuses on the region of 5 SNPs between amino acids 180 and 
187 spanning 21 bp clustered from the second-phase analysis 
( . ).Padj = ×9 60 10 5− . Although the region would not be identi-
fied to be associated with RIF resistance given the FDR adjust-
ment ( Padj . .= 435 ; see Table 3), it ranks highly as 36th out of 
596 regions. Seven strains exhibit at least 1 SNP within the 
region and they are all resistant to RIF. In the site-based analy-
sis with GEMMA, no association is identified for any indi-
vidual SNPs in rpoA (highest rank: 977th out of 22 441 sites). 
Similarly, grouping all SNPs within the gene rpoA suggests no 
association from the gene-based analysis (rank: 396th out of 
4657 genes or intergenic regions with SNPs).

Thus, for cases such as rpoB, where changes in an individual 
site are abundant enough to be strongly linked with resistance, 
our cluster-based method performs as well as other methods in 
terms of identifying the best grouping of SNPs that maximizes 
the association. For other cases such as rpoC and rpoA, where 
changes at an individual site are not enough to be identified from 
the association test, optimal grouping of SNPs within a clustered 
region helps identify resistant-related mutations (Table 4).

Clustering enhances the detection of secondary resistance mutations 
associated with ethambutol.  Ethambutol is a first-line drug 
involved in the inhibition of cell wall synthesis by targeting 
arabinogalactan biosynthesis (a cell wall glycolipid in M. tuber-
culosis). Mutations in the embB gene (especially codons 306, 
406, and 497, which are the most frequent) are primarily 
responsible for mediating EMB resistance.47,48 Recently, it has 
been reported that mutations in the embC-embA intergenic 
region are also associated with EMB resistance with low fre-
quency, and these have been shown to affect expression of 
genes in the embCAB operon.49 embA, embB, and embC form a 
cell wall complex that is involved in transferring lipoarabi-
nomannan (LAM) precursors to the outer membrane. Brossier 
et al49 found that about 70% of ethambutol-resistant clinical 
isolates harbored mutations in embB and 15% of them had 
mutations in the embC-embA intergenic region (especially 
positions −8 to −21), affecting expression. Growing evidence 
suggests that ubiA is also associated with EMB resistance, 
especially high-level EMB resistance.50 ubiA encodes a deca-
prenyl-phosphate 5-phosphoribosyltransferase in the pathway 
for synthesizing LAM.51 All 3 GWAS methods detect the 
association between EMB resistance and embB and ubiA, but 
only ECAT detects the association with the intergenic region 
of embC-embA.

There are 31 nonsynonymous SNPs in the embB gene, and 
SNPs at codons M306 and G406 are highly homoplasic, with 
51 changes and 16 changes, respectively (inferred from the tree 
using Sankoff ’s algorithm) (Figure 7A). These 2 residues are 
each identified by ECAT as separate clustered regions in embB 
and are found to be strongly associated with EMB resistance 
(Table 5). They each consist of a pair of adjacent nucleotides 
with many inferred changes, producing small clusters which are 
statistically significant due to homoplasy. On testing for asso-
ciation with EMB resistance, the ranks of the regions at codons 
306 and 406 are second and sixth with the adjusted P values 
1.72 × 10−38 and 1.79 × 10−9, respectively. The other 2 methods 
(GEMMA applied to individual sites or collapsing them over 

Table 3.  Association of RIF resistance and genetic variants in regions 
identified by ECAT for Mycobacterium tuberculosis.

Rank Region Padj

1 katG:S315T-S315T 1.60 × 10−55

2 rpoB:S450L-S450L 8.33 × 10−37

3 rpoB:S428R-S450T 3.01 × 10−21

4 embB:M306V-M306I 1.24 × 10−15

5 pncA:S59F-upstream of pncA 1.16 × 10−14

6 rpsL:K43R-K43R 1.12 × 10−6

7 gidB:R96L-V65G 3.13 × 10−5

8 ethA:R279*-C131Y 1.82 × 10−4

9 rpoC:Q479R-A492P 1.25 × 10−3

10 Noncoding region between 
Rv3366-Rv3367

1.60 × 10−3

. . .  

36 rpoA:T187A-A180V .435

The dashed line shows the significance threshold for FDR < 0.05.
Mutations known or suspected to be relevant to RIF resistance are bold-faced.
Abbreviations: ECAT, Evolutionary Cluster-based Association Test; FDR, false 
discovery rate; RIF, rifampicin.

Table 4.  Summary of analyses of loci associated with ethambutol 
resistance by 3 statistical methods.

Locus ECAT Site-based 
GEMMA

Gene-based 
GEMMA

embB 1.72 × 10−38 2.75 × 10−18 1.98 × 10−82

(2) (2) (1)

embCA 0.0264 0.792 0.257

(26) (104) (33)

ubiA 1.98e−08 0.0823 1.96 × 10−14

(7) (45) (5)

Adjusted P values for the highest-ranked region or site with each locus are given, 
along with rank (in parentheses). Significant associations are boldfaced in red.
Abbreviation: ECAT, Evolutionary Cluster-based Association Test.
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the whole gene) capture the association between embB and 
EMB resistance as well (Table 6).

Seven polymorphisms exist within the embC-embA inter-
genic region spanning 39 bp from coordinates 4 243 190 to 
4 243 228 (−43 to −5 bp upstream of embA), and 3 of the SNPs 
are homoplasic (see Figure 7C). In the second phase of ECAT, 
a clustered region is obtained consisting of 6 SNPs spanning 
12 bp from coordinates 4 243 217 (−16) to 4 243 228 (−5). The 
region has 13 changes in total and is identified to be signifi-
cantly associated with EMB resistance ( Padj . .= 026 , rank = 25; 
see Table 5). However, the other 2 methods (site-based and 
gene-based analysis with GEMMA) do not detect any associa-
tion in embC-embA. The highest association at the site level 
occurs at nucleotide −11 within the intergenic region, where its 
rank is 104 and Padj . .= 792 . We observed that the allele fre-
quency is not high enough for any single site within embC-
embA, as only 1.97% of strains have mutations (13/660) at 
nucleotide −16, which is the most frequent site in this locus. 
Grouping all sites within embC-embA in GEMMA shows no 
association with EMB resistance; its rank is 33 and Padj . .= 257
. We found that 23 strains have at least one of the 7 SNPs in the 

region, but 7 strains are sensitive to EMB, so the gene-based 
approach with GEMMA does not detect this association either.

For the ubiA (Rv3806c) gene, there are 20 nonsynonymous 
SNPs from A35S to E273D spanning 717 bp, where 4 are 
homoplasic, including A38V, S173A, L178V, and M180V 
(Figure 7B). With ECAT, 2 clustered regions within ubiA are 
found to be associated with EMB resistance. The first region, 
F248L-L158S, consists of 18 SNPs spanning 272 bp and the 
second region clusters 2 codons A35S and A38V together. 
None of the mutations in ubiA is identified to be involved in 
EMB resistance by the site-based test in GEMMA with 5% 

Figure 7.  The distributions of homoplasy index for each polymorphic site 

in the genes (A) embB, (B) ubiA, and the intergenic region (C) embCA. 

The y-axis presents number homoplasy index and the x-axis represents 

the amino acid position. A codon exhibiting more than 1 change 

(homoplasic site) is labeled in text. Clusters are boxed with solid blue 

borders for significant associations with ethambutol (EMB) resistance 

and dashed red borders for nonsignificant ones.

Table 5.  Association of EMB resistance and genetic variants in 
regions identified by ECAT for Mycobacterium tuberculosis.

Rank Region Padj

1 katG:S315T-S315T 1.63 × 10−50

2 embB:M306V-M306I 1.72 × 10−38

3 rpoB:S428R-S450T 5.93 × 10−28

4 embB:E405D-G406D 1.79 × 10−9

5 rpoB:S450L-S450L 1.79 × 10−9

6 pncA:S59F-upstream of pncA 2.94 × 10−9

7 ubiA:F248L-L158S 1.98 × 10−8

8 embB:Y319S-D328G 1.77 × 10−6

9 pncA:V139A-V93L 2.52 × 10−6

10 rrs:A1401G-A1401G 4.92 × 10−6

19 rrs:C513T-C517T 1.32 × 10−3

26 embCA:−5 to −16 bp upstream of 
embA

.0264

Mutations known or suspected to be relevant to RIF resistance are bold-faced.
Abbreviations: ECAT, Evolutionary Cluster-based Association Test; EMB, 
ethambutol.

Table 6.  Summary of analyses of loci associated with streptomycin 
resistance by 3 statistical methods.

Locus ECAT Site-based 
GEMMA

Gene-based 
GEMMA

rrs 0.021 0.854 4.04e-06

(12) (35) (6)

rpsL 1.70 × 10−9 1.11 × 10−7 4.53 × 10−10

(5) (2) (5)

gidB 4.76 × 10−13 0.773 0.966

(2) (10) (1719)

Adjusted P values for the highest-ranked region or site with each locus are given, 
along with rank (in parentheses). Significant associations are boldfaced in red.
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FDR. The highest ranked site occurs at A35S with rank = 45 
and Padj . .= 082 . However, at the gene level with GEMMA, 
combining all changes in ubiA together (gene-level test) shows 
a strong association of ubiA with ethambutol resistance, where 
the rank = 5 and Padj . .= × −1 96 10 14 .

Overall, our ECAT method detected associations between 
EMB resistance and mutations in embB, the intergenic region 
of embC-embA and ubiA, whereas other methods (site-based 
and gene-based analyses with GEMMA) failed to identify the 
association of the embC-embA intergenic region with EMB 
resistance. The failure of site-based and gene-level GWAS 
analysis is likely due to low allele frequency, whereas ECAT 
takes advantage of clustering sites together optimally to 
enhance significance.

Clustering helps identify the role of gidB in streptomycin resist-
ance.  Streptomycin is a first-line anti-TB drug that binds to 
ribosomal protein S12 and the 16S ribosomal RNA (rrs) to 
inhibit translation (protein synthesis). Resistance to streptomy-
cin is mediated by nucleotide substitutions of A514C in rrs 
(16S rRNA) and codons K43R and K88T in rpsL (gene encod-
ing the S12 ribosomal protein).52,53 Also, nonsynonymous 
mutations at gidB (a 16S rRNA methyltransferase) have been 
reported to confer streptomycin resistance.54 The methylation 
of the ribosome is needed for optimal binding of streptomycin, 
so loss-of-function mutations in the methyltransferase mediate 
resistance to STR. While all 3 GWAS methods detect associa-
tions between streptomycin resistance and genes rpsL and rrs, 
gidB is harder to detect because mutations are spread through-
out the gene, and are interspersed with nonassociated SNPs, 
for example, universal mutation S100F (relative to H37Rv) or 
lineage-specific mutations such as L16R and E92D.55,56 L16R 
is a marker of LAM strains, whereas E92D is a marker of Bei-
jing family.55

For rpsL, only 2 nonsynonymous SNPs are observed in the 
alignment, K43R and K88R/T. Both are homoplasic, with 11 
and 6 changes at each site. As these 2 mutations occurring in 
rpsL are separated from each other by 135 bp, each is locally 
clustered by itself in the second phase of ECAT. In the third 
phase, the codon K43R is identified to be associated with STR 
resistance (rank = 5 and Padj . .= × −1 70 10 9 ), where 27 strains 
harbor the mutation and 26 are resistant (see Table 7). The 
association between the codon K88T and STR resistance is not 
significant, probably because the allele frequency is relatively 
low (2.3%). The site-based analysis with GEMMA identifies 
codon K43R in rpsL (rank = 2 and Padj . .= × −1 11 10 7 ). The 
gene-based analysis reports the gene rpsL to be associated with 
STR resistance (rank = 5 and Padj . .= × −4 53 10 10 ).

For the 16S rRNA, our ECAT method identifies the asso-
ciation between streptomycin resistance and A514C at rrs 
within a clustered region of 3 consecutive SNPs (a.a. C513T-
C517T; rank = 12 and Padj . .= 021 ). It is not detected by the 
site-based method (rank = 35 and Padj . .= 854 ) probably due to 
low allele frequency (1.1%). Seven strains harbor mutation at 

A514C, and 5 are resistant to STR. Gene-level analysis with 
GEMMA shows rrs is significantly associated with STR resist-
ance by collapsing all SNPs together, but this is probably due to 
kanamycin co-resistance (the primary kanamycin resistance 
mutation is rrs:a1401g). Among 56 KAN-resistant strains, 47 
are also resistant to STR, which constitutes 83.9% co-resist-
ance. Thus, site-based analysis shows that A1401G at rrs is 
associated with STR resistance (rank = 5 and Padj . .= 0085 ), 
even though this particular mutation only confers KAN resist-
ance. The A1401G mutation itself occurs in 36 strains, of 
which 32 are (coincidentally) STR-resistant (out of 249 STR-
resistant strains in total).

Figure 8 shows the distribution of polymorphic sites in 
gidB, where 55 nonsynonymous mutations are spread out from 
codons L16R to L196F, spanning 542 bp. In total, 11 sites are 
homoplasic, where codons L145F and P75S are the top 2, with 
5 and 4 changes, respectively. The ECAT detects a strong asso-
ciation of one clustered region within gidB, R96L-V65G 
(rank = 2 and Padj . .= × −4 76 10 13 ). The other region from 
L108R to I179V ranks 15th with Padj . .= 0785 , which is just 
beyond the FDR threshold (Table 7). However, no association 
between gidB and STR resistance is detected by either site-
based or gene-based analysis with GEMMA. The highest 
association at the individual site level for gidB occurs in D67G, 
Padj . .= 773 . The association by the gene-based analysis with 
GEMMA shows that gidB is not significantly associated with 
STR resistance, as its rank is 1719 and Padj . .= 966 . This is 
because gidB is a ribosome methyltransferase, and resistance is 
conferred by loss-of-function mutations, which can occur any-
where throughout the ORF. Therefore, individual sites might 
not have high enough allele frequency. Also, not all SNPs are 

Table 7.  Association of STR resistance and genetic variants in regions 
identified by ECAT for Mycobacterium tuberculosis.

Rank Region Padj

1 katG:S315T-S315T 8.91 × 10−32

2 gidB:R96L-V65G 4.76 × 10−13

3 embB:M306V-M306I 4.17 × 10−12

4 rpoB:S428R-S450T 6.45 × 10−12

5 rpsL:K43R-K43R 1.70 × 10−9

6 rrs:A1401G-A1401G 2.74 × 10−4

7 pncA:S59F-upstream of pncA 3.63 × 10−3

12 rrs:C513T-C517T .021

15 gidB:I179V-L108R .0785

21 rpsL:K88T-K88T .245

The dashed line shows the significance threshold for FDR < 0.05.
Mutations known or suspected to be relevant to RIF resistance are bold-faced.
Abbreviations: ECAT, Evolutionary Cluster-based Association Test; FDR, false 
discovery rate; STR, streptomycin.
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involved in resistance and some may be lineage-specific. Thus, 
grouping all SNPs without excluding these SNPs causes 
GEMMA to fail to report a significant association. In fact, 
when we remove common and lineage-specific SNPs (S100F, 
L16R, E92D), the association between gidB and STR resist-
ance becomes significant by the burden test (top rank). Hence, 
our cluster-based method does a much better job identifying 
the significance of association of mutations in gidB with STR 
resistance than other GWAS methods.

Effect of population stratif ication corrections.  To characterize the 
effect of population stratification corrections on ECAT (which 
accounts for kinship relationships in an LMM), we compared 
it with the effect of an LM-based approach (without random 
effects) by applying an LM to regress genotypes against phe-
notype of interests directly without correcting for confounders 
based on genetic relatedness. This is achieved by running 
GEMMA in a mode in which it ignores the kinship matrix 
and does not attempt to estimate random effects. The signifi-
cant hits estimated from both models using a cutoff of adjusted 
P values <.05 for associations between 3 types of genotypes 
and resistance to one of the drugs, RIF, EMF, or STR, are listed 
in Tables 8 to 10, respectively. When using an LM, the number 
of significant hits is much higher than the number of hits esti-
mated from an LMM in general, regardless of genotype. The 
Quantile-Quantile plot (Q-Q plot) of associations between 
cluster-based genotypes and RIF resistance estimated from an 
LM is more inflated than the ones from an LMM (shown in 
Figure 9), suggesting a higher type I error rate. The Q-Q plots 
for site- and gene-based tests look similar.

Novel resistance mutations.  In our analysis of the collection of 
MDR-TB clinical isolates from Peru, ECAT identified only 4 
other loci potentially associated with resistance to one or more 
of the antitubercular drugs: spoU, idsA2, ppsA, and Rv2571c (see 
Table 11). In contrast, many of these associations were not 
identified by either site-based or gene-based approaches using 
GEMMA. The homoplasic mutations in spoU occur 20 bp 
downstream from the stop codon (potentially affecting tran-
scriptional termination). The association is significant for 

resistance to RIF and EMB, and 20 out of 660 strains have 
such mutations. This association was also observed in another 
analysis of the same data set.57 spoU is a putative tRNA/

Figure 8.  The distribution of homoplasy index for each polymorphic site 

in the gene gidB. The y-axis presents number homoplasy index and the 

x-axis represents the amino acid position. A codon exhibiting more than 1 

change (homoplasic site) is labeled in text. Clusters are boxed with solid 

blue borders for significant associations with streptomycin (STR) 

resistance and dashed red borders for nonsignificant ones.

Table 8.  Summary of total number of significant hits (adjusted P 
values < .05) from association tests between RIF resistance and 3 
genotypes using LMM and LM models.

Models Cluster-based 
(ECAT)

Site-based 
(GEMMA)

Gene-based 
(GEMMA)

LMM 21 7 14

LM 138 1153 436

Abbreviations: ECAT, Evolutionary Cluster-based Association Test; LM, linear 
model; LMM, linear mixed model.

Figure 9.  The Quantile-Quantile plots (QQ plots) of unadjusted P values 

estimated from a linear model (LM) (labeled in red) and from a linear 

mixed model (LMM) (labeled in blue) for association tests between 

rifampicin (RIF) resistance and the cluster-based genotype.

Table 9.  Summary of total number of significant hits (adjusted P 
values < .05) from association tests between EMB resistance and 3 
genotypes using LMM and LM models.

Models Cluster-based 
(ECAT)

Site-based 
(GEMMA)

Gene-based 
(GEMMA)

LMM 29 27 14

LM 112 703 332

Abbreviations: ECAT, Evolutionary Cluster-based Association Test; LM, linear 
model; LMM, linear mixed model.

Table 10.  Summary of total number of significant hits (adjusted P 
values < .05) from association tests between STR resistance and 3 
genotypes using LMM and LM models.

Models Cluster-based 
(ECAT)

Site-based 
(GEMMA)

Gene-based 
(GEMMA)

LMM 14 6 8

LM 72 319 168

Abbreviations: ECAT, Evolutionary Cluster-based Association Test; LM, linear 
model; LMM, linear mixed model.
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rRNA-methyltransferase. Currently, its role in drug resistance 
is not known, though the fact that spoU orthologs in other 
organisms can methylate the ribosome suggests a possible link 
to resistance to translation inhibitors.58 idsA2 is a putative gera-
nylgeranyl pyrophosphate synthetase, which is on the pathway 
for synthesis of cell wall glycolipids. It might be that these 
mutations affect cell wall permeability, which could explain 
how mutations in idsA2 associates with resistance to INH and 
EMB (though it is important to remember that there is a great 
deal of co-resistance in this data set, so it is difficult to say with 

certainty which specific drug idsA2 is associated with). Muta-
tions in ppsA could have a similar effect on permeability, as this 
gene is involved in synthesis of PDIM (phthiocerol dimycoc-
erosate), another cell wall glycolipid. For example, mutations in 
PDIM synthesis genes have been shown to confer resistance to 
pyrazinamide.59 Perhaps the most intriguing case is Rv2571c, 
which is most strongly associated with EMB resistance 
( )Padj . .0051= . Mutations are scattered throughout the ORF 
(see Figure 10). In the Peru collection, 25 strains have nonsyn-
onymous SNPs in Rv2571c distributed over 14 polymorphic 
sites spanning 701 bp (though none are homoplasic), and 2 
have indels (frameshifts). Of these, 16 of these strains (64%) 
are resistant to EMB, which is more than twice as high as the 
background resistance rate for the whole population (26%, Fig-
ure 3A). Rv2571c is annotated only as a transmembrane pro-
tein that is Ala/Val/Leu-rich, and its function is unknown. 
Further tests will be needed to evaluate the effect of mutations 
(including loss-of-function) in Rv2571c on resistance to vari-
ous drugs. Mutations in Rv2571c and idsA have not previously 
been reported as associated with drug resistance in other col-
lections of drug-resistant TB clinical isolates,4,5,26,60 and they 
do not appear in TBDReaMDB, a summarized database of 
known TB drug resistance mutations.61

Discussion
We have presented a new method, called ECAT, to extend 
GWAS with the ability to take advantage of homoplasy. The 
motivation behind ECAT is that drug resistance mutations are 
frequently observed to occur multiple times independently in a 
clinical population, which is a strong indicator of positive selec-
tion. As traditional GWAS methods are not sensitive to this 
information, this was implemented via a preprocessing phase to 
identify significantly clustered regions of mutations (evolution-
ary changes), which are then subjected to association testing 
using an LMM. Importantly, the clustering step assesses the 
clustering of distinct evolutionary changes (inferred from a 
phylogenetic tree using maximum parsimony) rather than just 
polymorphic sites, so homoplasic sites (with multiple changes) 
are counted with higher weight. The boundaries of clusters are 
optimized to focus on just the most variable parts of genes, 
without limiting analysis to either individual SNPs or entire 
ORFs. In fact, some genes might not have any significant clus-
ters, and hence do not need to included in association testing.

This approach has several advantages. First, the preprocess-
ing step focuses the association testing on variable regions of 
the genome, which is where drug resistance mutations are 
expected to occur (at least in a collection of drug-resistant clin-
ical isolates). It is more computationally efficient to evaluate 
only statistically significant clusters, rather than the naive 
approach of doing association testing on all sliding windows of 
SNPs throughout the genome. In our case, there were >20 000 
allelic sites (and hence >400 000 possible overlapping win-
dows of size 1-20), but only 596 regions were selected as 

Figure 10.  Relative locations of 14 observed changes within the 

Rv2571c in the data set of 660 strains from Peru. Rv2571c has 355 amino 

acids. Stop codons are marked with asterisks.

Table 11.  Summary of analyses of novel loci associated with 
antitubercular resistance by 3 statistical methods.

Drug: Locus ECAT Site-based 
GEMMA

Gene-based 
GEMMA

RIF: spoU 0.002 0.052 0.015

(10) (8) (11)

EMB: spoU 4.97 × 10−4 0.015 0.195

(17) (14) (22)

INH: idsA2 0.011 0.990 0.066

(11) (50) (11)

EMB: idsA2 0.006 0.379 0.058

(24) (85) (15)

INH: ppsA 0.003 0.084 0.167

(10) (8) (17)

RIF: ppsA 0.003 0.083 0.312

(12) (11) (20)

STR: ppsA 0.012 0.351 0.028

(8) (7) (8)

EMB: Rv2571c 0.005 0.792 0.063

(22) (145) (20)

Adjusted P values for the highest-ranked region or site with each locus are given, 
along with rank (in parentheses). Significant associations are boldfaced in red.
Abbreviations: ECAT, Evolutionary Cluster-based Association Test; EMB, 
ethambutol; INH, isoniazid; RIF, rifampicin; STR, streptomycin.
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significantly clustered (using the Poisson model). Filtering out 
regions without significant clusters of mutations also helps 
maintain sensitivity during the multiple-tests (FDR) correc-
tion at the end, as the association testing is only done on a 
small subset of hypervariable regions.

Second, the clustered regions can be of varying size. 
Traditionally, GWAS has been applied to individual sites 
(SNPs) or entire genes (ie, collapsing all SNPs together in an 
ORF, as often done with burden tests22). However, resistance 
mutations for many drugs are often clustered within the target 
ORFs, such as in active sites. Often, there are only a handful of 
prevalent mutations in drug targets (such as the RDRR in 
RpoB [residues 435-450], and the Ala90-Gly94 region of 
GyrA), and the rest of the mutations in the ORF are not rele-
vant to drug resistance (eg, lineage-specific mutations, like 
GyrA:S95A). The clustering approach we describe (second 
phase of ECAT) allows optimized local variable regions within 
ORFs to be singled out and tested for association, which can 
strengthen the signal.

Finally, because the clustering is based on distinct evolu-
tionary changes, homoplasic sites have an advantage. A site 
with multiple changes (spanning just 1 bp) can often be signifi-
cant on its own or can seed a cluster combined with other 
nearby changes (based on the Poisson distribution). This con-
trasts with traditional GWAS methods, such as those based on 
allele counting or LMs, which do not take into account the 
number of changes that led to an allelic site, and hence are 
insensitive to homoplasy.

The results obtained by ECAT on the M. tuberculosis data set 
from Peru show that most of the major known drug resistance 
mechanisms can be detected, including less prevalent ones not 
detected by GEMMA. In some cases, individual sites with high 
homoplasy are identified, such as KatG:S315T and 
EmbB:M306V/I. Similarly, RpsL:K43R and K88R/T are indi-
vidually detected as significant for streptomycin resistance. In 
other cases, larger clusters of mutations are identified, such as the 
RDRR region in RpoB, as well as in RpoC. Mutations in the lat-
ter have been shown to be able to compensate for fitness costs of 
mutations in RpoB, though they are less frequent, making the sta-
tistical association harder to detect. The ECAT also detects an 
association of the intergenic region between embA and embC with 
resistance to ethambutol, which involves 6 allelic sites spanning 12 
nucleotides (2 of which are homoplasic, representing a total of 13 
distinct changes in this locus). Although substitutions in the 
embC-embA intergenic region are less prevalent than missense 
mutations in EmbB, they have also been shown to increase resist-
ance to ethambutol through upregulating expression.49 In still 
other cases, clusters of mutations can be spread throughout a gene, 
such as in PncA (activator of pyrazinamide)62 and GidB (ribo-
some methyltransferase, which influences the binding of strepto-
mycin). In such genes, resistance is typically conferred through 
disruption, that is, loss-of-function mutations, which can occur at 
many different positions in the ORF, making them difficult to 

detect through site-based analysis because; individually, they often 
occur at low allele frequencies and might be interspersed with 
other polymorphisms not relevant to resistance. However, gene-
level analysis by tools like GEMMA force all mutations to be 
pooled in a burden test, even though not all mutations in such 
genes necessarily cause loss-of-function, diluting the signal.

The fact that, aside from these known resistance-associated 
mutations for TB drugs, only 4 other loci ( spoU, idsA2, ppsA, 
and Rv2571c) were identified as significantly associated with 
one of the 7 drugs in our data set suggests that the false-posi-
tive rate for ECAT is very low, which is a consequence of com-
bining rigorous statistical filtering at both stages, clustering 
and association testing.

The ECAT method has several limitations. First, high levels 
of co-resistance among multiple drugs can cause ambiguity 
over which polymorphisms are associated with which drugs. In 
our MDR-TB data set from Peru, the overlap in resistance to 
drugs such as rifampicin and isoniazid was as high as 87%. This 
resulted in cases where SNPs like RpoB:S450L (which confers 
resistance to rifampicin) showed up on the list of significant 
loci for isoniazid resistance, and KatG:S315T (confers resist-
ance to isoniazid) showed up on the list of hits for rifampicin 
resistance. An expanded data set with more independent clini-
cal isolates would be needed to correctly deconvolve these gen-
otype-phenotype associations. Co-resistance is a well-known 
problem for traditional GWAS as well.5

Second, our method does not specifically address epistatic 
interactions. Similar to traditional GWAS, our method assesses 
the statistical association of each locus independently from all 
the others. However, in some cases, resistance (or the level of 
resistance) can be determined by alleles at multiple positions in 
the genome.63 For example, mutations related to toxin produc-
tion were found to influence the growth rate of mupirocin-
resistant strains of methicillin-resistant Staphylococcus aureus 
(MRSA) with mutations in ileS.64 Vogwill et al65 found that the 
fitness cost for nearly 50% of rifampicin resistance mutations in 
rpoB differed among strains of Pseudomonas, implying the influ-
ence of other (lineage-specific) mutations. And, Knopp and 
Andersson66 demonstrated an interaction among resistance 
mutations to different antibiotics in Salmonella; in some cases, 
the fitness effects of different combinations of mutations were 
strain-dependent, including dependence on mutations at other 
loci, such as lon (protease), ompR (porin), and marR (regulator). 
As typically applied, LMMs do not account for interactions 
where the association at one site is dependent on an allele at 
another site, and instead, other analytical methods targeted at 
identifying linkage disequilibrium6,67 are required. A common 
form of epistasis is compensatory mutations. The ECAT was 
fortunately able to detect the weak association of compensatory 
mutations in RpoC with rifampicin resistance in our data set 
without explicitly taking RpoB mutations into account. However, 
there may well be other cases where interactions among genomic 
loci (exemplified by rpoB  and rpoC ) might not be detected.
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Third, an accurate phylogenetic tree is required for estimat-
ing the homoplasy counts for SNPs. However, it remains chal-
lenging to reconstruct a global phylogeny for recombinant 
species such as Streptococcus pneumoniae68 and Klebsiella pneu-
moniae.69 Without a reliable phylogeny, sites located within the 
recombined regions may tend to look more homoplasic with 
respect to a global phylogeny based on SNPs across the whole 
genome, resulting in more false positives. Recent methods for 
locating chromosomal boundaries where recombination events 
occur during evolution may allow us to obtain more reliable 
trees accounting for the recombined regions70 or to build up 
separate local trees for the recombined regions based on 
inferred recombination breakpoints.71

Finally, as ECAT is designed for analyzing the association 
between chromosomal mutations and drug resistance, it is not 
expected to work for cases where resistance is acquired through 
lateral transfer of plasmid-borne resistance genes or other 
mobile genes. For example, the presence or absence of a plas-
mid carrying the mecA  gene is the primary determinant of 
methicillin resistance in S. aureus (MRSA). Because it is not 
chromosomally encoded, it would escape detection by ECAT. 
However, k-mer-based methods are particularly suitable for 
detecting associations of drug resistance with mobile genes14,15 
as they analyze associations with short DNA fragments derived 
from the entire genetic content of an organism and are not just 
restricted to analysis of genetic variants in the core genome (on 
the chromosome).

Conclusions
We presented a new method, called ECAT, that extends tradi-
tional regression-based GWAS methods with the ability to 
take advantage of homoplasy, which is an important signal of 
positive selection. This is achieved through a preprocessing 
step which identifies hypervariable regions in the genome con-
sisting of statistically significant clusters of evolutionary 
changes, which are then subjected to association testing by an 
LMM. The efficacy of this approach was demonstrated by 
showing that it outperforms simple site-based and gene-based 
GWAS analysis (using GEMMA) in identifying known resist-
ance mutations associated with drug resistance in a collection 
of MDR clinical isolates of M. tuberculosis. The improved sen-
sitivity is attributed to focusing the analysis on optimized clus-
ters of SNPs.
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