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Hepatocellular carcinoma (HCC) is a primary liver cancer with extremely high mortality
in worldwide. HCC is hard to diagnose and has a poor prognosis due to the less
understanding of the molecular pathological mechanisms and the regulation mechanism
on immune cell infiltration during hepatocarcinogenesis. Herein, by performing multiple
bioinformatics analysis methods, including the RobustRankAggreg (RRA) rank analysis,
weighted gene co-expression network analysis (WGCNA), and a devolution algorithm
(CIBERSORT), we first identified 14 hub genes (NDC80, DLGAP5, BUB1B, KIF20A,
KIF2C, KIF11, NCAPG, NUSAP1, PBK, ASPM, FOXM1, TPX2, UBE2C, and PRC1) in
HCC, whose expression levels were significantly up-regulated and negatively correlated
with overall survival time. Moreover, we found that the expression of these hub genes
was significantly positively correlated with immune infiltration cells, including regulatory
T cells (Treg), T follicular helper (TFH) cells, macrophages M0, but negatively correlated
with immune infiltration cells including monocytes. Among these hub genes, KIF2C
and UBE2C showed the most significant correlation and were associated with immune
cell infiltration in HCC, which was speculated as the potential prognostic biomarker for
guiding immunotherapy.

Keywords: hepatocellular carcinoma, weighted gene co-expression network analysis, RobustRankAggreg,
CIBERSORT, immune infiltration

INTRODUCTION

Liver cancer is a highly malignant tumor with a worldwide mortality rate ranking among the top
three in 2020 (Sung et al., 2021). Hepatocellular carcinoma (HCC) is a primary liver cancer that
originates in the liver. The development of large-scale sequencing technology and subsequent big
data mining methods has made a great contribution on the research on HCC genome changes.

Abbreviations: HCC, Hepatocellular carcinoma; RRA, RobustRankAggreg; WGCNA, weighted gene co-expression network
analysis; Treg, regulatory T cell; TFH T follicular helper cells; LM22, Leukocyte signature matrix, GEO, Gene Expression
Omnibus; DEGs, Differentially expressed genes; TCGA, The Cancer Genome Atlas; RPKM, Reads Per Kilobase per Million
mapped reads; TOM, Topological Overlap Matrix; MEs, module eigengenes; EPC, Edge Percolated Component; MNC,
Maximum Neighborhood Component; DMNC, Density of Maximum Neighborhood Component; MCC, Maximal Clique
Centrality; BN, Bottleneck; CC, Clustering Coefficient; OS, overall survival; BP, biological process; CC, cell component; MF,
molecular function.
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In addition to focusing on cancer cells, research on the
infiltration of host immune cells has recently become the
new concerns for cancer biology. Therefore, exploring the
potential prognostic biomarkers and developing immunotherapy
methods are crucial for improving the survival of cancer patients
(Wei et al., 2020).

The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) databases are the two most commonly used
tumor databases. It is necessary to repeatedly mine tumor
databases given the continuous updates in bioinformatics
technology. RobustRankAggreg (RRA) algorithm was extensively
used to screen the differentially expressed genes (DEGs) in
different dataset from multiple different sequencing platforms
(Kolde et al., 2012). The R package for Weighted Correlation
Network Analysis (WGCNA) was used to identify co-expressed
gene modules with similar expression patterns, and to explore
the relationship between gene networks and phenotypes of
interest (Langfelder and Horvath, 2008). In the recent years,
many reports were published for investigating the hub genes
of HCC(Chen et al., 2017; Li et al., 2018; Zhou et al., 2019).
Chen et al. (2017) identified 6 hub genes, ABAT, AGXT,
ALDH6A1, CYP4A11, DAO, and EHHADH, that were associated
with HCC metastasis risk. Li et al. (2018) identified the 5
hub genes, GINS1, TOP2A, BUB1B, ARPC4, and ACADM in
HCC progression with high node degree. In this study, we
comprehensively applied a variety of bioinformatics algorithms
to screen out 171 HCC-related genes with significantly up-
or down-regulated expression levels. Then, we have used
protein-protein network ranked by 12 different algorithms of
cytohubba to find 14 hub genes, whose expression levels were
significantly up-regulated. Among them, the high expression
level of 11 genes, NDC80, DLGAP5, BUB1B, KIF20A, KIF2C,
KIF11, NCAPG, PBK, FOXM1, TPX2, and PRC1, were strongly
correlated with shorter overall survival time. Furthermore,
we carried out an immune cell infiltration analysis by
CIBERSORT and found these hub genes was significantly
positively correlated with immune infiltration cells, including
regulatory T cells (Treg), T follicular helper (TFH) cells,
macrophages M0, but negatively correlated with immune
infiltration cells including monocytes. The results further
illustrate that the expression of the hub genes is associated with
a poor prognosis.

MATERIALS AND METHODS

The flow chart showing the overall research design and methods
used for this study was shown in Supplementary Figure 1.

GEO Data Collection and Preprocessing
The GEO database was searched by using the keywords
“hepatocellular carcinoma” and “liver cell carcinoma.” After
filtering according to the following criteria (1) all samples are
from human beings, (2) all datasets include matched cancer
tissue-normal tissue samples, and (3) the dataset contains
at least 20 samples, 7 microarray data sets (GSE62322,
GSE112790, GSE102079, GSE14323, GSE14520, GSE89377, and

GSE64041) were selected and downloaded. The detail showed in
Supplementary Table 1.

TCGA Data Download and Preprocessing
Gene expression quantification data and corresponding clinical
information for HCC were downloaded from The Cancer
Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC)
data collection. The 424 HTSeq-counts files comprised 371
tumor samples and 50 normal samples. Clinical information
was extracted and included follow-up time and clinical status.
The TCGA expression matrix was obtained by data fusion and
ID transformation of raw TCGA counts data. Next, the RPKM
(Reads Per Kilobase per Million mapped reads) values were
calculated for the WGCNA.

We applied the “limma” package (Ritchie et al., 2015) of
R software to perform normalization and base-2 logarithm
conversion for the matrix data for each GEO and TCGA
dataset. differentially expressed genes for each GEO and
TCGA matrix were obtained by transforming expression values,
and genes were sorted according to the log2FoldChange
(logFC) value. Next, rank analysis was performed using the R
package “RRA.” The criterion for screening DEGs is that the
P < 0.05 and | logFC | > 1.

Identification of Gene Expression
Modules
GEO data from the same platform was merged as follows.
The GPL570 array platform included three datasets GSE62322,
GSE112790, and GSE102079. GSE14323 and GSE14520 were
merged into the GPL571 platform. Using the “sva” package the
batch effect and other unwanted variations were removed to
avoid generating less reliable results (Leek et al., 2012). Next,
we selected gene expression matrixes from GPL570, GPL571,
GSE89377, GSE64041, and RPKM values of TCGA data and
then identified gene expression modules using the WGCNA
package in R. Setting an appropriate soft-thresholding power to
ensure scale-free networks, R2 = 0.9 was selected. The adjacency
matrix used to construct the Topological Overlap Matrix (TOM)
using TOM similarity values and module eigengenes (MEs) were
clustered using the dissimilarity measure (1-TOM).

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathways Enrichment Analysis
DEGs for GO and KEGG pathway enrichment analysis consist
of two datasets. The first included 101 overlapping genes
from 3 components the including integrated DEGs (RRA_diff),
MEs with the strongest positive tumor correlation of GEO
(GEO_positive ME) and TCGA (TCGA_positive ME), the
other dataset included 70 overlapping genes integrating DEGs
(RRA_diff), MEs with the strongest negative tumor correlation
of GEO (GEO_ negative ME), and TCGA (TCGA_ negative ME).
The merged 171 genes were retained for GO and KEGG pathway
enrichment analysis using R packages. P < 0.05 was considered
statistically significant.
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Functional Protein Association PPI
(Protein-Protein Interaction) Network
Analysis
The overlapping genes were analyzed to identify potential
interactions using the online STRING database (Szklarczyk
et al., 2017). PPIs with the highest confidence scores ≥ 0.9
were reserved and the results were imported to Cytoscape
(Shannon et al., 2003) for further complex network analysis.
Moreover, to predict and explore important hub genes in the PPI
network, we performed module analysis utilizing the cytohubba
application with default parameters in Cytoscape. Overlapping of
12 topological algorithms were carried out using the “UpSetR”
package. Finally, 14 overlapping genes were obtained.

Survival Analysis
The clinical information of patients with HCC was extracted
and included follow-up time and clinical status. After removing
patients with no information on overall survival (OS) data,
candidate genes strongly correlated with survival were identified
using the “survival” and “survminer” packages.

Correlation Between Survival-Related
Candidate Genes and Immune Cells
To study the correlation between survival-related candidate genes
and immune cells, we used a web server called TIMER2.01

(Taiwen et al., 2020). We detected the correlation in the
expression of 14 hub genes in HCC with the levels of infiltrating
immune cells, respectively, using the CIBERSORT as the
deconvolution algorithm. The 22 immune cells included T cells,
B cells, macrophages, dendritic cells (DCs), NK cell, monocytes,
mast cells, eosinophils, and neutrophils. The correlation between
them was shown using a heat map.

Infiltrating Immune Cells Between Tumor
and Normal Samples
We compared the infiltrating immune cells of tumor and
normal samples. The original gene expression data from
TCGA were normalized as described previously (Chen et al.,
2018). The normalized data was analyzed using the R package
“CIBERSORT.” CIBERSORT, a deconvolution algorithm based
on principles of linear support vector regression, was published
in Nature Methods in 2015. It calculated the cell composition
of unknown mixture based on their gene expression profiles
according to known reference set LM22 (Leukocyte signature
matrix). This reference dataset defines the gene expression
characterizing a set of signature genes of 22 immune cell
subtypes (Newman et al., 2015). The permutations (perm) of the
deconvolution algorithm were set at 100. The results were filtered
using a p < 0.05.

All data were processed using R language (version 4.0.2)
and all statistical methods in this study were performed
using corresponding R package. When the p < 0.05, results
were considered statistically significant. Researchers who

1https://cistrome.shinyapps.io/timer/

want the R code can contact the corresponding author
(yangkun@lzu.edu.cn).

RESULTS

Identification of Integrated GEO DEGs
and TCGA DEGs
Seven microarray data sets [GSE62322 (Schulze et al., 2015),
GSE112790 (Shimada et al., 2019), GSE102079 (Chiyonobu
et al., 2018), GSE14323 (Mas et al., 2009), GSE14520 (Roessler
et al., 2010), GSE89377, and GSE64041 (Makowska et al.,
2016)] and the TCGA-LIHC dataset were downloaded and
processed. Data sets from different platforms cannot be merged
directly using “limma” packages for differentially expressed genes
analysis. Therefore, we ranked the 8 data sets from different
platforms using the RRA algorithm. Finally, 199 significantly
up-regulated genes and 363 significantly down-regulated genes
were identified by the RRA method. Top 20 up-regulated and
down-regulated genes are shown in Figure 1. The | logFC| > 1
and adjusted p < 0.05 were considered statistically significant
for the RRA DEGs.

Identification of Key Gene Expression
Modules
GEO data from the same platform were merged. GSE62322,
GSE112790, and GSE102079 were merged into the GPL570
platform and GSE14323 and GSE14520 were merged into the
GPL571 platform. Then, we selected gene matrixes from GPL570,
GPL571, GSE89377, GSE64041, and RPKM values of TCGA
data and constructed a co-expression network with the WGCNA
package in R. By gathering similarly expressed genes in tumor
and normal tissue, mRNAs with similar expression profiles were
aggregated into the different module by applying a dynamic
tree cut algorithm. The module-trait relationships are shown
in Figure 2. Next, 650 module eigengenes having the strongest
positive tumor correlation from the GEO were merged to
form GEO_positive ME including MEturquoise of GPL570,
MEturquoise of GPL571, MEgrey of GSE64041, and MEgrey
of GSE89377. 222 module eigengenes with the strongest tumor
negative correlation were merged to form the GEO_negative ME
and included MEblack of GPL570, MEbrown of GPL571, MEtan
of GSE64041, and MEblack of GSE89377. The results showed in
Supplementary Table 2.

GO and KEGG Pathway Enrichment
Analysis of DEGs
171 gene including 101 genes from GEO_positive ME,
TCGA_positive ME, and RRA DEGs (Figure 3A) and 70
genes from GEO_negative ME, TCGA_negative ME, and RRA
DEGs (Figure 3B) were merged for GO and KEGG pathway
enrichment analysis. The results showed the genes were involved
in the biological process (BP), cell component (CC), molecular
function (MF). We found the biological processes in which these
genes are mainly involved include nuclear division, chromosome
segregation and organelle fission, of these, the expression
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FIGURE 1 | Identification of DEGs of 7 GEO datasets and TCGA dataset using RRA. The heatmap of the top 20 up- and down-regulated DEGs in the integrated
GEO datasets analysis. The rows represent the genes and the columns represent the GEO dataset. The number in the rectangle represents the log2FoldChange
value. Red represents up-regulated genes, blue represents down-regulated genes.

products were mainly components of the chromosome, spindle
and kinetochore (Figures 3C,D). KEGG analysis showed
that these genes are involved in signal pathways including
the cell cycle, DNA replication and pyrimidine metabolism
(Figures 3E,F).

Identification of Hub Genes
In total, 171 overlapped genes were analyzed to characterize the
potential protein-protein interactions using the online STRING
database. PPIs with a highest confidence score ≥ 0.9 were
selected and then imported to cytoscape for further complex

network analysis. In addition, to predict and explore the
important hub genes in the PPI network, we used cytoHubba
with default parameters in cytoscape. Firstly, we found many
genes are ranked same if just ranked by one algorithm
(Supplementary Table 3). So, we thought that the parameters
calculated using multiple algorithms maybe reflect the status of
the node in the entire network from different aspects. Then,
we got top 40 genes from protein-protein network ranked
by 12 different algorithms of cytohubba including Degree,
Density of Maximum Neighborhood Component (DMNC),
Edge Percolated Component (EPC), Maximal Clique Centrality
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FIGURE 2 | Identification of module eigengenes (MEs) associated with HCC using GEO and TCGA datasets. (A,C,E,G,I) Dendrogram of DEGs clustered based on a
dissimilarity measure (1–TOM). (B,D,F,H,J) Module-trait relationships. Each row corresponds to a color module and each column correlates to a clinical trait (normal
and cancer). The numbers in each cell represent the corresponding correlation and P-value.

(MCC), Maximum Neighborhood Component (MNC), and
centralities based on shortest paths, such as Bottleneck (BN),
Closeness, EcCentricity (EC), Radiality, Betweenness, Stress, and
Clustering Coefficient (CC) were intersected. Finally, 14 hub

genes (degree value > 20), NDC80, DLGAP5, BUB1B, KIF20A,
KIF2C, KIF11, NCAPG, NUSAP1, PBK, ASPM, FOXM1, TPX2,
UBE2C, and PRC1 were obtained for further exploration
(Figure 4). Details of these 14 hub genes was showed in Table 1.
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FIGURE 3 | Venn diagrams for overlapping DEGs and MEs significantly related to HCC and overlapped genes for GO and KEGG pathways analysis. (A) Tumor
positive related genes. GEO_ positive MEs includes MEturquoise of GPL570, MEturquoise of GPL571, MEgrey of GSE64041, and MEgrey of GSE89377. (B) Tumor
negative related genes. GEO_negative MEs includes MEblack of GPL570, MEbrown of GPL571, MEtan of GSE64041, and MEblack of GSE89377. (C) The bar plot
of all overlapping genes by GO biological process. (D) The bubble plot showing all overlapping genes by GO biological process (E) KEGG pathways of all overlapped
genes are shown in the bar plot. (F) KEGG pathways of all overlapped genes showed in the bubble plot.

The Relationship Between Hub Gene and
Overall Survival Time (OS)
The OS of the 14 hub genes was analyzed by survival and
survminer package. The results demonstrated that there was an
extremely significant correlation between the expression levels
of DLGAP5, BUB1B, KIF20A, KIF2C, KIF11, FOXM1, and
TPX2 and survival time (p < 0.001), a significant correlation
existed between the expression of NDC80, NCAPG, PBK,
PRC1, and survival time (p < 0.01), and a weak correlation
between the expression of NUSAP1, ASPM, UBE2C, and survival
(p < 0.05) (Figure 5).

Correlation Between Survival-Related
Candidate Genes and Immune Cells
Next, we explored whether the mRNA expression level of
the candidate hub genes was associated with infiltrating

immune cells in HCC. Thus, we compared the expression
of the 14 candidate hub genes in HCC and the infiltrating
levels of immune cells using the TIMER database. The results
showed that the expression level of candidate hub genes was
significantly positively correlated with the infiltrating levels
of immune cells including Treg cells, TFH cells, macrophages
(M0), T cell CD4 + memory activated, myeloid dendritic
cell resting and B cell plasma, and significantly negative
correlations with immune infiltrating cells including monocytes,
mast cells activated and NK cell resting. In addition, very
weak negative correlations were existed between T cell
CD4 + memory resting and the hub genes (Figure 6A). More
interestingly, KIF2C and UBE2C showed the most significant
positive correlation with Treg and a negative correlation
with immune infiltration of monocytes (Supplementary
Table 4). Meanwhile, we compared the fraction of infiltrating
immune cells with tumor and normal tissues and found the
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FIGURE 4 | UpSet diagrams of 12 topological algorithms determined by
functional protein association PPI network analysis. The overlapping results of
several topological algorithms including Degree, EPC, MNC, DMNC, MCC,
and network centralities based on the shortest paths such as BN, EC,
Closeness, Radiality, Betweenness, Stress and CC are shown.

content of macrophages M0 in tumor tissues significantly
higher than that in normal tissue, while the fraction of
macrophages M1 showed opposite result to macrophages
M0 (Figure 6B).

DISCUSSION

Tumorigenesis is a very complex process which includes the
changes in expression of various genes and changes in the
microenvironment. It is vital for tumor therapy to identify
novel biomarkers and targets and to explore the diversity and
complexity of the tumor immune microenvironment. At present,
this complicated process can be opportunely explored because of
the development of high-throughput sequencing technology and
subsequent data analysis techniques. Herein, we have screened
the hub genes in HCC and revealed a strong correlation between
hub genes expression level and the tumor microenvironment.

We identified 14 hub genes (NDC80, DLGAP5, BUB1B,
KIF20A, KIF2C, KIF11, NCAPG, NUSAP1, PBK, ASPM,
FOXM1, TPX2, UBE2C, and PRC1) that were significantly
associated with overall survival by RRA rank analysis and
WGCNA based on TCGA and GEO databases. Previous studies
showed that 14 hub gene are involved in cell cycle regulation,
which is according with our results from GO and KEGG pathway
enriched analysis. It has previously been reported that some of
these also regulate the P53 signaling pathway (Mirgayazova et al.,
2019). The hub genes have been also found to be associated with
various cancers (Burum-Auensen et al., 2010; Wierstra, 2013; Luo
et al., 2014; Singh et al., 2014; Schneider et al., 2017; Gao and
Wang, 2019). In this study, we found the expression of the hub
genes was up-regulated in cancer samples compared with normal
tissues. Some hub genes, such as DLGAP5 and TPX2, whose
activation was also regulated by the other up-regulated genes
(Bird and Hyman, 2008; Tagal et al., 2017). Interestingly, the high
expression level of NDC80, DLGAP5, BUB1B, KIF20A, KIF2C,
KIF11, NCAPG, PBK, FOXM1, TPX2, and PRC1 corresponds to
a short overall survival time.

The most interesting finding in this study is that there
is a correlation between the expression level of hub genes

TABLE 1 | Details of hub genes.

Name RRA_logFC Functions

NDC80 1.86 Core element of kinetochores, function in Kinetochore-Microtubule Attachment (Ciferri et al., 2008)

DLGAP5 1.74 Also known as DLGAP7/HURP (hepatoma up-regulated protein), a kinetochore protein that can be
regulated by phosphorylation of AURKA, stabilizes microtubules (Surhone et al., 2011; Tagal et al., 2017).

BUB1B 1.79 Spindle assembly checkpoint protein, directly bind to CDC20 to inhibit anaphase-promoting complex
activity (Chen, 2002)

KIF20A 1.82 Kinesin family member 20A, involved in cytokinesis (Neef et al., 2003)

KIF2C 1.32 Kinesin family member 2C, Mediates the depolymerization at plus end of microtubules thereby promotes
the separation of chromosome during mitosis (Bakhoum et al., 2009)

KIF11 1.16 kinesin family member 11 (also known as Eg5). Function in centrosome migration and spindle bipolarity
during cell mitosis (Rapley et al., 2008)

NCAPG 1.86 Is necessary for chromosome condensation (Kimura et al., 2001)

NUSAP1 2.10 Nucleolar spindle-associated protein (Raemaekers et al., 2003)

PBK 1.90 MAPKK-like protein kinase, may be involved in the activation of lymphoid cells, maintain testicular functions
(Abe et al., 2000)

ASPM 2.85 Is essential for spindle regulation (Kouprina et al., 2005)

FOXM1 1.35 Transcription factor, Cyclin regulatory protein (Laoukili et al., 2005)

TPX2 1.31 Microtubule nucleation factor, spindle assembly, activation of AURKA (Bird and Hyman, 2008)

UBE2C 1.44 Ubiquitin conjugating enzyme E2, regulate destruction of cyclins in mitotic (Townsley et al., 1997)

PRC1 2.17 Participate in cytokinesis (Jiang et al., 1998)

Frontiers in Genetics | www.frontiersin.org 7 April 2021 | Volume 12 | Article 647353

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-647353 April 26, 2021 Time: 15:52 # 8

Huang et al. HCC Genes and Immune Infiltration

FIGURE 5 | Overall survival analyses of the overlapping hub genes. Analysis was performed using the survival and survminer packages in R. P-values were used to
indicate significant differences.

and immune infiltrating cells. It is well-known that infiltrating
immune cells, are a component of the tumor microenvironment
and play an important role in tumor growth, invasion,
and metastasis. The tumor microenvironment has diverse
capacities to induce both adverse and beneficial consequences
for tumorigenesis (Quail and Joyce, 2013). Our study showed
that there was a significantly positive correlation between the
expression of hub genes and infiltrating immune cells including
Treg, TFH, and macrophages (M0), but the most significant
negative correlation was with monocytes.

It has previously been reported that Tregs and TFH cells
exert opposite roles in tumorigenesis. Tregs suppress antitumor
immunity. In contrast, TFH cell contribute to antitumor
immunity (Zhang and Zhang, 2020). Tregs are present in a variety
of tumors and are physiologically involved in the maintenance
of immunological self-tolerance through immunosuppressive
effects, thereby allowing tumor cells to escape the body’s immune
killing (Nishikawa and Sakaguchi, 2010; Finotello and Trajanoski,
2017). TFH cells are an independent subset of CD4 + T effector
cells having an essential role in assisting B cell proliferation and
antibody production (Ochando and Braza, 2017). We observed
that the expression level of KIF2C and UBE2C are strongly

positively corelatedcorrelated to the content of Tregs and TFH.
It has previously been reported that T cells from patients with
metastatic melanoma could recognize mutated kinesin family
member 2C (KIF2C) antigen (Lu et al., 2014). But there was
no significant difference between the Treg or TFH infiltrating
immune cell density when comparing tumor and normal cells.

However, the density of M0 macrophages in tumor tissues
was significantly increased compared with normal tissues, in
contrast, the density of M1 macrophages in tumor tissues was
significantly decreased. Macrophages infiltrating in tumors act
as a “double-edged sword” in tumorigenesis and development.
M1 type macrophages can kill tumor cells, while M2 type
macrophages promote tumor growth. Our findings indicating
whether it is the up-regulation in expression level of the
hub gene or the decrease macrophage M1 levels, it will
induce adverse consequences for tumorigenesis. Meanwhile, we
observed the expression level of hub genes negatively correlated
with monocyte levels. Macrophages are partially differentiated
from monocytes in peripheral blood in response to a wide
spectrum of growth factors and chemokines produced by stromal
and tumor cells (Noy and Pollard, 2014). Monocytes in the
tumor microenvironment may induce beneficial consequences

Frontiers in Genetics | www.frontiersin.org 8 April 2021 | Volume 12 | Article 647353

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-647353 April 26, 2021 Time: 15:52 # 9

Huang et al. HCC Genes and Immune Infiltration

FIGURE 6 | The correlation between hub genes-immune cells and the fraction of infiltrated immune cells between normal tissue and tumor tissue in HCC. (A) The
expression of candidate hub genes having significant positive correlations with immune infiltration cells are shown in red. The expression of candidate hub genes
having significant negative correlations with immune infiltration cells are shown in blue. *p < 0.05, **p < 0.01, *** p < 0.001. (B) Fraction of infiltrated immune cells in
HCC. Red represents tumor tissue and blue shows normal tissue.

for tumorigenesis. Therefore, we thought that the hub genes
induced adverse consequences for tumorigenesis and can be used
the potential prognostic biomarker.

CONCLUSION

In conclusion, our study, based on several bioinformatics
algorithms, revealed hub genes and their correlation with
immune infiltration cells in HCC and our comprehensive analysis
identified associations between 22 immune cells subpopulations.
We found 11 genes, NDC80, DLGAP5, BUB1B, KIF20A, KIF2C,
KIF11, NCAPG, PBK, FOXM1, TPX2, and PRC1, were strongly
associated with poor prognosis. Nonetheless, our findings still
require further experimental validation in the future.
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