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Abstract

Background: MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but
these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures
in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated
during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated.

Methods: Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling
was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets.

Results: Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show
that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2,
CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a ‘‘seedless’’ binding site within its
39UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS
and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in
PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal
pancreas, implicating early up-regulation during malignant change.

Conclusions: Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion
that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation
from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT.
Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional
up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the
potential as a therapeutic strategy against PDAC and other KRAS-driven cancers.

Citation: Jiao LR, Frampton AE, Jacob J, Pellegrino L, Krell J, et al. (2012) MicroRNAs Targeting Oncogenes Are Down-Regulated in Pancreatic Malignant
Transformation from Benign Tumors. PLoS ONE 7(2): e32068. doi:10.1371/journal.pone.0032068

Editor: Marc Tjwa, University of Frankfurt - University Hospital Frankfurt, Germany

Received May 28, 2011; Accepted January 23, 2012; Published February 22, 2012

Copyright: � 2012 Jiao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The Peel Medical Research Trust and The Alliance Family Trust Foundation helped with funding herein. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Dr. Andreas Keller was affiliated with Febit Biomed GMBH at the time of the study. This does not alter the authors’ adherence to all the
PLOS ONE policies on sharing data and materials. The other authors have declared that on competing interests exist.

* E-mail: l.castellano@imperial.ac.uk

Introduction

Pancreatic cancer is the 4th commonest cause of cancer-related

death accounting for 33,000 deaths per year in the US [1,2,3] and

at least 6,000 deaths per year in the UK [4]. Currently surgical

resection remains the only treatment associated with the potential

for cure [5]. However, most patients have locally advanced or

metastatic disease at presentation and are therefore not surgical

candidates [3,6]; the actual resection rate is less than 10% [7].

Routine imaging techniques such as computed tomography (CT)

or magnetic resonance imaging (MRI) are not sensitive enough to

detect pancreatic cancer at an early stage [2]. In addition, patients

continue to be diagnosed with advanced disease because currently

there are no tumor markers that allow reliable screening at a

potentially curable stage.

Cystic lesions of the pancreas can be either inflammatory or

neoplastic [8,9]. The epithelial benign cystic tumors (BCT) of the

pancreas have the potential to transform into invasive pancreatic

ductal adenocarcinoma (PDAC) (Figure S1). Clinical differentia-

tion between low and high-risk pre-malignant BCT can be difficult

and the consequences of missing the chance for a curative

procedure in patients who are suitable for pancreatic surgical
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resection can be devastating [8]. BCT are divided into non-

mucinous and mucinous variants: serous microcystic adenomas

(SMCA), which are non-mucinous tumors, have a very low-

malignant potential (,2%) and very rarely progress to PDAC

[10]; intraductal papillary mucinous neoplasms (IPMN) are

mucinous tumors that are connected to the native pancreatic

ducts (main or side-branch) [11]; whilst the mucinous cystic

neoplasms (MCN) are separate from the ductal system [11,12].

Main branch IPMN lesions carry the highest malignant potential,

ranging between 57 to 92% and side-branch IPMN between 6 to

46% [12,13]. MCNs have a high-malignant potential ranging

from 6 to 36% [14,15]. Out of the BCT, the most often en-

countered are the SMCA (32%–39%), MCNs (10%–45%), and

IPMNs (21%–33%) [16]. The latter have more potential to give

rise to in situ or invasive PDAC, via an adenoma-carcinoma

sequence [3,5,14]. Invasive malignancy arising on the background

of an IPMN is termed Carcinoma-Ex-IPMN (CEI) and is more

common in main pancreatic duct IPMN [12,15,17]. A correct

preoperative diagnosis and evaluation of pancreatic BCT is crucial

for clinical decision-making to sieve out those tumors that are

already malignant or have a high-risk of malignant potential for

which urgent surgical intervention is required [17].

MiRNAs are a recently recognized class of non-coding short

RNAs from 17 to 25 nucleotides in length that play a role in post-

transcriptional gene regulation [18]. Expression profiles of human

miRNAs have demonstrated that many miRNAs are deregulated

in cancer and these profiles will help further establish molecular

diagnosis, prognosis and therapy. Several studies have demon-

strated a different miRNA expression profile in PDAC compared

to normal tissues [2,19,20]. However, the profiles of miRNA

production in PDAC precursor lesions remain largely unknown.

In this report, miRNA expression signatures in low and high-

risk pre-malignant pancreatic BCT were investigated. Further-

more, the role of oncogene targeting miRNAs in the regulation of

malignant transformation from BCT was assessed and KRAS was

identified as a direct target of miR-126. Ultimately, identification of

miRNA markers for the clinical differentiation of these pre-

malignant BCT would allow for early surgical resection to improve

outcomes.

Methods

Tissue samples
Analysis of miRNAs in historical stored formalin-fixed paraffin

embedded (FFPE) and fresh surgical specimens was approved by a

UK national research ethics committee (London; 09/H0722/77)

and by Imperial College Healthcare NHS Trust. Following written

informed consent, specimens were obtained from 58 individuals

who underwent pancreatic resection for a cystic tumor or known

PDAC between May 1999 and November 2010 at the Hammer-

smith Hospital, London, UK. During this period, 4 FFPE and 9

fresh samples of normal pancreas were also collected from

pancreatic resection following trauma. After macroscopic exam-

ination, 10 mm thick sections were obtained from the paraffin

blocks for the FFPE tumor samples (n = 43) as in previous studies

[19,21,22]. For the FFPE microarray there were: SMCA (n = 7),

MCN (n = 6), IPMN (n = 7), CEI (n = 9) and PDAC (n = 14). Our

histopathologist removed any adjacent normal acinar or adipose

tissue with a scalpel. In addition, several sections (3 to 5) were

taken from each block in order to ensure that a representative

sample was obtained. Fresh tissue samples (n = 24; normal

pancreas n = 9, PDAC n = 15) collected at surgery were immedi-

ately placed in RNALater RNA Stabilization Reagent solution

(Qiagen, Hilden, Germany) and stored at room temperature for 2–

3 hours before being frozen at 280uC. The immunohistochemical

analysis was performed on FFPE samples: normal pancreas n = 12,

PDAC n = 12 and SMCA n = 12 (an additional 5 cases of SMCA

were available at this time). Further detailed clinicopathological

information about the patients is provided in Table S1.

Cell culture and transfection
PANC-1 and MIA PaCa-2 pancreatic cells were purchased

from the European Collection of Cell Cultures (ECACC). Both

were maintained in 50% DMEM and 50% RPMI supplemented

with 10% FCS, 1% penicillin/streptomycin, and 1% glutamine.

When the cells were ready for transfection, they were plated in 6

well plate the day before and then transfected with precursor

miRNA (pre-miR) or miRNA inhibitor (anti-miR) (Applied

Biosystems, Cheshire, UK) for 48 hours using HiPerFect Trans-

fection Reagent (Qiagen, Hilden, Germany) before lysis, RNA and

protein extraction.

RNA Isolation
FFPE samples were deparaffinized with xylene and total RNA

was collected using the miRNeasy Mini Kit (Qiagen, Hilden,

Germany) according to the manufacturer’s instructions. Fresh

tissue stored in RNALater was crushed in liquid nitrogen and

subsequent powder lysed in Trizol Reagent (Invitrogen, Paisley,

UK), followed by RNA isolation according to the manufacturer’s

instructions.

miRNA Microarray
The microarray we used is applicable and has been validated for

FFPE samples [23]. Total RNA was extracted (as mentioned

previously) and the samples were analyzed with the Geniom

Realtime Analyzer (GRTA) using the Geniom Biochip MPEA

Homo sapiens (both by febit biomed gmbh, Germany).

The probes on the biochip are designed as the reverse

complements of all major mature human miRNAs (866 miRNAs)

as published in the Sanger miRBase version 13.0 (March 2009)

[24,25]. The probes are synthesized with 7 intra-array replicates

for each miRNA to increase the statistical confidence and to

compensate for potential positional effects. This microarray

combined with the fully automated GRTA platform allows

for measuring miRNA signatures and ensures a high degree of

reproducibility [26]. Samples were labeled by microfluidic-based

enzymatic on-chip labeling of miRNAs (MPEA) [27]. Following

hybridization for 16 hours at 42uC, the biochip was washed

automatically and a program for signal enhancement was processed

with the GRTA. Resulting detection pictures were evaluated using

the Geniom Wizard Software (febit biomed gmbh, Germany).

We have deposited the raw data at GEO under accession

number GSE29352, we can confirm all details are MIAME

compliant.

RT-qPCR
A selection of miRNAs were chosen for validation based on

statistical significant high levels of logarithmized fold change seen

on the microarray, as well as their known potential roles in

tumorigenesis. Extracted total RNA was used to perform RT-

qPCR using Taqman mature miRNA primers and probes

(Applied Biosystems, Cheshire, UK). Briefly, RNA was reverse

transcribed followed by qPCR on a 7900 HT Fast Real-Time

PCR System (both by Applied Biosystems, Cheshire, UK).

Duplicate samples and endogenous controls (U6, U47 and miR-

191) were used throughout. Expression levels of each miRNA were

evaluated using the comparative threshold cycle (Ct) method as

MiRNAs in Benign vs. Malignant Pancreatic Tumors
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normalized to a control (2 2DCt). The relative expression levels of

each miRNA were calculated between tissue types.

For gene expression analysis, total RNA was reverse transcribed

using Superscript III Reverse Transcriptase (Invitrogen, Paisley,

UK) and cDNA transcripts were amplified by qPCR using SYBR

Green (Applied Biosystems, Cheshire, UK). Triplicate samples

were used and levels were normalized to GAPDH using primers

described in Castellano et al [18]. KRAS primer sequences were

from Kent et al [28].

Luciferase Reporter Assay
For KRAS 39UTRs reporter construction, complementary

oligonucleotides (Sigma Aldrich Ltd., Dorset, UK) containing

the miR-126 recognition elements (MRE) plus 10 nucleotides on

each side were annealed and successively cloned into the Mlu1 and

HindIII sites of the multiple cloning site (MCS) of pMIR-

REPORT Firefly Luciferase vector (Applied Biosystems, Cheshire,

UK). KRAS 39-UTR containing two wild-type (named KRA-

S_A_WT and KRAS_B_WT) and two mutated (named KRA-

S_A_MUT and KRAS_B_MUT) miR-126 binding sites were used

to produce the constructs. The sequences of all primers used for

plasmid construction are reported in Table S2.

MIA PaCa-2 cells were seeded onto 24-well plates (106105 cells

per well) the day before transfections were performed. Cells (80%

confluent) were co-transfected with pRL-TK luciferase reporters

(50 ng/well), pMIR-REPORT firefly luciferase (150 ng/well), and

pre-miR-126 (100 nmol/L) using Lipofectamine 2000 (Invitrogen,

Paisley, UK). After 48 hours the cells were lysed using a passive

lysis buffer (Promega, Southampton, UK) and the firefly and

Renilla luciferase luminescence signals were measured using the

Dual-Glo Luciferase Assay System (Promega, Southampton, UK).

Western Blotting
Whole cell lysates were prepared in Nonidet P-40 lysis buffer

[50 mM Tris/HCl, pH 8.0, 150 mM NaCl, 10% (vol/vol)

glycerol, 1% Nonidet P-40, 5 mM DTT (DTT), 1 mM EDTA,

1 mM EGTA, 50 mM leupeptin, and 30 mg/mL aprotinin].

Lysates were subjected to SDS/PAGE and blotted on a Hybond

C super nitrocellulose membrane (GE Healthcare, Bucks, UK).

The intensity of bands was quantified using Image J software

(National Institutes of Health). We used BCL2 (ab692) (Abcam

Plc., Cambridge, UK), CRK (610035) (BD Ltd., Oxford, UK),

KRAS (sc-30) and GAPDH (sc-137179) (Santa-Cruz Biotechnol-

ogy Inc., Santa-Cruz, USA) monoclonal mouse antibodies.

Immunohistochemistry
Sections (4 mm) from FFPE blocks were prepared for immuno-

histochemical examination. After deparaffinisation and rehydra-

tion, antigen retrieval was performed by boiling in 10 mmol/l of

citrate buffer (pH 6.0) for 10 min. After inhibition of endogenous

peroxidase activity for 30 min with methanol containing 0.3%

H2O2, the sections were blocked with 2% BSA in PBS for 30 min

and incubated with antibodies against CRK (as before). The

immune complex was visualised with the Dako REAL EnVision

Detection System, Peroxidase/DAB, Rabbit/Mouse (Dako, Cam-

bridgeshire, UK), according to the manufacturer’s procedure. The

nuclei were counterstained with hematoxylin. Representative

photographs were taken and two pathologists (R.A. and P.C.)

scored the slides for protein expression.

Statistical analysis
The miRNA microarray aimed to detect differential expression

between tissue types. The mean expression values for each miRNA

on the microarray were first background subtracted and normalized

before analysis. Global background subtraction corrects for several

experimental factors that may cause a systematic spatial variability

on a microarray. Following this, the 7 replicate intensity values of

each miRNA were summarized by their median value. Quantile

normalization was then performed across all the different arrays

[29]. These microarray data are presented as the median relative

miRNA expression levels observed and the median logarithmized

fold changes between tissue types.

A hierarchical clustering heatmap was created using the 35

miRNAs with the highest variability in order to separate the data

graphically. This was done because if all the miRNAs were used

then there would be no reliable image, since most are contributing

more background noise than signal. To detect whether partition-

ing was significant, a 363 contingency table consisting of the 3

main groups of tissue type (PDAC, CEI and BCT), was analysed

using Fisher’s Exact test [30]. A P,0.05 was considered a

significant clustering result.

Limma is a test for differential expression analysis of data arising

from microarray experiments. Empirical Bayes and other methods

are used to borrow information across genes, making the analyses

ideal for experiments with a small number of arrays [31,32]. The

resulting P-values were adjusted for multiple testing by the Benjamini-

Hochberg method [33,34]. A log fold change for a deregulated

miRNA with a limma adjusted P,0.05 was considered statistically

significant. Tables S3, S4, S5, and S6 demonstrate the microarray

results for the 30 most deregulated probes (detected by highest

absolute value of logarithmized fold changes) in each tissue

comparison.

The differential miRNA expression between tissues for all RT-

qPCR and Western blotting data was analyzed using the

parametric t-test (unpaired, 1-tailed for validation of the FFPE

samples and unpaired, 2-tailed for fresh tissue samples) with

Graphpad Prism 4.0 (Graphpad Software Inc, San Diego,

California). The immunohistochemistry data was analyzed using

a 363 contingency table and the Fisher’s Exact test (2-tailed).

Where required, the P-values were adjusted for multiple testing

with the Bonferroni correction.

Results

Microarray expression profiles reveal general miRNA
down-regulation in PDAC compared to low malignant
potential BCT

In order to distinguish the various types of pancreatic tumor,

miRNA expression profiling was performed using total RNA

derived from FFPE tissues of low and high malignant potential

BCT and ductal adenocarcinoma (CEI and PDAC). It has already

been described that PDAC is mainly characterized by miRNA up-

regulation. Bloomston et al. identified 30 miRNAs up-regulated

and 3 down-regulated in PDAC compared to normal pancreatic

tissue [20]. This suggested that miRNA up-regulation represents

an important event for pancreatic cancer progression, but

interestingly comparing the miRNA expression levels between

the low malignant potential BCT and PDAC, general miRNA

down-regulation in cancer was observed (Table S3).

Hierarchical clustering based on the expression of these miRNAs

correctly aggregated benign and PDAC cases. The first cluster

consists of 80% PDAC, 20% CEI and no BCT samples and thus

contains predominantly PDAC samples. The second cluster contains

41% PDAC, 41% BCT and 18% CEI samples and finally the third

cluster contains 14% PDAC, 24% CEI and 62% BCT samples, thus

consists predominantly of BCT samples (Figure 1A). The detected

partitioning and clustering was statistically significant (P = 0.034).

MiRNAs in Benign vs. Malignant Pancreatic Tumors
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Next, miRNA expression profiles of PDAC were compared with

different types of BCT (Tables S3, S4, S5, S6) to observe whether it

would be possible to distinguish between them. Although no

significant differential expression of miRNAs was identified between

the BCT subgroups (i.e. IPMN vs. MCN or SMCA; IPMN vs. CEI),

21 miRNAs were down-regulated and none were up-regulated in

PDAC compared to SMCA (low malignant potential BCT).

RT-qPCR validates the microarray results
To confirm the microarray results, Taqman RT-qPCR and

normalized miRNA expression levels by snRNA U6, snoRNA U47

and also by miR-191 (as it did not change across tumor type in the

microarray) were used. All of the controls reached the same

statistical significance. Since their deregulation is important for

cancer progression, miR-21 [35–36], miR-126 [37] and miR-16 [38]

were selected for further analysis using RT-qPCR, furthermore

miR-126 and miR-16 have not been well studied in PDAC. RT-

qPCR was performed with the same RNA as in the microarray.

This revealed that although as expected there was no significant

change of miR-21 between the BCT types (Figure 1B), miR-126 and

miR-16 were significantly down-regulated in PDAC compared to

SMCA (low malignant potential BCT) (Figures 1C and D).

MiR-21 is up-regulated in PDAC and SMCA compared to
non-tumor samples

As miR-21 is well described as being up-regulated in PDAC

compared to normal tissues [20], we used normal pancreas to

Figure 1. A subset of miRNAs are down-regulated in PDAC compared to Benign Cystic Tumors (BCT). (A) Hierarchical Clustering Heatmap
was created to detect possible clusters in rows (transcripts) and columns (samples) of the normalized expression matrix. For this analysis we used the 35
miRNAs with highest overall variability. As the heatmap, with its dendrogram on top and the contingency table at the bottom, shows we detect three
clusters indicated by the solid blue lines. The first cluster consists of 80% PDAC, 20% CEI and no BCT samples and thus contains predominantly PDAC
samples. The second cluster contains 41% PDAC, 41% BCT and 18% CEI samples. Subdividing it into two additional clusters, as indicated by the dashed
blue lines, we see that the left part consists predominantly of CEI, while the right part entails a slight enrichment for BCT samples. Finally, the third cluster
contains 14% PDAC, 24% CEI and 62% BCT samples, thus consists predominantly of BCT samples (P = 0.034). (Red indicates high intensity; green
indicates low intensity; PDAC, Pancreatic Ductal Adenocarcinoma; CEI, Carcinoma-Ex-IPMN; BCT, Benign-Cystic-Tumors). (B) miR-21 (C) miR-126 and (D)
miR-16 were measured using RT-qPCR, performed on the 43 FFPE tissues in order to validate the microarray data. Samples included: SMCA (n = 7), MCN
(n = 6), IPMN (n = 7), and CEI (n = 9) and PDAC (n = 14). (Results presented as mean6SEM; *** P = 0.003, ** P = 0.02 and * P = 0.05 respectively).
doi:10.1371/journal.pone.0032068.g001
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confirm the up-regulation of miR-21 in PDAC and to examine

expression levels of the other selected miRNAs.

RNA from a panel of fresh non-tumorous and PDAC tissues

samples (n = 24) was extracted in order to measure miRNA

expression levels by RT-qPCR. We confirmed that miR-21 was

significantly up-regulated in PDAC (P,0.001) compared to normal

pancreas (Figures 2A). Furthermore, no significant changes were

found in the expression levels of miR-126 and miR-16 between fresh

normal pancreas and PDAC tissue (Figures 2B and C), but as

confirmed by RT-qPCR, there was significant down-regulation of

miR-126 and miR-16 between SMCA (low malignant potential

BCT) and PDAC in the FFPE samples (Figures 1C and D).

In order to make a comparison with the FFPE BCT, we

paraffinized some of the normal fresh pancreas samples for RNA

extraction and RT-qPCR validation. Interestingly, in these FFPE

samples we confirmed that miR-21 was up-regulated in PDAC

(n = 14), as well as in SMCA (n = 7), compared to normal pancreas

(n = 4) (Figure 3). This indicates that the expression of miR-21 is an

early event able to increases pancreatic cell proliferation, but not

malignant transformation.

MiR-16, miR-126 and let-7d modulate the expression of
pancreatic cancer oncogenes

The current study has revealed that many of the miRNAs found

to be down-regulated in PDAC compared to SMCA (low

malignant potential BCT) can potentially regulate the expression

of genes which promote malignant transformation. PDAC is

characterized by the deregulation of many proto-oncogenes

among which KRAS, HMGA2, BCL2 and CRK are critical

[39,40,41,42]. The great majority of PDAC cases harbor a gain-

of-function mutation of KRAS that results in the generation of a

constitutively active form [39]. We show that KRAS and BCL2

protein are significantly up-regulated in PDAC patients (Figure

S2A and B). However no significant change was observed at the

mRNA level for KRAS (Figure S2C), suggesting a post-

transcriptional regulation in PDAC that could be mediated by

the miRNA pathway. Moreover, it is already known that KRAS

and HMGA2 are regulated by the let-7 family (family of miRNAs

that we found to be down-regulated in PDAC in our microarray

(Table S3)) in PDAC and other cancers [43]. The levels of KRAS

mRNA have also been found to vary randomly in colorectal

cancer despite consistent up-regulation of KRAS protein expres-

sion [44]. It is also known that miR-16 regulates BCL2 expression

and acts as a tumor suppressor in prostate cancer and chronic

lymphocytic leukemia (CLL) [45,46]. Furthermore, studies have

shown that administration of the precursor to miR-16 into a

murine model of metastatic prostate cancer results in attenuation

of disease progression [47]. Interestingly, it has been shown that

miR-126 directly regulates the expression of CRK in non-small cell

lung carcinoma [48], gastric [49] and breast cancer [50] and one

would expect PDAC to exhibit high expression of CRK if this

oncogene is repressed by miR-126 in pancreas. However, we could

not find any significant difference in CRK protein levels when

comparing normal pancreas and PDAC patient samples (Figure

S2A and B). CRK is a component of the focal adhesion complex

that is involved in integrin signalling and high levels of CRK have

been associated with an aggressive phenotype of carcinomas [50].

We therefore performed immunohistochemical analysis using a

larger sample size, also containing SMCA cases, to stain for CRK

protein directly on the tissue. This identified increased CRK

protein levels in PDAC compared to benign tissues and normal,

indicating a regulatory role of miR-126 in this tumor type.

Representative sections of CRK protein levels in the different

pancreatic tissues can be seen in Figure S3. Analysis using Fisher’s

Figure 2. RT-qPCR of selected miRNAs performed on fresh
tissues. (A) miR-21, (B) miR-126 and (C) miR-16 were measured using
RT-qPCR in order to compare PDAC to normal pancreas for the miRNAs
of interest. MiR-21 is overexpressed in PDAC compared to normal
pancreas tissue (*** P,0.001). MiR-126 and miR-16 expression levels
were not significantly different between PDAC and normal pancreas
tissue. Samples included: normal pancreas (n = 9) and PDAC (n = 15).
Box and Whiskers indicate median, minimum and maximum.
doi:10.1371/journal.pone.0032068.g002
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Exact test indicated a statistically significant difference in CRK

staining intensity between PDAC, normal pancreas and SMCA

(P = 0.0048).

In order to evaluate whether any of these miRNAs down-

regulate the expression of these oncogenes in PDAC, the miRNAs

were first over-expressed, by transfecting mimics into MIA PaCa-2

and PANC-1 PDAC cell-lines followed by Western blot analysis.

Over-expression of pre-miR-16 down-regulates BCL2 expression

compared to the over-expressed negative control (Figure 4A, 4B

and Figure S4A). Furthermore CRK levels were reduced by pre-

miR-126 transfection (Figure 4A, 4B and Figure S4A) and

surprisingly, KRAS was down-regulated not only by pre-let-7d,

but also by pre-miR-126 in MIA PaCa-2 cells (Figure 4A and 4B).

As it is well documented that the tumour-suppressor let-7 family

regulates KRAS in pancreatic [51,52], lung [53], colon [54] and

breast cancers [55], we concentrated on miR-126 as a novel KRAS

targeting miRNA in PDAC. To this end we performed loss of

function experiments using specific miRNA inhibitors to further

validate this finding. We could demonstrate that in contrast to pre-

miR-126 expression, the down-regulation of miR-126 increases

both KRAS and CRK protein levels (Figure 4C and 4D). Since we

could not see any difference in KRAS mRNA levels using either

pre-miR-126 or anti-miR-126, this indicates that this miRNA

possibly acts on the protein translation step (Figure 4E). The data

herein demonstrate that the down-regulation of multiple miRNAs

in PDAC may contribute to malignant transformation.

MiR-126 regulates KRAS protein translation by
interacting with a ‘‘seedless’’ motif in its 39UTR

We show that over-expression of miR-126 reduces and

conversely its silencing increases KRAS protein levels (Figure 4A,

4B, 4C and 4D). In order to evaluate whether miR-126 directly

regulates KRAS, we performed a bioinformatic search of potential

miR-126 interaction sites in the KRAS mRNA. Using the RNA22

software [56] and the entire KRAS transcript as the input

sequence, we predicted two miR-126 binding sites in the 39UTR

with ‘‘seedless’’ characteristics (Figure 5A). This means that these

interaction sites do not have canonical features of complete

interaction between the 59 seed region of the miRNA [57] and the

39UTR of the gene that has been indicated to be important for the

regulation of the target genes [58]. But instead G-U wobbles were

present in the complementarity between gene and seed miRNA

sequence (Figure 5A). Interestingly, these two regions appeared

evolutionally conserved across species (Figure 5A) and more

importantly it has been recently demonstrated that miRNAs can

regulate gene expression also using ‘‘seedless’’ pairing [58]. For

these reasons we went on to clone the two sites that we termed

KRAS_A_WT and KRAS_B_WT into the 39UTR of pMIR-

REPORT construct along with a mutated version of each (Table

S2) and co-expressed them with the pre-miR-126 in MIA PaCa-2

cells. Over-expression of miR-126 decreased luciferase activity only

when co-expressed with KRAS_A_WT and not the mutated

version (KRAS_A_MUT) (Figure 5B). This indicates that miR-126

directly regulates KRAS at post-transcriptional levels through a

‘‘seedless’’ interaction with its 39UTR.

Discussion

Although the pancreas specific miRNAome and how it is

modified in PDAC has been extensively investigated [59], only a

limited number of studies have looked at miRNA expression in

pancreatic pre-malignant lesions [60,61] indicating an urgent need

for further investigation. Du Rieu et al. examined samples of non-

pathologic pancreatic ducts and microscopic pancreatic intraep-

ithelial neoplasia (PanIN) precursor lesions from a KRAS (G12D)

mouse model and from human FFPE samples adjacent to PDAC.

They showed that miR-21 deregulation occurs in the most

advanced PanIN-3 lesions, before they become invasive PDAC

[60]. Habbe et al. looked at the expression of 12 selected miRNAs

in IPMN compared to normal pancreas and CEI [61]. They found

10 miRNAs significantly up-regulated in IPMN compared to

normal pancreas; of which miR-21 and miR-155 were identified as

possible biomarker candidates for PDAC progression from normal

pancreas to IPMN to adenocarcinoma.

For the first time, we have examined global miRNA expression

in all the epithelial macroscopic pre-malignant pancreatic BCT

(i.e. SMCA, MCN and IPMN), compared to PDAC and CEI, by

microarray to reveal the miRNA-based relationship between these

lesions. Interestingly, with a few exceptions, PDACs tend to cluster

together and remain well separated from the BCT.

There were no significant changes in the miRNA expression

patterns between the various types of BCT, indicating that

miRNA expression changes were not involved in transitions

between the BCT types and more importantly that such transitions

were unlikely to occur in vivo. A widespread miRNA down-

regulation in PDAC was observed compared to SMCA, the most

benign lesion that rarely progress to invasive adenocarcinoma. We

observed that many of the miRNAs down-regulated in PDAC

belong to the same family or cluster. Being that the probes used in

the microarray are randomly located in the platform, we regard

this as validation of our findings. For example, among the

miRNAs that we found to be down-regulated, miR-15a forms a

cluster with miR-16, miR-24 forms a cluster with miR-23a or miR-

27b, miR-29a with miR-29b, miR-143 with miR145 and each cluster

is expressed as a unique primary transcript (Table S3).

It has widely been described that miRNA up-regulation

characterizes PDAC [19,20], whilst cancers are usually charac-

terized by general miRNA down-regulation [62]. We confirm that

miR-21 up-regulation is actually an early event that induces

Figure 3. RT-qPCR confirmed miR-21 overexpression in PDAC
and SMCA compared to normal pancreas. This suggests that miR-
21 overexpression may be an early event in the formation of pancreatic
BCT from normal pancreas. MiR-21 was unable to differentiate PDAC
from SMCA and therefore it may be questionable as a future biomarker
of PDAC. RNA was isolated from FFPE samples for all 3 tissue types.
(Results presented as mean6SEM).
doi:10.1371/journal.pone.0032068.g003
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normal non-proliferative cells into benign proliferative cells.

Dysregulation of proteins involved in miRNA biogenesis in

PDAC, which still need to be characterized, could explain this

event. Among the down-regulated miRNAs in our microarray,

there are many already described as tumor suppressors through

inhibition of known PDAC oncogenes. We show general miR-29

family member down-regulation. Amongst their targets are

DNMT3A and 3B-methyltransferases, whose levels can increase

because of the loss of miR-29, causing CpG island hypermethyla-

tion and cancer [63]. We also show down-regulation of let-7 family

members (let-7f, let-7d, let-7c, let-7a, let-7i) (Table S3), which are

already described as negative regulators of KRAS and HMGA2

oncogenes, whose increased activity is very important during

PDAC progression [53,64]. Furthermore, we show down-regula-

tion of both miR-143 and miR-145, which have recently been

described as being transcriptionally down-regulated by the Ras

signaling pathway, that in turn directly targets KRAS oncogene in

PDAC [28]. This revealed a feed-forward mechanism that

potentiates Ras signaling [28]. This was of interest as it is well

known that KRAS is one of the main genetic promoters of PDAC

[39] and HMGA2 expression levels are associated with the

malignant phenotype in pancreatic exocrine tissue [42], which

could in part be explained by the down-regulation of these

miRNAs. Interestingly, we could see an up-regulation of KRAS

protein, but no change in mRNA levels when comparing normal

tissues to PDAC, indicating that the post-transcriptional regulation

of KRAS in PDAC may be an essential step.

Mutations that result in a constitutively active KRAS are found

in .95% of PDAC and are thought to be a crucial initiating event

for this disease [65]. Furthermore, PDAC continues to be

‘‘addicted’’ to KRAS for epithelial differentiation and cell viability,

indicating that finding new KRAS regulators is an important step

[66]. We show a down-regulation of miR-126 in PDAC, with

increased expression of KRAS. As a result, we evaluated a possible

role for miR-126 in regulating KRAS and found that it is able to

directly regulate KRAS, inhibiting its protein translation by

interacting with a ‘‘seedless’’ site within its 39UTR. This suggests

that its downregulation in PDAC could participate in the

Figure 4. Down-regulated miRNAs allow increased expression of crucial PDAC oncogenes. (A) Western Blots showing expression levels of
BCL2, CRK and KRAS oncogenes in MIA PaCa-2 cells. Transfection was performed for 48 hours with precursor miR-16, miR-126 and let-7d. GAPDH was
used as an endogenous loading control. These are representative blots derived from three biological replicates (nc, negative control). (B)
Densitometric western analysis. Bar diagram of density ratio (protein/GAPDH). Negative control (nc) was set to 1 (*P,0.05; **P,0.01). (C) Western
Blots showing increased expression of CRK and KRAS oncogenes in MIA PaCa-2 cells after silencing of miR-126 using anti-miR (100 nM) transfection
for 48 hours; (D) Densitometric Western analysis. Bar diagram of density ratio (protein/GAPDH). Negative control (nc) was set to 1 (*P,0.05;
**P,0.01). (E) The relative expression of KRAS mRNA after pre-miR-126 or anti-miR-126 was analyzed using RT-qPCR. GAPDH was used as a
housekeeping control. All data are shown as mean6SD.
doi:10.1371/journal.pone.0032068.g004
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progression of PDAC because of the subsequent KRAS increase.

MiR-126 expression was in fact down-regulated in PDAC compare

to SMCA (a low malignant potential BCT) and previous studies

have shown that these BCT lesions are devoid of the KRAS

mutation [67,68]. The high malignant potential BCT (i.e. IPMN

and MCN) have been shown to have the mutated KRAS more

frequently [69,70] and we show these lesions had no significant

difference in miR-126 expression when compared to PDAC.

Interestingly, for progression from PanIN to BCT to adenocar-

cinoma these mucinous lesions require KRAS (G12D), followed by

loss of heterozygosity of SMAD4 and mutation of p53 or p16 [71].

As we show miR-126 up-regulation occurs in SMCA, this raises the

possibility of replacement miRNA therapy for those patients with

low miR-126 in their BCT at the time of pre-operative biopsy or

even as adjuvant treatment after surgical resection to prevent

recurrence or control disease.

MiR-16 is often down-regulated in chronic lymphocytic

leukaemia [72], gastric [73], ovarian [74] and prostate cancers

as a tumor suppressor that targets and down-regulates the anti-

apoptotic gene BCL2 [45]. MiR-126 is down-regulated in various

tumors compared to non-cancerous tissues including breast, lung,

stomach, cervix, bladder, and prostate [37]. Recently, miR-126 has

been shown to be a tumor suppressor in gastric cancer as it can

inhibit tumor growth and metastasis in vivo and in vitro. This effect

was partially mediated by down-regulation of CRK [49]. SRC and

CRK-associated substrate phosphorylation is an important

promoter of PDAC anchorage-independence and tumor progres-

sion [41]. SRC is able to repress miR-126 expression levels [50]

and furthermore miR-126 has been described as a suppressor of

proliferation and metastasis in breast cancer [75]. We have

established that miR-16 targets BCL2 and miR-126 targets at least

CRK and KRAS in PDAC cell-lines. As already shown, we did

not observe any significant change in miR-16 and miR-126

expression comparing normal pancreas to PDAC using RT-

qPCR, but did find significant down-regulation of both miRNAs

in PDAC compared to a low malignant potential BCT. Whilst the

down-regulation of miR-16 has not been seen previously in PDAC

compared to normal pancreas [76], the reduction of miR-126 in

PDAC has recently been reported [77]. As both are frequently

down-regulated in several tumor types, their importance in

tumorigenesis is clear.

We could not see miR-21 as up-regulated in PDAC compared to

SMCA. Croce’s group have also examined the oncomiR-21 in more

detail in 80 PDAC specimens and found that it is significantly

overexpressed in PDAC, but that its expression does not correlate

with tumor size, nodal status or T stage [1]. We observed that its

up-regulation from normal tissue is almost certainly a very early

event that occurs in the low malignant potential BCT we studied

and this occurs even earlier than previously described [60,61].

This suggests that miR-21 induces pancreatic cell proliferation, but

it is not sufficient to induce malignant transformation. Since miR-

21 has recently been demonstrated to be up-regulated in PDAC

compared to normal tissue [20] and we show here that it is not

deregulated in PDAC compared to pre-malignant BCT, this

indicates that its up-regulation is likely to be an early event

important for benign neoplasm formation from normal tissue.

The differential diagnosis of pancreatic BCT remains a clinical

challenge. A better understanding of the natural history of these

Figure 5. KRAS is experimentally validated as a direct target of miR-126 in pancreatic cancer cells. (A) Putative miR-126 binding
sequences in the 39-UTR of KRAS mRNA. Two different fragments from the 39-UTR region of KRAS were cloned downstream of the luciferase reporters
and named as wild-type (KRAS_A_WT and KRAS_B_WT). Two mutated versions of the miR-126 binding site were also generated (KRAS_A_MUT and
KRAS_B_MUT); the mutated nucleotides of the miR-126 binding site are underlined. Boxed areas represent conserved complementary nucleotides of
the miR-126 seed sequence in various species (Hsa, human; Ptr, chimpanzee; Mml, rhesus; Mmu, mouse; Laf, elephant; Gga, chicken). *indicates that
KRAS_B_WT is conserved in 16 species. (B) Luciferase reporter assay. Each of the 4 plasmids (150 ng) and a Renilla luciferase reporter (50 ng) were co-
transfected into MIA PaCa-2 cells with precursor miR-126 (100 nM). Luciferase activity was assayed 48 hours after transfection. All experiments were
independently repeated at least three times; the results are presented as mean6SD (**P,0.01).
doi:10.1371/journal.pone.0032068.g005
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lesions is considered central to understanding the risk of malignant

transformation. We observed significantly down-regulated miR-

NAs in PDAC compared to low malignant potential BCT, such as

miR-16, miR-126 and let-7d, which could be confirmed by qRT-

PCR and target known PDAC oncogenes such as BCL2, CRK

and KRAS. We thus demonstrate that miRNAs have the potential

to be used to differentiate pancreatic BCT from malignant PDAC

(Figure 6). For the first time we have shown that KRAS is directly

targeted by miR-126 by binding to a ‘‘seedless’’ site in its 39UTR.

As the majority of PDAC are driven by activated KRAS, the re-

expression of this miRNA, along with other miRNAs known to

also negatively regulate this crucial oncogene (i.e. let-7 family, miR-

96 [78] and miR-217 [79]), may provide a therapeutic strategy for

treating this devastating disease.

Limitations
Whilst there are some striking findings from the microarray and

validation, the following should be taken into account. Firstly, the

various pancreatic BCT are very rare (prevalence reported in the

literature as between 0.2–2.6% in the asymptomatic general

population [9]) and the tissues are difficult to obtain as few patients

undergo surgical resection. This is reflected in our small sample

sizes. Thus whilst we conclude that there are no statistically

significant deregulated miRNAs between many of the groups, this

may in fact be a Type II error. Secondly, this is also true of our

validation of miR-16 and miR-126 in PDAC compared to normal

pancreas. Whilst we did not see significant down-regulation for

either of these miRNAs, this may also be a Type II error. Hamada

et al. have recently shown that miR-126 is down-regulated in

PDAC and has tumor suppressive effects by targeting ADAM9,

which enhances cancer cell invasion by modulating tumor-stromal

cell interactions. Re-expression of miR-126 reduced cellular

migration and invasion in PDAC cell lines [77]. It would be

appropriate to undertake further miRNA studies on the high

malignant potential pancreatic lesions and validate candidate

miRNAs in a larger cohort, ideally in the prospective and

multicentric setting.

Supporting Information

Figure S1 Epithelial benign cystic tumors of the pan-
creas. Our study concentrated on the tumors of epithelial origin

in order to identify miRNAs which may be involved in the

development of early neoplasia and pancreatic ductal adenocar-

cinoma (PDAC).

(TIF)

Figure S2 BCL2, CRK and KRAS expression levels in
PDAC and normal pancreatic tissue. (A) Western Blots

Figure 6. Flow chart of miRNA expression profiling in pancreatic BCTs and miRNA target acquisition. (FFPE, formalin-fixed paraffin
embedded tissue; **indicates that RNA could not be isolated from 1 sample; RT- qPCR, quantitative reverse transcription polymerase chain reaction).
doi:10.1371/journal.pone.0032068.g006
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showing protein levels of BCL2, CRK, KRAS and GAPDH in

PDAC (n = 9) fresh tissue samples compared to normal pancreas

(n = 9). (B) Bar chart showing mean relative protein levels of the

Western Blots analyzed by densitometric scanning after normal-

ization to GAPDH (*BCL2 levels in PDAC vs. Normal P = 0.03;

**KRAS levels in PDAC vs. Normal P = 0.0003). (C) RT-qPCR

performed on the same fresh tissue samples showing KRAS

mRNA levels in PDAC (n = 6) compared to normal (n = 6) after

normalization to GAPDH.

(TIF)

Figure S3 Immunohistochemical analysis of CRK ex-
pression in pancreatic tissues. Paraffin sections were

analyzed using anti-CRK antibody and counterstained with

hematoxylin. Cytoplasmic staining (brown) was observed in PDAC

and normal pancreas, but not in SMCA. Original photographs

were taken at magnification 206. Staining intensity was measured

as 0 for no expression, 1+ for weak expression and 2+ for moderate

expression. Bar charts indicate the % in each category for each

tissue type. A 363 contingency table was created and analyzed

using the Fisher’s Exact test to reveal a significant difference

between the 3 tissue types (i.e. increased CRK expression in

PDAC.normal pancreas.SMCA; P = 0.0048).

(TIF)

Figure S4 Expression levels of BCL2, CRK and KRAS
oncogenes in PANC-1 cells. (A) Western Blots showing protein

levels of BCL2, CRK, KRAS after transfection for 48 hours with

precursor miR-16, miR-126 and let-7d (miRNA mimics). (B) The

relative expression of KRAS mRNA after pre-miR-126 or anti-

miR-126 transfection was analyzed using RT-q PCR and

remained unchanged compared to negative control. GAPDH

was used as a housekeeping control. All data are shown as

mean6SD. (C) Western Blots showing protein levels of CRK and

KRAS after transfection for 48 hours with miRNA inhibitor (anti-

miR-126). GAPDH was used as an endogenous loading control for

all blots. These are representative blots derived from three

biological replicates (nc, negative control).

(TIF)

Table S1 Clinicopathological characteristics of the
patients for each tissue type. MiRNA expression profiling

and validation was performed on 58 pancreatic tumor samples; 43

formalin-fixed paraffin-embedded (FFPE) tumour samples were

analyzed by miRNA microarray and RT-qPCR using Taqman

probes; a further 24 fresh surgical specimens (normal pancreas n = 9

and PDAC n = 15) were used to validate the results using RT-qPCR.

Samples available for immunohistochemical (IHC) analysis were

normal pancreas n = 12, PDAC n = 12 and SMCA n = 12. Non-

tumorous tissue was obtained during pancreatic trauma surgery. Key:

SMCA, serous microcystic adenoma; MCN, mucinous cystic

neoplasm; PDAC, Pancreatic Adenocarcinoma; IPMN, Intraductal

papillary mucinous neoplasm; CEI, Carcinoma-ex-IPMN; IQR,

interquartile range; *Non-disease related death (cardiac disease), RT-

qPCR, quantitative reverse transcription polymerase chain reaction.

(DOC)

Table S2 Sequences of all primers used for KRAS
luciferase plasmid construction. Red ends indicate sequenc-

es appropriate for the Mlu1 and HindIII restriction enzymes.

Yellow highlighted areas indicate mutated nucleotides.

(DOC)

Table S3 Microarray results for PDAC vs. Serous
Microcystic Adenoma (SMCA). The 30 most deregulated

probes (detected by highest absolute value of logarithmized fold

changes) for PDAC vs. SMCA (low malignant potential tumor).

There is widespread down-regulation of miRNAs in PDAC

(limma adjp indicates the p- value adjusted for multiple testing).

(DOC)

Table S4 Microarray results for PDAC vs. Mucinous
Cystic Neoplasm (MCN). The 30 most deregulated probes

(detected by highest absolute value of logarithmized fold changes)

for PDAC vs. MCN (high malignant potential tumor). No

significant difference in miRNA expression profile was shown

between these 2 tissue types (limma adjp indicates the p-value

adjusted for multiple testing).

(DOC)

Table S5 Microarray results for PDAC vs. Intraductal
Papillary Mucinous Neoplasm (IPMN). The 30 most

deregulated probes (detected by highest absolute value of

logarithmized fold changes) for PDAC vs. IPMN (high malignant

potential tumor). No significant difference in miRNA expression

profile was shown between these 2 tissue types (limma adjp

indicates the p-value adjusted for multiple testing).

(DOC)

Table S6 Microarray results for Carcinoma Ex-IPMN
(CEI) vs. PDAC. The 30 most deregulated probes (detected by

highest absolute value of logarithmized fold changes) for CEI

(carcinoma on background of IPMN lesion) vs. PDAC. No

significant difference in miRNA expression profile was shown

between these 2 tissue types (limma adjp indicates the p-value

adjusted for multiple testing).

(DOC)
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