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Matrix metalloproteinases (MMPs) are crucial for tissue remodeling and repair and are
expressed in diverse infections, whereas tissue inhibitors of metalloproteinases (TIMPs)
are endogenous inhibitors of MMPs. However, the interaction of MMPs and TIMPs in
tuberculous lymphadenitis (TBL), an extra-pulmonary form of tuberculosis (EPTB) and
helminth (Hel+) coinfection is not known. Therefore, this present study investigates the
levels of circulating MMPs (1, 2, 3, 7, 8, 9, 12, 13) and TIMPs (1, 2, 3, 4) in TBL individuals
with helminth (Strongyloides stercoralis [Ss], hereafter Hel+) coinfection and without
helminth coinfection (hereafter, Hel-). In addition, we have also carried out the
regression analysis and calculated the MMP/TIMP ratios between the two study
groups. We describe that the circulating levels of MMPs (except MMP-8 and MMP-12)
were elevated in TBL-Hel+ coinfected individuals compared to TBL-Hel- individuals.
Similarly, the systemic levels of TIMPs (1, 2, 3, 4) were increased in TBL-Hel+
compared to TBL-Hel- groups indicating that it is a feature of helminth coinfection per
se. Finally, our multivariate analysis data also revealed that the changes in MMPs and
TIMPs were independent of age, sex, and culture status between TBL-Hel+ and TBL-Hel-
individuals. We show that the MMP-2 ratio with all TIMPs were significantly associated
with TBL-helminth coinfection. Thus, our results describe how helminth infection has a
profound effect on the pathogenesis of TBL and that both MMPs and TIMPs could
dampen the immunity against the TBL-Hel+ coinfected individuals.

Keywords: extra-pulmonary TB, helminth infection, matrix metalloproteinases, tissue inhibitors of
metalloproteinases, Luminex ELISA
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INTRODUCTION

Tuberculosis (TB) poses a significant public threat and kills nearly 1.2
million individuals globally, with 90% of the infection emerging in
developing nations (Sanou et al., 2015;WHO, 2019). Both cellular and
humoral immunity are necessary to control Mycobacterium
tuberculosis (Mtb) infection. They often require activation of
monocytes, macrophages, T cells (particularly IFNg), B cells, natural
killer (NK) cells, and dendritic cells (DC) (Flynn and Chan, 2001;
Saunders and Britton, 2007; O’Garra et al., 2013). However, during
adverse circumstances, Mtb escapes from the protective immune
environment or granuloma and thereby advances to different forms
of TB such as active pulmonary TB (ATB) and extrapulmonary TB
(Russell et al., 2009; O’Garra et al., 2013). Similarly, helminth parasites
are well-knownmultifaceted eukaryotic organisms that cause chronic
illness in humans. Strongyloidiasis caused by Strongyloides stercoralis
affects about 50-100millionpersonsworldwide and they exhibit a free-
living auto infective cycles followed by prolonged infection (Babu and
Nutman, 2013; Puthiyakunnon et al., 2014; Toledo et al., 2015). They
are the potential regulators of defensive immunity against different
formsofTB (Metenouet al., 2012).Helminth infectionusually appears
in resource limited settings and accounts for a massive degree of
geographical overlap with TB disease (Salgame et al., 2013) and both
together cause infection (Allen andMaizels, 2011;O’Garra et al., 2013).

Previous epidemiological and experimental reports have
revealed that both systemic and intestinal helminths negatively
influence TB disease (Salgame et al., 2013). In addition, both
local and systemic inflammatory responses and innate
parameters also impact the severity and pathogenesis of TB
disease. Most importantly, certain non-specific inflammatory
markers like matrix metalloproteinases (MMPs) and acute
phase proteins are employed to measure the severity of TB
disease and are considered to be an indispensable element
(Walzl et al., 2011; Wallis et al., 2013). These MMPs belong to
a broad family of zinc- and calcium-dependent proteolytic
enzymes. Different studies highlighted the critical role of
MMPs in inflammatory cell migration, cellular recruitment,
tissue remodeling, destruction of matrix and non-matrix
proteins, disease pathogenesis, and immune response alteration
(Sundararajan et al., 2012; Bruschi and Pinto, 2013; Ugarte-Gil
et al., 2013). MMP activity is regulated by endogenous inhibitors
called tissue inhibitors of metalloproteinases (TIMPs). TIMPs are
also extremely crucial for the remodeling and repair of normal
and pathological tissues following destruction induced by MMPs
(Sundararajan et al., 2012; Ugarte-Gil et al., 2013). In pulmonary
TB (PTB), MMPs are majorly important in cavitary lung disease
and aid in dissemination (Elkington et al., 2011a). Earlier studies
have displayed that circulating levels of MMPs were reduced in
active TB-helminth coinfected individuals than those with active
TB alone (George et al., 2014). Similarly, increased systemic levels
of MMPs and TIMPs are the characteristic feature of filarial
infection (Anuradha et al., 2012). However, to the best of our
knowledge, no studies have reported the circulating levels of
MMPs and TIMPs in TBL helminth coinfection. Hence, we
examined the same in this study and show that TBL-Hel+
coinfected individuals are associated with enhanced plasma
levels of MMPs and TIMPs compared to TBL-Hel- individuals.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
METHODS

Ethics Statement
The study was sanctioned and approved by the National Institute
for Research in Tuberculosis (NIRT)-Institutional Review Board
(NIRTIEC2010007), India, and informed written consent was
obtained from all the study participants.

Study Subjects
We recruited a group of 88 study participants with TBL disease,
among them one group of individuals were infected with Ss
infection (n=44, Hel+) and the other group of individuals had
only TBL (without Ss infection [Hel-]). The study individuals were
well defined and have been reported previously (Kathamuthu et al.,
2019). We have utilized the same set of samples in this experiment
and their detailed demographics and hematological profile were
reported (Tables 1, 2). TBL individuals were diagnosed based on
either histopathology or bacteriological culture using infected
lymph node samples. The disease severity was calculated using
thehomogenized lymphnodeculturesandcalculatedbasedon their
grades [0 (no colonies)/1+ (20–100 colonies)/2+(>100 colonies)],
whichweredeterminedby thegrowthofMtbonLowenstein-Jensen
solidmedia (Mitchison andAber, 1974). The coinfected individuals
had higher severity than the non-coinfected individuals (Table 1).
Helminth (Ss) infection was detected by the existence of IgG
antibodies to the 31-kDa recombinant NIE antigen (Bisoffi et al.,
2014; Buonfrate et al., 2015). The presence of Ss infection was
confirmed only using ELISA and not by stool microscopy
investigation. The study individuals were anti-tuberculosis and
anthelmintic treatment naïve and not affected with any
TABLE 1 | Demographics of the study population.

Study Demographics TBL-Hel+ TBL-Hel- P Value

Number of subjects
recruited (n)

44 44 NS

Gender (M/F) 12/32 14/30 NS
Median age in years
(range)

23 (18-53) 25 (19-59) NS

Culture grade (0/1+/2+) 7/30/7 15/28/1 0.028 a

NIE IgG antibody titres 484.77 (291-1202) 174.3 (38-281.75) <0.0001b
July 2021
 | Volume 11 | Artic
aCalculated using the Chi-square test; NS, Not significant. bCalculated using the Mann-
Whitney test.
TABLE 2 | Hematological profile of the study population.

Hematological profile TBL-Hel+ TBL-Hel- P valuea

Whole blood cells (103/litre) 6.01 (4.9-10.9) 6.36 (3.80-11.9) NS
Red blood cells (106/litre) 3.98 (3.94-8.9) 4.14 (3.92-5.44) NS
Lymphocytes (%) 24.53 (14.2-48.1) 28.37 (17.6-43.4) 0.0497
Monocytes (%) 5.20 (2.0-11.7) 7.08 (2.9-20.8) 0.0207
Eosinophils (%) 3.02 (1.6-8.7) 1.70 (1.0-3.2) 0.0316
Basophils (%) 0.85 (0.3-6.7) 0.85 (0.2-2.2) NS
Neutrophils (%) 50.65 (42.9-76.9) 49.77 (45.8-71.6) 0.0287
Platelets (103/litre) 262.13 (152-482) 273.04 (179-654) NS
Hemoglobin (g/dl) 9.7 (8.0-18.3) 11.02 (8.0-14.8) NS
l

aCalculated using the Mann-Whitney test; NS, Not significant.
Bold values indicates the significance.
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disseminated strongyloidiasis infection. They were all BCG
vaccinated and reported negative for filarial infection (based on
TropBio ELISA results) and human immune deficiency virus
(HIV) infection.
Plasma Separation
10ml of peripheral blood samples were collected in sodiumheparin
tubes and centrifuged at 2600 revolutions per minute (rpm) for 10
minutes at 4°C. Then the plasma was meticulously transferred in a
fresh screw cap vial and stored at -80°C for further use.
Luminex ELISA
The circulating levels of MMP-1, MMP-2, MMP-3, MMP-7,
MMP-8, MMP-9, MMP-12, MMP-13 (catalogue number
FCSTM07-8), and human TIMP-1, TIMP-2, TIMP-3 and
TIMP-4 (catalogue number LKTM003) were measured using a
Luminex kit (R&D Systems). The experiments were performed
using Bio-Plex® MAGPIX™ multiplex reader (BIO-RAD) and
the data were exported using Bio-plex manager 6.1 version.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Statistical Analysis
All the data were analyzed using GraphPad Prism version 8.0
(GraphPad Software Inc., San Diego, CA). Geometric means
(GM) were used to measure the central tendency and statistically
significant differences between the study groups were analyzed
using non-parametric Mann-Whitney U test. Univariate and
multivariate (regression) analyses were performed using STATA/
MP version 16.0.
RESULTS

TBL-Hel+ Individuals Exhibit Significantly
Heightened Circulating Levels of MMPs
Tomeasure the impact of helminth coinfection on TBL disease, we
analysed the circulating levels of MMPs (1, 2, 3, 7, 8, 9, 12, 13) in
TBL-Hel+ compared toTBL-Hel- individuals (Figure 1).As shown
inFigure 1, the circulating levels ofMMP-1 (geometricmean (GM)
of Hel+ is 1433 pg/ml vs 1026 pg/ml in Hel-, p=0.0038), MMP-2
(GM of Hel+ is 1750 pg/ml vs 250.8 pg/ml in Hel-, p=0.0043),
MMP-3 (GM of Hel+ is 632.2 pg/ml vs 257.5 pg/ml in Hel-,
FIGURE 1 | Circulating levels of matrix metalloproteinases (MMPs) were elevated in TBL-Hel+ coinfected individuals. The systemic levels of MMPs (1, 2, 3, 7, 8, 9,
12, 13) were examined in TBL-Hel+ (n = 44) and TBL-Hel- (n = 44) individuals. The results were reported as scatter plots with each circle denoting a single individual.
The bar indicates the geometric mean and P values (p < 0.05, *p < 0.01**p < 0.001***p < 0.0001****) were calculated using Mann-Whitney U test.
July 2021 | Volume 11 | Article 680665
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p=0.0379), MMP-7 (Hel+ is 1954 pg/ml vs 1727 pg/ml in Hel-,
p=0.0411), MMP-9 (GM of Hel+ is 23691 pg/ml vs 22336 pg/ml in
Hel-, p=0.0354) and MMP-13 (Hel+ is 87.75 pg/ml vs 81.81 pg/ml
in Hel-, p=0.0074) were significantly elevated in in TBL-Hel+
compared to TBL-Hel- individuals. In contrast, the plasma levels
ofMMP-8 (Hel+ is 7775pg/ml vs7912pg/ml inHel-) andMMP-12
(Hel+ is 231 pg/ml vs 228.1 pg/ml in Hel-) were not significantly
different between TBL-Hel+ compared to TBL-Hel- individuals.
Therefore, TBL-Hel+ coinfection is associated with increased
circulating levels of MMPs.

TBL-Hel+ Individuals Exhibit Significantly
Heightened Systemic Levels of TIMPs
To study the effect of helminth coinfection on TBL disease, we
examined the plasma levels of TIMPs (1, 2, 3, 4) in TBL-Hel+
and TBL-Hel- individuals (Figure 2). The plasma levels of
TIMP-1 (GM of Hel+ is 15072 pg/ml vs 10828 pg/ml in Hel-,
p=0.0183), TIMP-2 (GM of Hel+ is 805.1 pg/ml vs 529.8 pg/ml in
Hel-, p=0.0403), TIMP-3 (GM of Hel+ is 56.05 pg/ml vs 53.02
pg/ml in Hel-, p=0.0349) and TIMP-4 (GM of Hel+ us 21.54 pg/
ml vs 18.30 pg/ml in Hel-, p=0.0239) were significantly elevated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
in TBL-Hel+ coinfected individuals compared to TBL-Hel-
individuals. Thus, heightened circulating levels of TIMPs are
the characteristic feature of TBL-Hel+ coinfection.
MMP/TIMP Ratio of TBL Helminth
Coinfection
We then examined the ratio between MMPs (1, 2, 3, 7, 8, 9, 12,
13) with each of the TIMPs (1, 2, 3, 4) in helminth coinfection
with TBL disease compared to TBL-Hel- individuals. As shown
in Figure 3, TBL-Hel+ individuals had significantly altered
MMP (1, 2) with TIMP-1, MMP (2) with TIMP-2, MMP (1, 2,
3) with TIMP-3, MMP (1, 2, 3) with TIMP-4 and MMP (3, 7)
with TIMP (2, 3) ratio when compared to TBL-Hel- individuals
(Figure 3). Thus, MMP-2/TIMP (1, 2, 3, 4) ratios are elevated in
TBL-helminth coinfection.

Regression Analysis of MMPs and TIMPs
Finally, we examined the univariate andmultivariate analysis (with
95% confidence interval [CI]) of MMPs (1, 2, 3, 7, 8, 9, 12, 13) and
TIMPs (1, 2, 3, 4) inTBL-Hel+ andTBL-Hel- coinfected individuals
FIGURE 2 | Circulating levels of tissue inhibitors of metalloproteinases (TIMPs) were elevated in TBL-Hel+ coinfected individuals. The systemic levels of TIMPs (1, 2,
3, 4) were examined in TBL-Hel+ (n = 44) and TBL-Hel- (n = 44) individuals. The results are given as scatter plots with each circle indicating a single individual and
the bar representing the geometric mean. P values were calculated using Mann-Whitney U test.
July 2021 | Volume 11 | Article 680665
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upon normalizing the confounding (age, sex and culture status)
factors to understand the potential ability to discriminate between
the study groups. Our data reveals that MMP-1, MMP-2, and
MMP-3were correlatedwith the elevated risk of TBL-Hel+ disease.
Likewise, among various TIMPs, TIMP-1, TIMP-3, and TIMP-4
were associated with increased risk of TBL-Hel+ disease (Table 3).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
DISCUSSION

In TB, MMP levels were increased in peripheral blood and at the
site of infection and their systemic levels precisely replicated the
disease pathology (Elkington et al., 2011a). In the case of
parasitic infections, only a few studies examined the levels of
FIGURE 3 | Ratio of MMP/TIMP were altered in TBL-Hel+ coinfected individuals. The ratio of different MMPs (1, 2, 3, 7, 8, 9, 12, 13) and each one of the TIMPs
(1, 2, 3, 4) were compared between TBL-Hel+ (n = 44) and TBL-Hel- (n = 44) individuals. The ratios were represented as scatter plots with each circle denoting a
single individual and the bar indicating the geometric mean. P values were calculated using Mann-Whitney U test.
TABLE 3 | Logistic regression model between TBL-Hel+ and TBL-Hel- individuals.

Univariate Multivariate
OR (95% CI) P value *aOR (95% CI) P value

MMP1 2.19 (1.23–3.91) 0.008 2.32 (1.27–4.25) 0.006
MMP2 1.12 (1.03–1.21) 0.005 1.14 (1.05–1.24) 0.003
MMP3 1.21 (1.02–1.43) 0.026 1.23 (1.03–1.46) 0.023
MMP7 2.13 (0.87–5.21) 0.097 2.24 (0.89–5.65) 0.088
MMP8 0.99 (0.76–1.29) 0.940 0.93 (0.69–1.23) 0.596
MMP9 3.18 (0.64–15.69) 0.155 2.45 (0.45–13.34) 0.298
MMP12 1.62 (0.19–14.06) 0.659 1.67 (0.19–14.84) 0.648
MMP13 5.44 (0.87–34.03) 0.070 5.10 (0.74–35.41) 0.099
TIMP1 1.26 (0.86–1.84) 0.232 2.55 (1.20–5.43) 0.015
TIMP2 1.41 (1.01–1.96) 0.045 1.37 (0.98–1.92) 0.064
TIMP3 10.63 (1.01–112.35) 0.049 14.68 (1.24–173.47) 0.033
TIMP4 2.14 (0.94–4.87) 0.070 2.40 (1.02–5.66) 0.046
July 2021 | Volume 11 | Article
*Multivariate model was adjusted for age, sex and culture status.
Bold values indicates the significance.
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MMPs and TIMPs (Gomez et al., 1999; Tsai et al., 2008; Verma
et al., 2011; Maretti-Mira et al., 2011; Geurts et al., 2012).
Helminth infections are capable of altering the expression
pattern of both MMPs and TIMPs and some of them can act
as an activator of these factors (Wynn, 2007; Anuradha et al.,
2012). Nevertheless, no studies have explored the role of MMPs
and TIMPs in TBL-helminth coinfection specifically in endemic
settings for both the disease. Our results reveal that systemic
levels of both MMPs (1, 2, 3, 7, 9, 13) and TIMPs (1, 2, 3, 4) were
s i gn ifican t l y he i gh t ened in TBL-He l+ co in f e c t ed
pathological situations.

Certain MMPs (1, 2, 3, 9) are associated with enhanced
expression and activity upon infection with Mycobacterium
tuberculosis (Mtb) (Sathyamoorthy et al., 2015). Previous
observations also illustrate that MMPs are higher (1, 2, 3, 8,
and 9) in TB infected sputum samples (Ugarte-Gil et al., 2013).
Other studies have also shown that various MMPs have been
enhanced in TB patients compared to controls (Hoheisel et al.,
2001; Elkington et al., 2011b; Sundararajan et al., 2012; Seddon
et al., 2013; Sathyamoorthy et al., 2015). The levels of MMPs (1,
2, 8, 9) are increased in pleural fluid of TB patients than non-TB
pleuritis (Walker et al., 2012). MMP-9 level was significantly
greater in cerebrospinal fluid (CSF) of meningeal TB which
associates with their neurological compromise (Matsuura et al.,
2000; Price et al., 2001). The levels of MMPs increased in TB-
HIV+ coinfected sputum samples when compared to TB-HIV-
controls (Walker et al., 2017). Finally, plasma levels of certain
MMPs (1, 2, 3, 7, 10, 12 and 13) were significantly increased in
TB-diabetes mellitus (DM) coinfected individuals than TB and
HC individuals (Kumar et al., 2018). Our data were similar to
previous observations and we reveal that systemic levels of
MMPs (1, 2, 3, 7, 9, 13) were significantly elevated in TBL-Hel+
coinfected individuals compared to TBL-Hel- individuals. The
greater secretion of various MMPs suggests TBL-helminth
coinfection could induce extensive degradation of the
basement membrane, proteolytic cleavage of tissue matrix,
collagen breakdown, and thereby enhances the inflammatory
responses in the human host. In addition, the ECM degradation
could influence the dissemination of TB infection, which in
turn compromises the protective immune responses against
TBL infection. Up regulated MMP levels also facilitate the
migration of leukocytes into the circulation. This often leads
to necrosis and cavitation and thus creates an immune-
privileged site for bacterial multiplication. Thus, helminth
infection is likely to have detrimental effects on the
pathogenesis of TBL disease.

Previous studies have also demonstrated thatTIMP-1 andTIMP-
2 levels are significantly higher in TB patients than in healthy
individuals (Hoheisel et al., 2001; Thrailkill et al., 2009;
Puthiyakunnon et al., 2014; Walker et al., 2017; Stek et al., 2018).
Similarly, plasma levels of TIMP-1 and TIMP-2 were significantly
increased in chronic filarial pathology patients (Anuradha et al.,
2012). In contrast,TIMPs (1, 2, 4) levelswere significantlydiminished
and TIMP-3 levels were higher in active TB-Ss+ coinfected
individuals (George et al., 2014). Even in TB-Type 2 DM,
comorbid patients exhibit higher plasma levels of TIMP-4 but not
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
the other TIMPswhen compared toTBdisease alone (Andrade et al.,
2014). Similarly, our results display that TIMPs (1, 2, 3, 4) were
elevated in TBL-Hel+ infected individuals. TIMPs themselves might
also be involved in the tissue destruction and hence the TBL-Hel+
infected levels exhibited enhanced TIMPs than the uninfected
individuals. In contrast to TBL disease, some of the TIMP levels
were reduced in pulmonary TB-helminth coinfection and this is
might be because TBL is a more disseminated form than active TB,
therefore, tissue destruction could also be higher in those individuals.

Finally, some of the MMPs (1, 2, 3) and TIMPs (2, 3) were
linked with an elevated risk of TBL-Hel+ coinfection whereas
other markers are negatively associated with enhancing the risk
of TBL-helminth coinfection. In addition, TBL-Hel+ individuals
had significantly elevated ratios of MMP (1, 2, 3) with all TIMPs
and significantly lower ratios of MMP (3, 7) with TIMPs. The
possible reason for lower MMP3/TIMP2 and MMP7/TIMP3
ratio might be because they have been reported to be mostly
associated with tissue destruction and activation upon TB
infection. However, the mechanism involved in the significant
increase in the systemic levels of MMPs and TIMPs upon TBL-
helminth coinfection requires additional study.

Our study has certain limitations from being a cross sectional
study and not being able to include the helminth infected
individuals for comparison. Our future studies will examine
the pro-inflammatory (IFN-g , IL-6, IL-12) and anti-
inflammatory (IL-4, IL-5, IL-10, TGFb) cytokines to
understand their role in stimulating MMPs and TIMPs in the
coinfected groups. Overall, our data precisely display the
importance of MMPs and TIMPs in TBL-helminth coinfection
and their elevated levels potentially increase the risk of disease or
compromise protective immunity against TBL disease. Hence,
finding the potential inhibitory molecules for MMPs and TIMPs
might be important and can be considered as an adjunct therapy
for treating TB and TB-helminth coinfections.
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