
www.nrronline.org
NEURAL REGENERATION RESEARCH 
May 2017, Volume 12, Issue 5

696

Hypoxia inducible factor-1 alpha stabilization for 
regenerative therapy in traumatic brain injury

Introduction
The U.S. Centers for Disease Control and Prevention define 
a traumatic brain injury (TBI) as being caused by a bump, 
blow, or jolt to the head or a penetrating head injury that 
disrupts normal brain function (www.cdc.gov/traumatic-
braininjury/data). The causes of TBI are extremely diverse, 
ranging from accidents on the highways, to involvement in 
sports related injuries, and the effects of improvised explo-
sive devices in the theater of war. Falls are the major cause 
of TBI in children and the elderly (Blennow et al., 2016). 
TBI causes neurobehavioral deficits, especially in motor and 
cognitive functions (Langlois et al., 2006). The observed 
cognitive changes that follow TBI include decreased mental 
flexibility, impaired attention, poor planning/judgment, defi-
cits in verbal fluency, dementia, and problems with work-
ing memory (Levin and Kraus, 1994; Johnson et al., 2010). 
Furthermore, TBI is associated with significant morbidity/
mortality, pain, and fatigue (Levin and Diaz-Arrastia, 2015; 
Blennow et al., 2016; Mollayeva et al., 2017). TBI patients are 
also susceptible to stroke, epilepsy, and Alzheimer’s disease 
(Johnson et al., 2010; Liu et al., 2017). 

Over 5.3 million Americans suffer lifelong disabilities 
due to TBI and 1.7 million Americans meet with TBI-as-

sociated accidents annually (Gardner and Zafonte, 2016). 
Approximately 52,000 Americans die annually as a result of 
TBI (www.cdc.gov/traumaticbraininjury/data). As estimat-
ed by the World Health Organization, TBI will become the 
leading cause of death and disability worldwide by the year 
2020 (Hyder et al., 2007). In terms of TBI-related mortality, 
the US 2006–2010 data revealed males had an almost three-
fold increased risk of TBI-related death than females, and 
individuals over the age of 64 years had the highest mortality 
rates (www.cdc.gov/traumaticbraininjury/data; Faul and 
Coronado, 2015). TBI among children aged 0–14 years is 
also prevalent due to falls (Langlois et al., 2005). The total 
(direct and indirect) TBI costs in the USA were approxi-
mately $60.43 billion in 2000 (Corso et al., 2006), which has 
now increased to approximately $76.5 billion (www.cdc.gov/
traumaticbraininjury/data). Despite substantial investments 
in TBI research, the treatment options are limited to man-
age the sequelae of the injury. The state of TBI science and 
pharmacotherapy have been thoroughly reviewed recently 
(Diaz-Arrastia et al., 2014).

Immediately following TBI, the direct trauma and lack 
of blood flow cause necrotic neuronal death; however, even 
greater apoptotic neuron loss can occur later from secondary 
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injury caused by hypoxia/ischemia and insults associated 
with oxidative stress and inflammation (Coles, 2004; Greve 
and Zink, 2009; Diaz-Arrastia et al., 2014). Focal injury, as 
a result of TBI, affects not only locomotor function but also 
cognition, perhaps because damage to brain connectivity is 
a critical component in the cognitive impairment from TBI. 
Moreover, cognitive impairment may not be the result of 
a single event but due to multiple mechanisms originating 
from secondary injury (Lloyd et al., 2008). The neurorepair 
process (in the chronic phase) depends on regeneration 
mechanisms that involve a coordinated integration of angio-
genesis, neurogenesis, and remyelination of new and spared 
axons (Lu et al., 2007). Therapies to increase regeneration 
activity (angiogenesis, neurogenesis, remyelination) during 
the chronic phase of TBI therefore hold promise as a treat-
ment strategy for stimulating the recovery of neurological 
functions. 

Approximately 40% of all TBIs are contusions; there-
fore, animal models of TBI using the focal cortical impact 
injury (CCI) technique are recognized as physiologically 
relevant to human TBI (Pennings et al., 1993). The CCI 
technique was developed by General Motors to model 
head injuries from automobile accidents and was later 
adapted for wider experimental use (Lighthall et al., 1989). 
It reproduces many of the features of brain injuries, in-
cluding motor deficits, dementia, memory loss, and neuro-
nal loss (Colicos et al., 1996). The severity of injury can be 
controlled by altering the velocity and depth of the impact 
and the size of the impact or tip (Dixon et al., 1991). CCI 
provides an animal model system to evaluate injuries in 
both the acute and chronic phases. The mechanisms of 
the injury in the two phases are different and complex. 
While CCI results in a significant number of necrotic as 
well as apoptotic neurons in the acute phase, it lacks suf-
ficient regeneration process stimulation (Diaz-Arrastia et 
al., 2014). Stimulating neurorepair activity by therapeutic 
modalities, via neurotrophic and growth factors, has been 
shown to improve motor and cognitive functions (Oy-
esiku et al., 1999; Kim et al., 2001; Wu et al., 2008; Sun 
et al., 2009). Our studies show that S-nitrosoglutathione 
(GSNO)-induced mechanisms stabilize hypoxia-inducible 
factor-1 alpha (HIF-1α) and stimulate the mechanisms 
of regeneration and functional recovery in TBI (Khan et 
al., 2016a). Unlike in stroke, the role of HIF-1α in TBI is 
less understood. While the activity of HIF-1α is increased 
immediately after TBI, its expression levels are significant-
ly decreased 24 hours following TBI (Ding et al., 2009). 
Studies from other laboratories have also reported that 
neurorepair (stimulation of the expression of vascular en-
dothelial growth factor (VEGF) and brain-derived neuro-
trophic factor (BDNF)) mechanisms in the chronic phase 
of TBI are dependent on HIF-1α activity (Sen and Sen, 
2016; Thelin et al., 2016).

HIF-1α and its regulating enzymes, including prolyl-4-hy-
droxylases (PHDs), are directly regulated by S-nitrosyla-
tion (Metzen et al., 2003), leading to stabilization of HIF-
1α and induction of neurorepair mechanisms in the repair 

phase. S-nitrosylation-mediated stabilization of HIF-1α 
was also reported to increase angiogenesis and myocardial 
protection (Lima et al., 2009), indicating a protective role of 
S-nitrosylated HIF-1α. Therefore, we investigated whether 
S-nitrosylation-mediated modulation of HIF-1α induces 
neurorepair, leading to functional recovery in a rat CCI 
model of TBI. 

HIF-1, a nuclear transcription factor, was discovered by 
Dr. Semenza in 1996 (Semenza, 1996). It was characterized 
as the master regulator of cellular oxygen homeostasis. It 
activates the tissue survival pathways by inducing several 
key enzymes involved in cell metabolism glucose transporter 
(GLUT), angiogenesis (VEGF, VEGFR1, angiopoietin), and 
free radical scavenging (heme hydroxylase-1; HO-1) (Ke and 
Costa, 2006). HIF is a heterodimeric protein composed of 
α and β subunits. There are three HIF-α isoforms (HIF-1α, 
HIF-2α and HIF-3α). The beta class includes HIF-1β. HIF-
1 is a combination of the HIF-1α (120 kDa) and HIF-1β (91-
94 kDa) subunits. The HIF-1β subunit is a constitutively 
expressed protein, but the expression of the HIF-1α subunit 
(a cytosolic protein) is largely dependent on oxygen levels. 
HIF-1α is rapidly up regulated in response to hypoxia and 
is rapidly degraded upon reoxygenation/reperfusion. Under 
normoxia, HIF-1α is bound by the von Hippel-Lindau pro-
tein (pVHL). pVHL recruits a ubiquitin ligase that targets 
HIF-1α for the 26S proteasomal degradation. The binding of 
pVHL is dependent upon hydroxylation of specific proline 
residues in HIF-1α (pro402 and pro564) by the PHD family 
of proteins (PHDs), especially HIF-1α-specific PHDs, such 
as PHD3/PHD2 (please see Ke and Costa, 2006; Harten et 
al., 2010 for details). These PHD isozymes share maximum 
homology, and they are implicated in degradation of HIF-1α. 
PHDs use oxygen as a substrate; therefore, their activity is 
inhibited under hypoxia. Oxygen can also activate factor-in-
hibiting HIF (FIH), leading to prevention of the binding of 
the co-activators p300/CBP, thus down regulating HIF-1-in-
duced transcriptional activity (Figure 1). HIF-1α knockout 
mice show impaired vascular development and embryonic 
lethality, indicating HIF-1’s protective role in vascular dis-
eases (Iyer et al., 1998).

Remarkably, the HIF-1α pathway is involved in both 
pathological (hypoxia) and neurorepair (normoxia) mech-
anisms following TBI. The HIF-1α stabilizers/inducers, 
such as desferrioxamine (an iron chelator approved for hae-
mochromatosis treatment), promote a number of survival 
pathways, including neuroprotection, angiogenesis and 
neurotrophins, and reduce brain infarctions when admin-
istered pre- or post-stroke (Kasivisvanathan et al., 2011). 
PHD inhibitors, such as FG-4539, are presently in a phase 
II anemia trial because of their activity to stabilize HIF-1α 
by preventing degradation with the ubiquitin proteasome 
system (Harten et al., 2010). However, inhibition of HIF-
1α in the acute injury phase of TBI has also been reported 
to be neuroprotective (Shenaq et al., 2012; Schaible et al., 
2014).

Under normoxic conditions, studies are lacking on di-
rect stabilization of HIF-1α by secondary modification and 
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the induction of consequent protective genes. Nevertheless, 
S-nitrosylation has been shown to stabilize HIF-1 protein 
expression and activity in normoxic endothelial cells (Palmer 
et al., 2000). Later, it was confirmed that, while GSNO sta-
bilizes HIF-1α by S-nitrosylation, reactive nitrogen species 
(peroxynitrite) destabilize HIF-1α (Figure 1) (Wellman et 
al., 2004). GSNO-mediated stabilization of HIF-1α has been 
shown to be dependent on PI3K/Akt activity (Carver et al., 
2007). A recent study in a mouse model of stroke shows that 
S-nitrosylation of phosphatase and tensin homolog (PTEN) 
results in an inhibition of its activity, leading to the activa-
tion of Akt (Numajiri et al., 2011). GSNO also activated Akt 
in a rat model of experimental stroke (Sakakima et al., 2012). 
Furthermore, GSNO also attenuated PHD activity during 
normoxia and inhibited proteasomal degradation of HIF-1α 
(Metzen et al., 2003). S-nitrosylation-mediated stabilization 
of HIF-1α has been shown to protect against myocardial in-
jury via the VEGF/angiogenesis pathway in GSNO reductase 
(GSNOR) knockout mice (Lima et al., 2009), indicating that 
HIF-1 is a key player in the regeneration process. Our TBI 
studies showing that the HIF-1α/VEGF pathway accelerated 

functional recovery in a 2-week mouse model of TBI via 
S-nitrosylation of HIF-1α further support the neurorepara-
tive role of HIF-1α (Khan et al., 2016a) as depicted in Figure 
2. S-nitrosylation/GSNO-mediated increased expression 
HIF-1α and stimulation of neurotrophic factors provide a 
strong rationale to evaluate the potential of a GSNO-mediat-
ed HIF-1α pathway for human therapy in the chronic phase 
of TBI. 

GSNO is a natural component of the human body pro-
duced by the reaction of nitric oxide (NO) with glutathione 
(GSH) in the presence of oxygen (Singh et al., 1996). It is 
sensitive to light, ascorbate, thiols and divalent cations such 
as Fe2+ and Cu2+ (Broniowska et al., 2013). GSNO is present 
in the brain and other organs (Kluge et al., 1997). It is di-
rectly involved in cell signaling via S-nitrosylation of target 
proteins, including nuclear factor kappaB (NF-κB), signal 
transducer and activator of transcription 3 (STAT3), cyclo-
oxygenase-2 (COX-2), caspase-3, calpains, inducible nitric 
oxide synthase (iNOS), and endothelial NOS (eNOS) and 
neuronal NOS (nNOS) (Jaffrey et al., 2001; Khan et al., 2005, 
2006, 2012, 2016a, b; Kim et al., 2013). Exogenous admin-

Figure 1 Hypothesized HIF-1α regulation under hypoxia, normoxia, 
and redox. 
HIF-1α is characterized as the master regulator of cellular oxygen ho-
meostasis. It activates the tissue survival pathways by inducing several 
key enzymes involved in cell metabolism (GLUT), angiogenesis (VEGF, 
VEGFR1, angiopoietin), and free radical scavenging (heme hydroxy-
lase-1; HO-1). HIF-1 is a combination of the HIF-1α and HIF-1β sub-
units. The HIF-1β subunit is a constitutively expressed protein, but the 
expression of the HIF-1α subunit is largely dependent on oxygen levels. 
HIF-1α is rapidly up regulated, stabilized and moves to the nucleus in 
response to hypoxia. In contrast, it is rapidly degraded upon reoxy-
genation/reperfusion and in normoxic conditions. Under normoxia, 
HIF-1α is bound by the pVHL. pVHL recruits an ubiquitin ligase that 
targets HIF-1α for 26S proteasomal degradation. The binding of pVHL 
is dependent upon hydroxylation of specific proline residues in HIF-1α 
(pro402 and pro564) by the PHD family of proteins (PHDs). PHDs use 
oxygen as a substrate; therefore, their activity is inhibited under hypoxia. 
Oxygen can also activate FIH, preventing the binding of the co-activators 
p300/CBP, thus down regulating HIF-1-induced transcriptional activity. 
Reactive oxygen species such as peroxynitrite, destabilize HIF-1α by 
oxidizing its thiol group, which is degraded by 20S proteasome system. 
CBP: CREB-binding protein; FIH: factor-inhibiting HIF; GLUT: glucose 
transporter; HIF-1: hypoxia-inducible factor 1; HO-1: heme oxygen-
ase-1; PHD: prolyl-4-hydroxylase; pVHL: von Hippel-Lindau protein; 
VEGF: vascular endothelial growth factor; VEGFR: VEGF receptor.

Figure 2 Schematic showing that exogenously administered GSNO 
stabilizes HIF-1α via S-nitrosylation, leading to the stimulation of 
neurorepair mediators and functional recovery in TBI. 
GSNO-mediated S-nitrosylation occurs on pVHL, PHD, and HIF-1α, 
contributing to the inhibition of HIF-1α degradation. S-nitrosylated 
HIF-1α moves to the nucleus, where it dimerizes with HIF-1β and 
interacts with P300 and CBP, leading to transcription of neurorepair 
mediators such as VEGF and BDNF under TBI conditions. Black bro-
ken arrows indicate that these mechanisms are not well understood. 
BDNF: Brain-derived neurotrophic factor; CBP: CREB-binding pro-
tein; GSNO: S-nitrosoglutathione; HIF-1: hypoxia-inducible factor 1; 
PHD: prolyl-4-hydroxylase; pVHL: von Hippel-Lindau protein; SNO: 
S-nitrosylation; TBI: traumatic brain injury; VEGF: vascular endotheli-
al growth factor.
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istration of GSNO (Rassaf et al., 2006) also protects against 
cardiac ischemic injury (Konorev et al., 1995; Lima et al., 
2009), supporting the therapeutic potential of GSNO. Stud-
ies have also reported that GSNO inhibits platelet activation 
in humans (Radomski et al., 1992) and protects both blood-
brain barrier integrity and epithelial permeability (Savidge 
et al., 2007; Khan et al., 2009). Various disease conditions 
are known to have reduced levels of S-nitrosothiols (-SNO/
GSNO) (Snyder et al., 2002; Heiss et al., 2006; Schonhoff 
et al., 2006) and exogenous administration of GSNO has 
increased endogenous GSNO and S-NO levels (Khan et al., 
2012; Zanini et al., 2012; Hu et al., 2013).

In a microenvironment of TBI, NO released by conven-
tional NO-donors or NO gas itself is anticipated to be inacti-
vated by superoxide, thus forming deleterious peroxynitrite 
(Singh et al., 2007; Deng-Bryant et al., 2008; Reed et al., 
2009). Unlike NO, the disadvantage of inactivation is not 
associated with the S-nitrosylating agent GSNO (Khan et 
al., 2006). In addition, S-nitrosylation of cysteine residue (a 
reversible modification) prevents it from further oxidation 
to sulfinic and sulfonic acids (an irreversible modification), 
thereby preventing inactivation of both NO and proteins. 
The neurorepair effect of GSNO may be mediated by two 
different mechanisms: 1) S-nitrosylation and 2) maintain-
ing redox by mechanistically reducing the production of 
oxidants, including peroxynitrite. Such multi-mechanistic 
functional and therapeutic abilities are not embedded in 
conventional NO donors as previously reported (Khan et al., 
2006), making GSNO a unique candidate to be investigated 
for the stimulation of functional recovery following TBI. 

Several studies showing the efficacy of GSNO in human 
diseases have been listed by Hornyak et al. (Hornyak et al., 
2011). Recently, GSNO was also used in early onset of pre-
eclampsia (Christopher et al.). None of the studies report 
major or significant side effects associated with the use of 
GSNO in humans. GSNO-releasing nanoparticles, hydrogel 
and/or polymers are also used tropically in wound heal-
ing and skin diseases (Georgii et al., 2011; Chouake et al., 
2012). Microparticles loaded with GSNO have a much lon-
ger half-life than free GSNO and show neurovascular pro-
tective efficacy in an animal model of embolic stroke (Parent 
et al., 2015). GSNO-mediated therapeutic effects can also 
be achieved via the inhibition of GSNO reductase (GSNOR) 
enzyme. GSNOR is the major GSNO-metabolizing enzyme 
and thus GSNOR knock out mice store GSNO in excess. 
GSNOR degrades GSNO into ammonia and oxidized gluta-
thione without releasing free NO. Other enzymes, includ-
ing carbonyl reductase, formaldehyde dehydrogenase and 
gamma glutamyl transpeptidase also metabolize GSNO, 
but their activity is not specific toward GSNO (Foster et al., 
2009). Pharmacological inhibition of GSNOR has also been 
shown to improve endothelial functions (Chen et al., 2013), 
indicating a protective role of GSNO in neurovascular dys-
function. A recent report shows that GSNOR knock out 
mice behave normally and GSNO invokes its mechanistic 
effect via the mechanisms of trans-S-nitrosylation (Moon 
et al., 2017). However, another study found GSNOR knock 

mice having compromised neuro-muscular functions 
(Montagna et al., 2014). Use of GSNOR inhibitors have 
been found beneficial in animal models of experimental 
asthma (Ferrini et al., 2013), allergic airway inflammation 
(Blonder et al., 2014) and endothelial vasodilatory dysfunc-
tion (Chen et al., 2013). These results support the associ-
ation of beneficial activity with GSNO-mediated mecha-
nisms in several diseases. 

Conclusion
The potential of GSNO as an HIF-1α stabilization-based 
therapeutic agent in TBI offers a novel target for further 
investigation (Figure 2). Mechanistically, GSNO invokes its 
action mainly via an S-nitrosylation-based mechanism, a 
physiological secondary protein modification process. Un-
like other chemical therapeutics, GSNO is an endogenous 
neurorepair-inducing agent and its exogenous administra-
tion protects against neurodegenerative disease mechanisms 
in stroke, spinal cord injury, and TBI. The treatment with 
GSNO accelerated functional recovery and improved overall 
outcomes in a comparatively long-term TBI study (Khan 
et al., 2016a). Furthermore, GSNO’s administration in hu-
mans for other indications resulted in no toxicity or side 
effects, thus supporting the translational potential of GSNO 
therapy in TBI. A long term study showing stimulation of 
neurorepair mechanisms and improvements of neurological 
functions in humans will determine the overall efficacy and 
the clinical relevance of GSNO as a rehabilitation therapy in 
TBI. 
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