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Abstract

Mitochondrial disorders arise from defects in nuclear genes encoding enzymes of oxidative

metabolism. Mutations of metabolic enzymes in somatic tissues can cause cancers due to

oncometabolite accumulation. Paraganglioma and pheochromocytoma are examples,

whose etiology and therapy are complicated by the absence of representative cell lines or

animal models. These tumors can be driven by loss of the tricarboxylic acid cycle enzyme

succinate dehydrogenase. We exploit the relationship between succinate accumulation,

hypoxic signaling, egg-laying behavior, and morphology in C. elegans to create genetic and

pharmacological models of succinate dehydrogenase loss disorders. With optimization,

these models may enable future high-throughput screening efforts.

Introduction

Mitochondrial disorders can result from mutations affecting enzymes of oxidative metabolism

[1–4]. Interestingly and surprisingly, some cancers are caused by gain-of-function or loss-of-

function mutations of genes encoding metabolic enzymes in susceptible tissues [5]. For exam-

ple, paraganglioma and pheochromocytoma (PPGL) are rare neuroendocrine tumors [6–8]

that originate in the parasympathetic and sympathetic ganglia, are highly angiogenic, and may

secrete catecholamines. Up to 30% of PPGL tumors are hereditary [9].

All four subunits of the mitochondrial enzyme succinate dehydrogenase (SDH) have been

identified as tumor suppressors in familial PPGL[10–13], with loss of heterozygosity account-

ing for tumorigenesis. The succinate accumulation hypothesis attributes tumorigenesis follow-

ing SDH loss to an oncometabolite role for excess succinate [14]. Loss-of-function mutations

of SDH subunits lead to dysfunctional complexes [15, 16]. The resulting TCA cycle dysfunc-

tion drives metabolic remodeling with dependence on glycolysis [17] and a profound
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accumulation of succinate as defective SDH cannot oxidize this dicarboxylic acid to fumarate.

Excess succinate acts as a competitive inhibitor of enzymes belonging to the 2-ketoglutarate-

dependent dioxygenase family. This family of iron-dependent enzymes, numbering more than

40 in humans [18], catalyzes oxidation reactions splitting molecular oxygen to incorporate one

oxygen atom into the substrate with oxidative decarboxylation of co-substrate, 2-ketoglutarate,

to form succinate [19].

Since many enzymes belong to the 2-ketoglutarate-dependent dioxygenase family, there are

many potential consequences of succinate accumulation upon SDH loss [20]. One susceptible

enzyme of interest is HIF-α prolyl-hydroxylase (PHD), which participates in the oxygen sens-

ing mechanism of animals. Under normoxic conditions, PHD hydroxylates HIF-α transcrip-

tion factor subunits, marking the proteins for polyubiquitination by von Hippel-Lindau

protein and eventual degradation by the proteasome [21]. Under hypoxic conditions, molecu-

lar oxygen is limiting so the PHD-catalyzed dioxygenase reaction slows and HIF-α subunits

avoid degradation and translocate to the nucleus to interact with constitutively-expressed

HIF-β. The resulting transcription factors activate genes driving angiogenesis and glycolysis to

adapt to hypoxia. High levels of succinate inhibit PHD, creating a pseudohypoxic condition

that is hypothesized to be tumorigenic in susceptible cell types [14]. It remains unknown how

succinate poisoning of PHD and/or other 2-ketoglutarate-dependent dioxygenases drives

tumorigenesis. In the absence of rodent models and SDH-loss PPGL cell lines, understanding

the linkage between SDH loss and tumorigenesis is an urgent and unmet need.

Our limited understanding of the mechanistic impact of SDH loss on cellular processes and

tumorigenesis has thwarted PPGL therapeutic advances. We therefore sought to establish a C.

elegansmodel embodying genetic and biochemical aspects of SDH-loss disorders including

PPGL. The soil nematode C. elegans provides an inexpensive, easily-maintained, genetically-

tractable model organism with a fully-sequenced genome [22, 23]. Moreover, fully 40% of

genes known to be associated with human diseases have clear C. elegans orthologs. For exam-

ple, while humans have three HIFα subunits (HIF-1α, HIF-2 α, and HIF-3α) encoded by three

separate genes, C. elegans has only a single hif-1 α gene, facilitating conclusive genetic analysis

[24]. In principle, changes in C. elegans phenotype or behavior associated with mutations

related to SDH and HIF function could create models for high-throughput screening of com-

pounds that suppress or exacerbate these characteristics in intact animals. Whole-animal sup-

pression screens have the advantage of simultaneously monitoring efficacy and toxicity.

Inspiration for a C. elegans model of the molecular changes associated with SDH-loss disor-

ders such as PPGL came from the previous fascinating observation that mutation of egl-9
(sa307), the C. elegans ortholog of human PHD, unexpectedly causes increased egg retention

in hermaphrodite worms [25]. In retrospect, it seems likely that oxygen-sensing in egg-laying

behavior is adaptive, suppressing egg-laying in inhospitable environments. The egg-laying

defect is HIF-1-dependent, as egl-9(sa307):hif-1(ia4) double mutants and hif-1(ia4) single

mutants both exhibit normal egg laying behavior [26].

Here we exploit HIF-1-dependent egg retention to create C. elegansmodels of SDH-loss

human PPGL. We hypothesized that cellular changes impinging on the C. elegansHIF pathway

should be revealed in the egg retention phenotype because, as noted, succinate accumulation

upon SDH loss inhibits PHD activity. To investigate this, we utilized both genetic (cell-specific

gene expression or knockdown) and pharmacological [treatment with dimethyloxalylglycine

(DMOG), a cell-permeable succinate analog] approaches. Further, we report a novel image-

based readout of worm morphology with the potential to monitor egg retention phenotypes

more efficiently in drug screening. With further optimization, this work suggests a path toward

future screening for non-toxic small molecules that suppress the egg retention phenotype

caused by succinate inhibition of EGL-9. Such agents might function to therapeutically relieve
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succinate inhibition of 2-ketoglutarate-dependent dioxygenases in PPGL and other SDH-loss

disorders.

Materials and methods

Strains and maintenance

Previously described C. elegans strains utilized in this study include N2, JT307 egl-9 (sa307),
CB6088 egl-9(sa307):hif-1(ia4), and ZG31 hif-1(ia4). These strains were obtained from the

Caenorhabditis Genetics Center.

C. elegans were grown and maintained on nematode growth media (NGM) agar seeded

with E. coliOP50 at room temperature unless otherwise noted. Standard alkaline sodium

hypochlorite treatment was used to establish synchronous populations of worms for egg

counting and imaging studies. For egg counting studies, individual worms were placed in

bleach droplets and eggs were counted after cuticle dissolution [27]. Media components were

obtained from Sigma.

Generation of transgenic lines

The C. elegans Punc-31 promoter was used to drive expression of Hif transgenes or RNA inter-

ference constructs for SDH subunit knockdown, allowing these effects to be limited to neurons

known to be important for egg-laying. DNA oligonucleotides were obtained from IDT. Punc-
31 was amplified by PCR from C. elegans genomic DNA (forward primer sequence 5’-AACA
ACTTGGAAATGAAATACGAGAACTTAAACCATTAAA; reverse primer sequence 5’-GACCT
GCAGGCATGCAAGCTGATGTTCCAAACGAAGACTG) and Gibson assembly was used to insert

Punc-31 into HindIII-linearized pPD95_75. Following ligation and cloning, the resulting plas-

mid was linearized by BamHI cleavage 30 bp downstream from the Punc-31 insertion and egl-
9(+) coding sequence that had been amplified by PCR from genomic DNA (forward primer

sequence 5’- CCTGCAGGTCGACTCTAGAGCACATGACATGAGCAGTGCCCCAAATGA;

reverse primer sequence 5’-CTTTGGCCAATCCCGGGGATCGATGTAATACTCTGGGTTTG)

or hif-1(+) coding sequence that had been amplified by PCR from genomic DNA (forward

primer sequence 5’-CCTGCAGGTCGACTCTAGAGATCAAGATGGAAGACAATCG; reverse

primer sequence 5’- CTTTGGCCAATCCCGGGGATCAGAGAGCATTGGAAATGGGG) was

inserted using a second round of Gibson assembly. Constructs jhuEx[Punc-31::EGL-9] and

jhuEx[Punc-31::HIF-1] were co-injected into adult hermaphrodite egl-9(sa307) and egl-9
(sa307):hif-1(ia4) worms, respectively, along with plasmid pRF4 encoding a mutant collagen

(rol-6(su1006)) that induces a dominant "roller" phenotype [28, 29]. Importantly, in prelimi-

nary experiments it was demonstrated that the rol-6marker does not affect egg-laying behavior

or egg retention.

Punc-31 was amplified by PCR with using a different set pair of primers (forward primer

sequence 5’- ATGACCATGATTACGCCACGAGAACTTAAACCATTAAATA; reverse primer

sequence 5’-CCTGCAGGCATGCAAGCTGATGTTCCAAACGAAGACTGCA) for Gibson assem-

bly into HindIII-linearized pPD49_78. Sense and antisense domains of a 496-bp region of the

C. elegans sdhb-1 gene were assembled from appropriate primers by PCR from genomic DNA

targeting parts of exons 1 and 3 (44 and 121 bp respectively) and all of exon 2 (sense forward

primer sequence 5’- AGCTTGCATGCCTGCAATCGTTTCAACCCAGAAGCACCAG; sense

reverse primer sequence 5’- CAAAGTGTGGCTGAACGTGACACGTTCAGCCACACTTTGG;

antisense forward primer sequence 5’- CCAAGTGTGGCTGAACGTGTCACGTTCAGCCACA
CTTTG; antisense reverse primer sequence 5’- GATCCTCTAGAGTCGACCTCGTTTCAACC
CAGAAGCACCA). Sbf1 was used to linearize the resulting plasmid 16 bp downstream from the

Punc-31 insertion. A second round of Gibson assembly was used to insert the sense and
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antisense sdhb-1 segments into the SbfI-linearized plasmid, forming an inverted repeat encod-

ing a long RNA hairpin for RNA interference. The resulting plasmid jhuEx[Punc-31::sdhb-1
(IR)] was co-injected with pBX into adult hermaphrodite N2 worms.

DMOG treatment

After synchronization, worm concentration was approximated by counting the number of

worms in ten 10-μL drops of medium. Culture volume was diluted to 100 worms/mL. One mL

of culture was then added to each well of a 12-well plate. OP50 bacteria were added at 5 mg/

mL. Plates were sealed with an aluminum plate sealer and transferred to a room temperature

shaker.

Worms received the first treatment with dimethyloxalylglycine (DMOG; Sigma), a water-

soluble succinate analog, approximately four hours after culture initiation. On the following

days, DMOG was added and replenished twice daily at 8-hour intervals to account for sponta-

neous hydrolysis. It was assumed that each dose of compound was hydrolyzed during each

interval, so DMOG treatment concentration is termed “nominal.”

Acquisition and analysis of C. elegans images

C. elegans worms were transferred from liquid culture onto clean NGM plates and rinsed with

s-complete medium. Adults were manually separated from larvae with a worm pick onto fresh

NGM plates. Digital brightfield images were obtained manually using a Leica DMi1 camera

using the 10x objective and converted to grayscale tiff files using Adobe Photoshop. WormSi-

zer [30], an open source plugin compatible with Fiji [31], was used to obtain length and width

measurements for each imaged animal.

Statistical analysis

Values are expressed as mean +/- standard deviation for the indicated number of independent

experiments. The statistical analysis was performed using the Student’s t-test or a one way

analysis of variance (ANOVA) test with post-hoc Tukey HSD, or a Dunnett’s test with R Stu-

dio software. A P value of less than 0.05 was considered statistically significant.

Results

Cell-specific knockdown of SDHB-1 leads to increased egg retention in N2

worms

We set out to determine whether C. elegans can be used as a genetic model of the SDH-loss

cells present in human mitochondrial disorders including familial PPGL tumors. RNAi

screens have shown that systemic knockdown of any of the four SDH subunits (SDHx) is

embryonic lethal in C. elegans [32, 33], as in mammals. Seeking screenable phenotypes associ-

ated with SDH loss in worms, it was therefore necessary to limit SDHx knockdown to a sub-

population of cells consistent with viability. We hypothesized that egg-laying behavior

controlled by EGL-9 would be sensitive to succinate accumulation such that succinate inhibi-

tion of EGL-9 would phenocopy EGL-9 loss and drive egg retention. The unc-31 promoter

(Punc-31) was selected to drive expression of test genes because this promoter has been shown

to be active in neurons, including those believed to be responsible for egg laying [34]. To test

this, we constructed two transgenic lines based on known egg-laying behavior. Hermaphrodite

worms homozygous for the egl-9(sa307)mutation retain eggs. We found that Punc-31-driven

expression of functional EGL-9 in egl-9(sa307)mutants significantly relieved egg retention

from egl-9(sa307)mutant levels (P<2.62e-14) to near wild type levels (mean eggs per worm
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are 14.2 and 12.7 respectively; P = 0.007; Fig 1A). Likewise, Punc-31-driven expression of wild

type hif-1(+) in egl-9(sa307):hif-1(ia4) hermaphrodites increased egg retention significantly

above wild type and egl-9(sa307):hif-1(ia4) double mutants levels (P<2.62e-14 for both cases;

Fig 1B). These results demonstrate that the unc-31 promoter defines a cell compartment that

controls egg-laying behavior. We considered if the more limited neuroendocrine cell compart-

ment defined by tdc-1 promoter (Ptdc-1) activity might also be adequate to control egg-laying

behavior. Ptdc-1 activity is thought to be limited primarily to the four uv1 neuroendocrine

cells of C. elegans, known to play a prominent role in hormonal control of egg laying. Interest-

ingly, in contrast to Punc-31, we found that Ptdc-1-driven expression of functional hif-1(+) in

egl-9(sa307):hif-1(ia4)mutants was inadequate to induce egg retention (data not shown). It is

unknown whether this result is due to the tissue restriction of Ptdc-1 or its strength.

Based on these results, Punc-31 was chosen to drive cell-specific knockdown of SDHB-1 by

RNA interference after injection of a plasmid containing an sdhb-1 inverted repeat (IR) under

the control of Punc-31. Disruption of the SDH complex in unc-31-expressing cells is hypothe-

sized to mimic essential biochemical phenotypes of SDH-loss disorders such as PPGL. Three

stable worm lines were generated. After synchronization, all individuals carrying the sdhb-1
RNAi transgene showed increased egg retention relative to controls (Fig 2). This result demon-

strates for the first time that SDH function in Punc-31-positive cells is necessary for normal

egg-laying behavior. We hypothesize that SDH knockdown results in intracellular succinate

accumulation, known to inhibit 2-ketoglutarate-dependent dioxygenases such as EGL-9.

According to this model, EGL-9 inhibition prevents HIF-1 hydroxylation, stabilizing HIF-1

and promoting HIF-1 signaling and egg retention behavior in C. elegans. We note that global

succinate accumulation in whole worms is not expected for SDH knockdown under these con-

ditions, as effects would be limited to the small subset of cells where Punc-31 is active.

DMOG treatment increases egg retention in N2 worms

To test the hypothesis that succinate accumulation alone is sufficient to drive egg retention in

C. elegans, we studied egg-laying behavior in the presence of dimethyloxalylglycine (DMOG),

Fig 1. Punc-31 control of egl-9 and hif-1 expression is adequate to control egg retention phenotype. A. Punc-31-driven expression of EGL-9 in egl-9(sa307)mutants

is sufficient for statistically significant reduction of egg retention below egl-9(sa307) levels (P<2.62e-14) to near wild type levels (mean eggs per worm are 14.2 and 12.7

respectively; P = 0.007). B. Punc-31-driven expression of HIF-1 in egl-9(sa307):hif-1(ia4) double mutants significantly increases egg retention above egl-9(sa307):hif-1
(ia4) and N2 levels (P<2.62e-14 in both cases), to near egl-9(sa307) egg retention levels. ANOVA with post-hoc Tukey’s HSD test was used to compare mean egg

retention. ��P<0.01, ���P<0.001. Error bars show standard deviation.

https://doi.org/10.1371/journal.pone.0227033.g001
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a cell-permeable succinate analog. DMOG is the prodrug of N-oxalylglycine (NOG), which is

known to inhibit 2-ketoglutarate-dependent dioxygenases but is unable to permeate cell mem-

branes [35]. Previous studies have shown that mammalian cells treated with DMOG show an

increase in transcription of HIF-1-responsive genes [36]. Consistent with our observations for

sdhb-1 knockdown, treatment of C. elegans hermaphrodites with DMOG induced egg reten-

tion in wild type N2 worms, but not in hif-1(ia4) worms (Fig 3). The implications of these

results are two-fold. First, DMOG-induced egg retention in N2 worms provides a second

Fig 2. Knockdown of SDHB-1 in unc-31-expressing cells increases egg retention in three independently derived worm lines. sdhb-1 knockdown was accomplished

by microinjection of a plasmid containing Punc-31 driven expression of a 496-bp sdhb-1 fragment cloned directly before an inverted repeat of the sequence. An

independent Student’s T test was used to compare means. ��P<0.01, ���P<0.001. Error bars show standard deviation.

https://doi.org/10.1371/journal.pone.0227033.g002

Fig 3. DMOG treatment impacts egg retention in a strain-specific manner. A. DMOG treatment increases egg retention in

N2 worms. B. No egg retention defect was observed in DMOG-treated hif-1(ia4) worms. An independent Student’s T test was

used to compare means. �P<0.05, ��P<0.01, ���P<0.001. Error bars show standard deviation.

https://doi.org/10.1371/journal.pone.0227033.g003
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SDH-loss PPGL model based on a cell-permeable metabolite analog. Second, the inability of

DMOG to affect egg laying in hif-1(ia4)mutants demonstrates the HIF-1-dependence of this

chemical mechanism of egg retention in N2 worms. This observation supports a model attrib-

uting egg retention in N2 worms to increased HIF-1 signaling resulting from DMOG inhibi-

tion of EGL-9.

DMOG treatment alters N2 worm body morphology

C. elegans egg retention studies are commonly performed manually either by observing the

eggs in an intact animal or after dissolving the cuticle in sodium hypochlorite and counting

the eggs in resistant clutches [27]. To more quickly gather egg retention data in a manner that

might be optimized in the future for possible high-throughput screening of agents that alter

this phenotype, we sought a quantitative surrogate for egg retention. Assays of chitinase release

have previously been reported for this purpose[37], but were found to be too variable and

imprecise for our purpose. Changes in body morphology were then considered because egg

retention might reasonably be expected to affect girth. The WormSizer software tool was used

to collect a variety of measurements from brightfield images comparing synchronized

untreated and DMOG-treated N2 worms [30]. As hypothesized, DMOG treatment was

observed to increase the girth of worms, and this effect was dose-dependent (Fig 4A). Intrigu-

ingly, DMOG treatment also decreased length of N2 worms in a dose-dependent manner due

to unknown mechanisms (Fig 4B). Thus, DMOG-treated worms were both wider and shorter

than normal as evidenced by a reproducible dose-dependent decrease in width:length ratio

(Fig 4C). This observation suggests that optimization could lead to a new image-based screen-

ing approach for phenotypes related in egg retention in C. elegans.

Discussion

There is increasing interest in understanding disorders caused by cellular metabolite imbal-

ances [18]. Of particular importance to us are cancers driven by alteration of metabolic

enzymes, resulting in accumulation of dicarboxylates such as succinate, fumarate, and

2-hydroxyglutarate. These oncometabolites inhibit 2-ketoglutarate-dependent enzymes

important for many aspects of cell regulation, including hypoxic response, and epigenetic

Fig 4. DMOG treatment affects worm body morphology in a dose-dependent manner. A. Midpoint width increases with increasing DMOG dose. B. Length

decreases with increasing DMOG dose. C. Width:length ratio increases with increasing DMOG dose. Worms treated with higher DMOG doses are increasingly shorter

and fatter than untreated worms. Brightfield images were analyzed as described in Methods. Measurements were normalized to untreated worm measurements. A

Dunnett’s test was used to compare mean morphological characteristics of DMOG-treated to untreated worms. ��P<0.01, ���P<0.0001. Boxplot indicates the median,

first and third quartiles and whiskers indicate the largest value within 1.5 × interquartile range. Data points beyond 1.5 × interquartile range are plotted individually.

https://doi.org/10.1371/journal.pone.0227033.g004
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regulation through demethylation of histones, DNA, and RNA [38, 39]. Studies to develop

potential therapies for SDH-loss disorders, including familial PPGL, have been limited by the

absence of cell and animal models of the SDH-loss condition [40]. We have previously

exploited SDH-loss yeast models for drug screening to identify vulnerabilities induced by SDH

loss and succinate accumulation [41]. Here we envision a different approach–the potential for

a suppression screen in intact C. elegans worms where a measurable quantitate phenotype

reflects oncometabolite accumulation. Such a system would allow screening of drug libraries

for non-toxic agents that suppress the phenotype driven by SDH loss and succinate accumula-

tion. Such agents might function by preventing or discharging succinate accumulation.

Toward this end we report both genetic and chemical C. elegansmodels that link quantifi-

able egg-laying phenotypes to SDH loss and succinate accumulation. These models include

egg retention secondary to SDH loss in Punc31+ cells, and egg retention secondary to whole-

body treatment with succinate analog DMOG. We further show that worm body morphology

changes in a dose-dependent manner with DMOG treatment, paralleling egg retention, and

providing a possible future approach for high-content image screening of worm phenotypes if

the methodologies can be optimized. These results and their interpretations are summarized

in Fig 5.

The results described here open the possibility that C. elegans can be applied after future

assay optimization to high-throughput screening of chemical libraries for non-toxic agents

that suppress effects of SDH loss and succinate accumulation. Such agents would reveal drug-

gable pathways that might be altered to block oncometabolite effects in cancers of interest.
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36. Platero-Luengo A, González-Granero S, Durán R, Dı́az-Castro B, Piruat José I, Garcı́a-Verdugo José
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